DOI QR코드

DOI QR Code

Vinyl Benzyl Chloride로 제조된 음이온 교환막의 구조적 고찰 및 전기화학적 특성

Structural Studies in Anion Exchange Membrane Prepared by Vinyl Benzyl Chloride and its Electrochemical Properties

  • 송지혜 (동의대학교 화학공학과) ;
  • 서봉국 (한국화학연구원 그린정밀화학연구센터) ;
  • 최용진 (동의대학교 화학공학과)
  • Song, JeeHye (Department of Chemical Engineering, Dong-Eui University) ;
  • Seo, BongKuk (R&D Center for Green Fine Chemicals, Korea Research Institute of Chemical Technology (KRICT)) ;
  • Choi, YongJin (Department of Chemical Engineering, Dong-Eui University)
  • 투고 : 2015.07.24
  • 심사 : 2015.08.11
  • 발행 : 2015.08.31

초록

음이온 교환막의 치환체 특성을 파악하기 위하여 탄화수소의 분자구조가 다른 세 종류의 음이온 교환기를 vinyl benzyl chloride (VBC) base 막에 도입하였다. 지방족계로 trimethylamine (TMA), 고리형계로 N-methylpiperidine (MP), 방향족계로 pyridine (Py)은 아민화 반응을 통하여 도입되었다. 각각의 반응속도는 막저항(MER)과 이온교환능력(IEC) 변화의 관측으로부터 Py < MP < TMA의 순서로 반응하고 있음을 보여주었다. 한편 SEM image에서는 Py 치환체 막이 가장 균일하고 치밀한 구조를 보여주었으며, 전기화학적 특성에서도 Py이 상용막(AMX)과 비슷한 막저항($5.0{\Omega}{\cdot}cm^2$ >, in 0.5 mol/L NaCl)을 나타내었다. 이 모든 결과로부터 치환체의 공명구조는 균질한 이온교환막의 제조에 기여하고 있음을 알 수 있었다.

Three kinds of anion-exchangeable functional groups with different hydrocarbon molecular structures were introduced to vinyl benzyl chloride-based membrane to understand the effect of attached function in anion-exchange membrane. Trimethylamine (TMA) as an aliphatic fuction, N-methylpiperidine (MP) as an alicyclic fuction and pyridine (Py) as an aromatic function were introduced by amination. The respective reactivity was observed by the trace of membrane resistance( MER)/ion exchange capacity (IEC) and the increasing order of reactivity was Py < MP < TMA. Meanwhile, SEM photograph showed the attached Py ion-exchange membrane was the most homogenous and compact structure in the study. In electrochemical properties, the attached Py ion-exchange membrane showed the MER ($5.0{\Omega}{\cdot}cm^2$ >, in 0.5 mol/L NaCl), comparable to those of commercial membrane (AMX). All results showed that the resonance structure of attached functional group might contribute to the preparation of homogenous anion-exchange membrane.

키워드

참고문헌

  1. T. Xu, "Ion exchange membranes: State of their development and perspective", J. Membr. Sci., 263, 1 (2005). https://doi.org/10.1016/j.memsci.2005.05.002
  2. M. Higa, N. Tanaka, M. Nagase, K. Yutani, T. Kameyama, K. Takamura, and Y. Kakihana, "Electrodialytic properties of aromatic and aliphatic type hydrocarbon-based anion-exchange membranes with various anion-exchange groups", Polymer, 55, 3951 (2014). https://doi.org/10.1016/j.polymer.2014.06.072
  3. S. Maurya, S.-H. Shin, M.-K. Kim, S.-H. Yun, and S.-H. Moon, "Stability of composite anion exchange membranes with various functional groups and their performance for energy conversion", J. Membr. Sci., 443, 28 (2013). https://doi.org/10.1016/j.memsci.2013.04.035
  4. M. Vaslbehagh, H. Karkhanechi, R. Takagi, and H. Matsuyama, "Surface modification of an anion exchange membrane to improve the selectivity for monovalent anions in electrodialysis-experimental verification of theoretical predictions", J. Membr. Sci., 490, 301 (2015). https://doi.org/10.1016/j.memsci.2015.04.014
  5. J.-H. Park, S.-Y. Bong, C.-H. Ryu, and G.-J. Hwang, "Study on the preparation of polyvinyl chloride anion exchange membrane as a separator in the alkaline water electrolysis", Membr. J., 23(6), 469 (2013). https://doi.org/10.14579/MEMBRANE_JOURNAL.2013.23.6.469
  6. S. Maurya, S.-H. Shin, K.-W. Sung, and S.-H. Moon, "Anion exchange membrane prepared from simultaneous polymerization and quaternization of 4-vinyl pyridine for non-aqueous vanadium redox flow battery applications", J. Power Sources, 255, 325 (2014). https://doi.org/10.1016/j.jpowsour.2014.01.047
  7. H. J. Choi, K. S. Yang, K. B. Heo, B. S. Kim, and M. Kim, "Adsorption characteristics of amomia by the cation-exchange membrane", Membr. J., 17(1), 54 (2007).
  8. N. W. Kim, "Preparation and characteristics of fouling resistant nanofiltration membranes", Membr. J., 17(1), 44 (2007).
  9. S. D. Poynton and J. R. Varcoe, "Reduction of the monomer quantities required for the preparation of radiation-grafted alkaline anion-exchange membranes", Solid State Ionics, 277, 38 (2015). https://doi.org/10.1016/j.ssi.2015.04.013
  10. D.-J. Kim, M.-K. Jeong, and S.-Y. Nam, "Research trends in ion exchange membrane processes and practical applications", Appl. Chem. Eng., 26, 1 (2015). https://doi.org/10.14478/ace.2015.1008
  11. Y.-J. Choi, M.-S. Kang, and S.-H. Moon, "Characterization of semi-interpenetrating polymer network polystyrene cation-exchange membranes", J. Appl. Polym. Sci., 88, 1488 (2003). https://doi.org/10.1002/app.11860
  12. D.-H. Kim, J.-S. Park, and M.-S. Kang "Controlling water splitting characteristics of anion-exchange membranes by coating imidazolium polymer", Membr. J., 25, 152-161 (2015). https://doi.org/10.14579/MEMBRANE_JOURNAL.2015.25.2.152
  13. J.-G. Hong and Y. Chen, "Nanocomposite reverse electrodialysis (RED) ion-exchange membranes for salinity gradient power generation", J. Membr. Sci., 460, 139 (2014). https://doi.org/10.1016/j.memsci.2014.02.027
  14. Y.-J. Choi, M.-S. Kang, S.-H. Kim, J.-W. Cho, and S.-H. Moon, "Characterization of LDPE/polystyrene cation exchange membrane prepared by monomer sorption and UV radiation polymerization", J. Membr. Sci., 223, 201 (2003). https://doi.org/10.1016/S0376-7388(03)00339-9
  15. B. Chee, "Radiolytically prepared poly(vinylbenzyl chloride)-grafted fluoropolymer membranes for uel cells", Ph. D. Dissertation, Univ. of Chunbuk (2007).
  16. C.-H. Lee, "Non-perfluorinated polymer electrolyte membranes and their fuel cell systems", Ph. D. Dissertation, Univ. of Hangyang (2007).
  17. Kaeri, "Development of anion exchange membranes for alkaline fuel cell by a radiation grafting technique", National science report (No. 2011-0030586) (2012).
  18. Y.-J. Choi, M.-S. Kang, and S.-H. Moon, "A new preparation method for cation-exchange membrane using monomer sorption into reinforcing materials", Desalination, 146, 287 (2002). https://doi.org/10.1016/S0011-9164(02)00488-5
  19. R. J. Fessenden and J. S. Fessenden, "Organic chemistry 3rd ed.", p. 458-519, Brooks Cole Publishing co., Monterey California (1986).
  20. Y.-H. Choi and W.-K. Lee, "Effect of plasticizer on physical properties of poly(vinyl acetate-co-ehtylene) emulsion", J. Korean Ind. Eng. Chem., 20, 459 (2009).
  21. M. M. Feldstein, G. A. Shandryuk, and N. A. Plate, "Relation of glass transition temperature to the hydrogen-bonding degree and energy in poly(N-vinyl pyrrolidone) blends with hydroxyl-containing plasticizers. Part 1. Effects of hydroxyl group number in plasticizer molecule", Polymer, 42, 971 (2001). https://doi.org/10.1016/S0032-3861(00)00445-6
  22. H.-J. Kwon, D.-H. Yeo, and H.-S. Shin, "Physical properties of green sheets according to glass transition temperature of binder", J. KIEEME, 26, 33 (2013).
  23. Y.-J. Choi, E.-H. Hwang, and T.-S. Hwang, "Preparation and Property of SBS Ion-exchange Membrane Via Post-sulfonation", Korean Chem. Eng. Res., 48, 731 (2010).
  24. T. Sata, K. Kawamura, and K. Matsusaki, "Electrodialytic transport properties of anion-exchange membrane prepared from poly(vinyl alcohol), poly(N-ethyl 4-vinylpyridinium salt) and ${\beta}$-cyclodextrin", J. Membr. Sci., 181, 167 (2001). https://doi.org/10.1016/S0376-7388(00)00507-X
  25. R.-S. Juang, S.-W. Wang, and L.-C. Lin, "Simultaneous recovery of EDTA and lead (III) from their chelated solutions using a cation exchange membrane", J. Membr. Sci., 160, 225 (1999). https://doi.org/10.1016/S0376-7388(99)00086-1
  26. J.-H. Choi, S.-H. Kim, and S.-H. moon, "Heterogeneity of ion-exchange membranes: the effects of membrane heterogeneity on transport properties", J. Colloid Interface Sci., 241, 120 (2001). https://doi.org/10.1006/jcis.2001.7710