DOI QR코드

DOI QR Code

Synthesis and Antioxidative Activities of N,N'-Diferuloyl-putrescine (DFP) and Its Derivatives

N,N'-Diferuloyl-putrescine (DFP)과 그 유도체의 합성 및 항산화 활성

  • Hwang, Jun Pil (Department of Fine Chemistry, Cosmetic R&D Center, College of Energy and Biotechnology, Seoul National University of Science and Technology) ;
  • Ha, Ji Hoon (Department of Fine Chemistry, Cosmetic R&D Center, College of Energy and Biotechnology, Seoul National University of Science and Technology) ;
  • Kim, Myung Kyoo (Samkyung Costech Co., Ltd.) ;
  • Park, Soo Nam (Department of Fine Chemistry, Cosmetic R&D Center, College of Energy and Biotechnology, Seoul National University of Science and Technology)
  • 황준필 (서울과학기술대학교 에너지바이오대학 정밀화학과, 화장품종합기술연구소) ;
  • 하지훈 (서울과학기술대학교 에너지바이오대학 정밀화학과, 화장품종합기술연구소) ;
  • 김명규 ((주)삼경코스텍) ;
  • 박수남 (서울과학기술대학교 에너지바이오대학 정밀화학과, 화장품종합기술연구소)
  • Received : 2014.08.13
  • Accepted : 2014.11.24
  • Published : 2015.02.10

Abstract

N,N'-Diferuloyl-putrescine (DFP) present in plants such as Sophora japonica has been reported to have skin depigmentative and antioxidative activities. In this study, DFP, usually presents in nature a very little amount and its derivative (DFP-D) were synthesized in a large quantity for the use as functional cosmetical materials. The antioxidative activities of synthesized DFP and DFP-D were evaluated by the 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay, chemiluminescence assay, and cell protective effect induced by $^1O_2$, stress. DFP and DFP-D showed DPPH radical scavenging activities ($FSC_{50}$) at $61.25{\pm}2.25{\mu}M$ and $12.92{\pm}0.72{\mu}M$, respectively. ROS (reactive oxygen species) scavenging activities ($OSC_{50}$) in the $Fe^{3+}-EDTA/H_2O_2$ system of DFP and DFP-D were 2 times ($1.84{\pm}0.12{\mu}M$) and 13 times ($0.174{\pm}0.01{\mu}M$), respectively higher than that of L-ascorbic acid. $^1O_2$, one of ROS playing a key role in the skin photo-aging, induces cellular membrane damages. DFP-D ($50{\mu}M$) showed good cell protective effects (${\tau}_{50}=80.2min$) about 2 times more than that of (+)-${\alpha}$-tocopherol (${\tau}_{50}=43.6min$). These results suggest that the great antioxidative activities of DFP and DFP-D could be applied to cosmetic industries as functional cosmetic materials.

N,N'-diferuloyl-putrescine (DFP)은 회화나무 잎 등 식물계에 함유되어 있는 화합물로 피부 미백활성 및 항산화 활성 등이 있는 것으로 보고되고 있다. 본 연구에서는 식물계에서 미량 존재하는 DFP를 기능성 화장품 원료로 사용할 목적으로 다량 확보하고자 DFP 및 그 유도체(DFP-D)를 합성하였다. 합성한 DFP 및 DFP-D에 대한 항산화 활성을 DPPH법, 루미놀 발광법을 통하여 확인하였으며, 추가적으로 $^1O_2$에 대한 세포보호 효과를 평가하였다. 1,1-Diphenyl-2-picrylhydrazyl (DPPH) 라디칼 소거활성($FSC_{50}$)은 DFP가 $61.25{\pm}2.25{\mu}M$, DFP-D는 $12.92{\pm}0.72{\mu}M$을 나타냈으며, 루미놀 발광법을 이용한 $Fe^{3+}-EDTA/H_2O_2$계에 있어서의 총항산화능($OSC_{50}$)에서 DFP와 DFP-D는 비교물질로 사용한 L-ascorbic acid보다 각각 2배($1.84{\pm}0.12{\mu}M$) 및 13배($0.174{\pm}0.01{\mu}M$) 더 큰 총항산화능을 나타내었다. 피부 광노화에 있어서 핵심 역할을 하는 활성산소인 $^1O_2$으로 유도된 세포 손상에 있어서 $50{\mu}M$의 DFP-D의 세포 보호능(${\tau}_{50}=80.2min$)은 (+)-${\alpha}$-tocopherol (${\tau}50=43.6min$)보다 약 2배 정도 더 우수한 세포보호 효과를 나타내었다. 이상의 결과들을 통해 합성된 DFP 및 유도체 DFP-D의 강력한 항산화 활성은 기능성 화장품 원료로 사용하여 화장품 산업에 응용 가능성이 있음을 시사한다.

Keywords

References

  1. D. S. Lee, M. S. Lim, S. S. Kwan, S. Y. Kim, and S. N. Park, Antioxidative activity and componential analysis of Chamaecyparis obtusa leaf extract, Appl. Chem. Eng., 23(1), 93 (2012).
  2. S. N. Park, Protective effect of isoflavone, genistein from soybean on singlet oxygen induced photohemolysis of human erythrocytes, Korean J. Food Sci. Technol., 35(3), 510 (2003).
  3. S. N. Park, Effect of natural products on skin cells: action and suppression of reactive oxygen species, J. Soc. Cosmet. Scientists Korea, 25(2), 77 (1999).
  4. J. R. Kanofsky, H. Hoogland, R. Wever, and S. J. Weiss, Singlet oxygen production by human eosinophils, J. Biol. Chem., 263, 9692 (1988).
  5. S. N. Park, Effects of flavonoids and other phenolic compounds on reactive oxygen-mediated biochemical reactions, Ph.D. Thesis, Seoul National University (1989).
  6. V. Afonso, R. Champy, D. Mitrovic, P. I. Collin, and A. Lomri, Reactive oxygen species and superoxide dismutases : role in joint diseases, Joint Bone Spine, 74, 324 (2007). https://doi.org/10.1016/j.jbspin.2007.02.002
  7. D. Bagchi, M. Bagchi, E. A. Hassoun, and S. J. Stohs, In vitro and in vivo generation of reactive oxygen species, DNA damage and lactate dehydrogenase leakage by selected pesticides, Toxicology, 104, 129 (1995). https://doi.org/10.1016/0300-483X(95)03156-A
  8. S. B. Berman and T. G. Hastings, Inhibition of glutamate transport in synaptosomes by dopamine oxidation and reactive oxygen species, J. Neurochem., 69(3), 1185 (1997). https://doi.org/10.1046/j.1471-4159.1997.69031185.x
  9. M. Iwata, T. Corn, S. Iwata, M. A. Everett, and B. B. Fuller, The relationship between tyrosinase activity and skin color in human foreskins. J. Invest. Dermatol., 95, 9 (1990). https://doi.org/10.1111/1523-1747.ep12872677
  10. K. Kameyama, T. Takemura, Y. Hamada, C. Sakai, S. Kondoh, and S. Nishi-yama, Pigment production in murine melanoma cells is regulated by tyrosinase, tyrosinase-related protein 1 (TRP), dopachrome tautomerase (TRP 2) and a melanogenic inhibitor. J. Invest. Dermatol., 100, 126 (1993). https://doi.org/10.1111/1523-1747.ep12462778
  11. H. R. Andersen, J. B. Nielsen, F. Nielsen, and P. Grandjean, Antioxidative enzyme activities in human erythrocytes, Clinical Chemistry, 43(4), 562 (1997).
  12. M. Bilicia, H. Efe, M. A. Koroglu, H. A. Uydu, M. Bekaroglu, and O. Deger, Antioxidative enzyme activities and lipid peroxidation in major depression: alterations by antidepressant treatments, J. Affective Disorders, 64, 43 (2001). https://doi.org/10.1016/S0165-0327(00)00199-3
  13. M. Valko, D. Leibfritz, J. Moncol, M. T. D. Cronin, M. Mazur, and J. Telser, Free radicals and antioxidants in normal physiological functions and human disease, IJBCB, 39(1), 44 (2007).
  14. C. H. Choi, D. H. Won, J. P. Hwang, and S. N. Park, Antioxidative effect of extracts from different parts of Juncus effusus L., J. Soc. Cosmet. Scientists Korea, 38(3), 275 (2012). https://doi.org/10.15230/SCSK.2012.38.3.275
  15. S. N. Park, D. H. Won, J. P. Hwang, and S. B. Han, Cellular protective effects of dehydroeffusol isolated from Juncus effusus L., and the mechanisms underlying these effects, J. Ind. Eng. Chem., 20, 3046 (2014). https://doi.org/10.1016/j.jiec.2013.11.041
  16. N. R. Jo, S. A. Park, J. H. Ha, S. H. Jeon, and S. N. Park, Cellular protective effects and antioxidative activity of resveratrol, Appl. Chem. Eng., 24(5), 483 (2013). https://doi.org/10.14478/ace.2013.24.5.483
  17. J. C. Cho, H. S. Rho, Y. H. Joo, C. S. Lee, J. Lee, S. M. Ahn, J. E. Kim, S. S. Shin, Y. H. Park, K. D. Suh, and S. N. Park, Depigmenting activities of kojic acid derivatives without tyrosinase inhibitory activities., BMCL, 22, 4159 (2012).
  18. H. S. Rho, C. S. Lee, S. M. Ahn, Y. D. Hong, S. S. Shin, Y. H. Park, and S. N. Park, Studies on tyrosinase inhibitory and antioxidant activities of benzoic acid derivatives containing kojic acid moiety, Bull. Korean Chem. Soc., 32(11), 4422 (2011).
  19. S. M. Ahn, H. S. Rho, H. S. Baek, Y. H. Joo, Y. D. Hong, S. S. Shin, Y. H. Park, and S. N. Park, Inhibitory activity of novel kojic acid derivative containing trolox moiety on melanogenesis., BMCL, 21, 7466 (2011).
  20. J. C. Cho, H. S. Rho, Y. H. Joo, S. M. Ahn, D. H. Won, S. S. Shin, Y. H. Park, K. D. Suh, and S. N. Park, The depigmenting activities of hydroxyl carboxamide derivatives containing hydrophobic moiety, Bull. Korean Chem. Soc., 33(4), 1133 (2012).
  21. M. K. Kim, H. S. Youk, J. J. Yoo, S. M. Ahn, H. S. Rho, J. H. Ha, J. P. Hwang, and S. N. Park, Synthesis of dimeric cinnamoylamide derivatives an evaluation of their depigmenting activities, Bull. Korean Chem. Soc., 35(10), 3085 (2014). https://doi.org/10.5012/bkcs.2014.35.10.3085