DOI QR코드

DOI QR Code

Effects of the Degree of GO Reduction on PC-GO Chemical Reactions and Physical Properties

그래핀 옥사이드(GO)의 환원정도가 PC-GO 화학반응 및 물성에 미치는 영향

  • Park, Ju Young (Major in Polymer Science and Engineering, Division of Advanced Material Engineering, Kongju National University) ;
  • Shin, Jin Hwan (Major in Polymer Science and Engineering, Division of Advanced Material Engineering, Kongju National University) ;
  • Kim, Youn Cheol (Major in Polymer Science and Engineering, Division of Advanced Material Engineering, Kongju National University)
  • 박주영 (공주대학교 신소재공학부 고분자공학전공) ;
  • 신진환 (공주대학교 신소재공학부 고분자공학전공) ;
  • 김연철 (공주대학교 신소재공학부 고분자공학전공)
  • Received : 2014.10.06
  • Accepted : 2014.11.05
  • Published : 2015.02.10

Abstract

Polycarbonate (PC)/graphene oxide (GO) composites with 3 phr of GO were prepared by using a twin screw extruder at 240, 260, and $280^{\circ}C$ after mixing the solution with chloroform. It was confirmed by DSC and TGA that the glass transition temperature ($T_g$) of PC/GO composites were not changed and the thermal stability was the best in case of the extrusion temperature at $260^{\circ}C$. Thermo mechanical properties of PC/GO composites according to extrusion temperatures were measured by dynamic mechanical analysis (DMA). Storage moduli of PC/GO composites were higher than that of pure PC and there was no detectable changes at varying the extrusion temperature. Based on these results, the extrusion temperature of PC/GO composites was fixed at $260^{\circ}C$. The degree of the chemical reaction of PC/GO composites with respect to the GO reduction time was confirmed by the C-H stretching peak at $3000cm^{-1}$ and the degree of the chemical reaction was similar to that of GO when the reduction time was 1 h. A decrease in the complex viscosity as a function of the GO reduction time was detected by dynamic rheometer, which may be originated from the enhancement of GO dispersion by PC-GO reaction. The GO dispersion was confirmed by scanning electron microscope (SEM).

3 phr의 그래핀 옥사이드(GO)를 포함하는 폴리카보네이트(PC)/GO를 클로로포름에서 용액 혼합하여 응고물 침전한 후 240, 260, $280^{\circ}C$의 이축압출기를 이용하여 PC/GO 복합체를 제조하였다. DSC와 TGA 측정결과 PC/GO 복합체의 유리전이 온도($T_g$)의 변화는 거의 없었고, 분해거동을 통해 확인한 열안정성의 경우 $260^{\circ}C$ 압출시편이 우수하게 나타났다. 동적기계적분석(DMA)을 이용한 저장탄성률 측정결과 PC 대비 PC/GO 복합체의 값이 크게 나타났으며 압출온도별로는 큰 차이가 없는 것을 확인하였다. 이들 결과로부터 환원시간에 따른 PC/RGO 복합체의 압출온도를 $260^{\circ}C$로 고정하였다. GO의 환원시간에 따른 PC/RGO 복합체의 화학반응 정도는 $3000cm^{-1}$ 부근에서 나타나는 C-H 신축진동피크를 통해 확인하였고, 환원시간이 1 h일 때의 GO와 유사한 화학반응 정도를 나타내었다. GO의 환원시간에 따른 PC/GO 복합체의 복소점도(complex viscosity)가 감소하는 것을 확인하였으며, 이는 PC-GO 사이의 화학반응에 의한 분산성에 기인한 것으로 주사전자현미경(SEM)을 통해 확인하였다.

Keywords

References

  1. B. Y. Lee, P. Dahal, H. S. Kim, S. Y. Yoo, and Y. C. Kim, A study on the molecular weight control and rheological properties of branched polycarbonate, Appl. Chem. Eng., 23, 388-393 (2012).
  2. S. J. Choi, K. H. Yoon, I. H. Hwang, C. Y. Lee, H. S. Kim, S. Y. Yoo, and Y. C. Kim, Effect of solvent extraction on the low molecular weight and volatile organic compounds of polycarbonate, Appl. Chem. Eng., 21, 532-536 (2010).
  3. H.-J. Kim and G. J. Um, The manufacturing of electromagnetic shielding sheet using the carbon and wood fiber mixture, Journal of Korea TAPPI, 38, 68-75 (2006).
  4. C.-O. Kim and J.-W. Kim, The effects of dopants and adding materials on electrical and electromagnetic interference shielding properties of polyaniline films, Journal of Natural Sciencesm, 19, 67-72 (2000).
  5. H.-G. Moon and J.-H. Chang, Syntheses and characterizations of functionalized graphenes and reduced graphene oxide, Polymer(Korea), 35, 265-271 (2011).
  6. B. Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, and R. S. Ruoff, Graphene and graphene oxide: synthesis, properties, and applications, Adv. Mater., 22, 3906-3924 (2010). https://doi.org/10.1002/adma.201001068
  7. J. T. Han, S. Y. Jeong, H. J. Jeong, and G.-W. Lee, Preparation of chemically exfoliated graphene nanosheets and its applications, KIC News, 15, 23-37 (2012).
  8. S. Park, History of graphene oxide and future direction, KIC News, 16, 1-5 (2013).
  9. M. Fang, K. Wang, H. Lu, Y. Yang, and S. Nutt, Covalent polymer functionalization of graphene nanosheets and mechanical properties of composites, J. Mater. Chem., 19, 7098-7105 (2009). https://doi.org/10.1039/b908220d
  10. H. Kim, S. Kobayashi, M. A. AbdurRahim, M. J. Zhang, A. Khusainova, M. A. Hillmyer, A. A. Abdala, and C. W. Macosko, Graphene/polyethylene nanocomposites: Effect of polyethylene functionalization and blending methods, Polymer, 52, 1837-1846 (2011). https://doi.org/10.1016/j.polymer.2011.02.017
  11. N. Yousefi, X. Sun, X. Lin, X. Shen, J. Jia, B. Zhang, B. Tang, M. Chan, and J.-K. Kim, Highly aligned graphene/polymer nanocomposites with excellent dielectric properties for high performance electromagnetic interference shielding, Adv. Mater., 26, 5480-5487 (2014). https://doi.org/10.1002/adma.201305293
  12. A. Yasmin, J.-J. Luo, and I. M. Daniel, Processing of expanded graphite reinforced polymer nanocomposites, Compos. Sci. Technol., 66, 1182-1189 (2006). https://doi.org/10.1016/j.compscitech.2005.10.014
  13. J. Zhu, J. Lim, C.-H. Lee, H.-I. Joh, H. C. Kim, B. Park, N.-H. You, and S. Lee, Multifunctional polyimide/graphene oxide composites via in situ polymerization, J. Appl. Polym. Sci., Doi:10.1002/APP.40177 (2014).
  14. B. Shen, W. Zhai, M. Tao, D. Lu, and W. Zheng, Enhanced interfacial interaction between polycarbonate and thermally reduced graphene induced by melt blending, Compos. Sci. Technol., 86, 109-116 (2013). https://doi.org/10.1016/j.compscitech.2013.07.007
  15. S. Park, J. An, J. R. Potts, A. Velamakanni, S. Murali, and R. S. Ruoff, Hydrazine-reduction of graphite- and graphene oxide, Carbon, 49, 3019-3023 (2011). https://doi.org/10.1016/j.carbon.2011.02.071
  16. A. C. Ferrari and J. Robertson, Interpretation of Raman spectra of disordered and amorphous carbon, Phys. Rev. B, 61, 95-107 (2000). https://doi.org/10.1103/PhysRevB.61.95
  17. S.-H. Hwang, H.-J. Kim, D.-H. Sung, Y.-T. Jung, K.-H. Kang, and Y.-B. Park, Effect of interfacial bonding on piezoresistivity in carbon nanotube and reduced graphene oxide polymer nanocomposites, Journal of Adhesion and Interface, 13, 137-144 (2012). https://doi.org/10.17702/jai.2012.13.3.137
  18. S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide, Carbon, 45, 1558-1565 (2007). https://doi.org/10.1016/j.carbon.2007.02.034
  19. B. Shen, W. Zhai, M. Tao, D. Lu, and W. Zheng, Chemical functionalization of graphene oxide toward the tailoring of the interface in polymer composites, Compos. Sci. Technol., 77, 87-94 (2013). https://doi.org/10.1016/j.compscitech.2013.01.014
  20. J. A. Kim, D. G. Seong, T. J. Kang, and J. R. Youn, Effect of surface modification on rheological and mechanical properties of CNT/epoxy composites, Carbon, 44, 1898-1905 (2006). https://doi.org/10.1016/j.carbon.2006.02.026
  21. H. Y. Yeom, H. Y. Na, and S. J. Lee, Influence of graphene oxide and graphite nanoplatelets on rheological and electrical properties of polystyrene nanocomposites, Polymer(Korea), 38, 502-509 (2014).
  22. F. Du, R. C. Scogna, W. Zhou, S. Brand, J. E. Fischer, and K. I. Winey, Nanotube networks in polymer nanocomposites: rheology and electrical conductivity, Macromolecules, 37, 9048-9055 (2004). https://doi.org/10.1021/ma049164g