DOI QR코드

DOI QR Code

Pilot Test with Pervaporation Seperation of Aqueous IPA Using a Composite PEI/PDMS Membrane Module

IPA/물 혼합액의 PEI/PDMS 복합막 모듈을 이용한 투과증발 파일롯 분리특성

  • Cheon, Bong Su (Department of Advanced Material and Chemical Engineering, Hannam University) ;
  • Cheong, Seong Ihl (Department of Advanced Material and Chemical Engineering, Hannam University) ;
  • Rhim, Ji Won (Department of Advanced Material and Chemical Engineering, Hannam University)
  • 천봉수 (한남대학교 대덕밸리캠퍼스 화공신소재공학과) ;
  • 정성일 (한남대학교 대덕밸리캠퍼스 화공신소재공학과) ;
  • 임지원 (한남대학교 대덕밸리캠퍼스 화공신소재공학과)
  • Received : 2015.10.05
  • Accepted : 2015.10.21
  • Published : 2015.10.31

Abstract

To determine the pervaporation separation characteristics of IPA/water mixtures, PEI/PDMS hollow fiber membrane module commercialized by Airrane Co. was subjected to both lab and pilot tests. The flux of $0.52kg/m^2h$ and IPA concentration of 68.5% at $25^{\circ}C$ were obtained whereas the $1.368kg/m^2h$ and 61.2% were measured at $55^{\circ}C$. In order to realized the durability of the module, the long-term test (at $50^{\circ}C$) of 100 days has been conducted and as a result, the flux $1.03{\sim}1.15kg/m^2h$ and IPA concentration 61.8~62.5% were maintained with the initial values.

Isopropyl alcohol (IPA)/물의 투과증발 분리특성을 알아보기 위해 상용화된 Polyetherimide (PEI) 중공사막에 Poly(dimethyl siloxane) (PDMS)로 코팅한 복합막 모듈을 이용하여 파일롯 테스트를 실시하였다. 공급액으로는 물과 IPA를 각각 85 : 15로 혼합하여 사용하였다. 실험 결과로 $25^{\circ}C$에서 투과도 $0.52kg/m^2h$, IPA 농도 68.5%로 높은 수치를, $55^{\circ}C$에서 투과도 $1.368kg/m^2h$, IPA 농도 61.2%로 높은 투과도를 얻을 수 있었다. 테스트를 진행한 복합막 모듈의 내구성을 알아보기 위하여 약 100일간 반응온도를 $50^{\circ}C$로 설정하여 장기테스트를 진행하였고 그 결과 약 $1.03{\sim}1.15kg/m^2h$의 투과도와 61.8~62.5%의 IPA 농도로 초기 측정량과 큰 차이가 없음을 나타내었다.

Keywords

References

  1. I. S. Chang and J. H. Kim "Development of environmentally sound technology for the water drying system", Clean Technol., 4(1), 68 (1998).
  2. M. Lee, S. Y. Nam, and S. Y. Ha, "Pervaporation of water-isopropanol mixtures through polyaniline membranes doped with poly (acrylic acid)", J. Membr. Sci., 159, 41 (1999). https://doi.org/10.1016/S0376-7388(99)00051-4
  3. J. S. Kim, E. H. Cho, S. Y. Kang, S. I. Cheong, H. W. Park, C. H. Seo, and J. W. Rhim, "Pervaporation separation of water-isopropyl alcohol mixture using PVA/PAN hollow fiber composite membranes", Membr. J., 23, 170 (2013)
  4. S. J. Kim, C. S. Lee, H. C. Koh, S. Y. Ha, S. Y. Nam, J. W. Rhim, and W. M. Choi, "Solvent resistance and gas permeation property of PEI-PDMS hollow fiber composite membrane for separation and recovery of VOCs", Membr. J., 22, 1 (2012).
  5. R. Atkinson, "Atmospheric chemistry of VOCs and NOx", Atmos. Environ., 34, 12 (2000).
  6. Y. M. Kim, S. Harrad, and R. M. Harrison, "Concentrations and sources of vocs in urban domestic and public micro environments", Environ. Sci. Technol., 35, 6 (2001).
  7. M. J. Ruhl, "Recover VOCs via adsorption on activated carbon", Chem. Eng. Prog., 89, 7 (1993).
  8. A. Baudot and M. Marin, "Dairy aroma compounds recovery by pervaporation", J. Membr. Sci., 50, 285 (1990). https://doi.org/10.1016/S0376-7388(00)80626-2
  9. R. A. Leonard, "Recent advances in centrifugal contactor design", Sep. Sci. Technol., 23, 1473 (1988). https://doi.org/10.1080/01496398808075643
  10. S. S. Kim, H. Y. Kim, "Preparation of pervaporation composite membrane for butanol separation", Membr. J., 19, 54 (2009).
  11. R. Y. M. Huang (Ed.), "Pervaporation membrane separation processes", Elsevier, Amsterdam (1991).
  12. X. Feng and R. Y. M. Huang, "Liquid separation by membrane pervaporation: a review", Ind. Eng. Chem. Tes., 36, 1048 (1997). https://doi.org/10.1021/ie960189g
  13. J. S. Kim, C. S. Lee, E. H. Cho, and J. W. Rhim, "Pervaporation separation of isopropyl alcohol-water mixtures using poly(dimethyl siloxane) membrane", Membr. J., 23, 245 (2013).
  14. B. Smitha, D. Suhanya, S. Sridhar, and M. Ramakrishna, "Separation of organic-organic mixtures by pervaporation: a review", J. Membr. Sci., 241, 1 (2004). https://doi.org/10.1016/j.memsci.2004.03.042
  15. D. Roizard, R. Clement, P. Lochon, J. Kerres, and G. Eigenberger, "Synthesis, characterization and transport properties of a new siloxane-phosphazene copolymer. Extraction of n-butanol from water by pervaporation", J. Membr. Sci., 113, 151 (1996). https://doi.org/10.1016/0376-7388(95)00243-X
  16. X. Feng and R. Y. M. Huang, "Blended chitosan and polyvinyl alcohol membranes for the pervaporation dehydration of isopropanol", J. Membr. Sci., 280, 815 (2006). https://doi.org/10.1016/j.memsci.2006.03.001
  17. A. A. Kittur, S. M. Tambe, S. S. Kulkarni, and M. Y. Kariduraganavar, "Pervaporation separation of water-acetic acid mixtures through NaY zeolite in corporated sodium alginate membranes", J. Appl. Polym. Sci., 94, 2101 (2004). https://doi.org/10.1002/app.21149
  18. H. I. Shaban, "Using pervaporation technique to separate water from organic", Chem. Eng. Process, 35, 429 (1996). https://doi.org/10.1016/S0255-2701(96)04154-2
  19. J. Sekulic, J. T. Elshof, and D. H. A. Blank, "Selctive pervaporation of water through a non-selective microporous titania membrane by a dynamically induced molecular sieving mechanism", Langmuir, 21, 508 (2005). https://doi.org/10.1021/la047458p
  20. H. S. Choi, Y. T. Park, S. T. Nam, J. H. Jeon, and S. L. Lee, "The preparation of a polyimide membrane for the separation of water-acetic acid mixture through pervaporation", Membr. J., 9, 215 (1999).
  21. J. Jegal and K. H. Lee, "Polymeric materials for pervaporation membranes", Membr. J., 7, 157 (1997).
  22. C. O. Kweon and G. C. Paik, "A study on the removal of chlorinated organic hydrocarbon compounds in wastewater using RTV (Room Temperature Vulcanizing)-silicon rubber (PDMS) membrane by pervaporation", J. Korea Society of Environ-ment Aidministation., 5, 385 (1999).
  23. D. P. Queiroz and M. N. D'Pinho, "Structural characteristics and gas permeation properties of polydimethylsiloxane/poly (propylene oxide) urethane/ urea bi-soft segment membranes", J. Polymer, 46, 2346 (2005). https://doi.org/10.1016/j.polymer.2004.12.056
  24. B. D. Ratner, "Surface characterization of bio-materials by electron spectroscopy for chemical analysis", Analysis of Biomedical Engineering., 11, 313 (1983). https://doi.org/10.1007/BF02363290
  25. J. W. Rhim and Y. K. Kim, "Pervaporation separation of MTBE-Methanol mixtures using crosslinked PVA membranes", J. Appl. Polym. Sci., 75, 1699 (2000). https://doi.org/10.1002/(SICI)1097-4628(20000401)75:14<1699::AID-APP3>3.0.CO;2-O
  26. J. Chen, J. Li., J. Chen, Y. Z. Lin, and X. Wang, "Pervaporation separation of ethyl thioether/ hepta- nemixtures by polyethylene glycol membranes", Sep. Purif. Technol., 66, 3 (2009).
  27. K. Y. Jee, E. J. Jeon, N. W. Kim, and Y. T. Lee, "Pervaperation of PVDF/PDMS composite membrane and separation of n-buranol/water mixtures by pervaporation", Membr. J., 19, 212 (2009).
  28. J. Huang and M. M. Meagher, "Pervaporative recovery of n-butanol from aqueous solutions and ABE fermentation broth using thin-film silicalite- film silicone composite membranes", J. Membr. Sci., 192, 231 (2001). https://doi.org/10.1016/S0376-7388(01)00507-5
  29. R. Y. M. Huang and X. Feng, "Studies on solvent evaporation and polymer precipitation pertinent to the formation of asymmetric polyetherimide membranes", J. Appli. Poly. Sci., 57, 613 (1995). https://doi.org/10.1002/app.1995.070570511
  30. D. Wang, K. Li, and W. K. Teo, "Preparation and characterization of polyetherimide asymmetric hollow fiber membranes for gas separation", J. Membr. Sci., 138, 193 (1998). https://doi.org/10.1016/S0376-7388(97)00229-9
  31. D. G. Jurn, Y. I. Park, and K. H. Leem "Gas permeation characteristics of surface-modified polyetherimide membranes", J. Korean Ind. Eng. Chem., 11(1), 34 (2000).