DOI QR코드

DOI QR Code

Performances analysis of football matches

축구경기의 경기력분석

  • Min, Dae Kee (Department of Information & Statistics, Duksung Women's University) ;
  • Lee, Young-Soo (Department of Physical Education, Sejong University) ;
  • Kim, Yong-Rae (Sports Science Institute, Sejong University)
  • 민대기 (덕성여자대학교 정보통계학과) ;
  • 이용수 (세종대학교 체육학과) ;
  • 김용래 (세종대학교 스포츠과학연구소)
  • Received : 2014.12.06
  • Accepted : 2015.01.19
  • Published : 2015.01.31

Abstract

The team's performances were analyzed by evaluating the scores gained by their offense and the scores allowed by their defense. To evaluate the team's attacking and defending abilities, we also considered the factors that contributed the team's gained points or the opposing team's gained points? In order to analyze the outcome of the games, three prediction models were used such as decision trees, logistic regression, and discriminant analysis. As a result, the factors associated with the defense showed a decisive influence in determining the game results. We analyzed the offense and defense by using the response variable. This showed that the major factors predicting the offense were non-stop pass and attack speed and the major factor predicting the defense were the distance between right and left players and the distance between front line attackers and rearmost defenders during the game.

축구경기에서 승패를 결정 하는 것은 골득실이고 경기에 대한 분석은 일반적으로 득점은 공격력으로, 실점은 수비력으로 평가한다. 본 연구에서는 축구경기력에 대한 분석을 함에 있어서 승패와 득점, 실점에 미치는 요인이 무엇인가를 밝혀내고자 하였다. 경기의 승패를 결정하는 요인들을 밝혀내기 위하여 의사결정나무, 로지스틱 회귀모형 그리고 판별함수 등을 이용한다. 그 결과 공격보다는 수비와 관련된 요인이 승부에 더 결정적인 영향을 미치는 것으로 나타났다. 공격력과 수비력에 대한 분석을 실행하기 위하여 득점과 실점을 반응 변수로 사용해 본 결과, 공격력에 있어서는 논스톱패스와 공격속도가 주요한 요인이었고, 수비력에서는 수비 시 공수거리와 좌우 폭이 주요한 결정요인으로 나타났다.

Keywords

References

  1. Choi, S., Kang, C., Choi, H. and Kang, B. (2012). Social network analysis for a soccer game. Journal of the Korean Data & Information Society, 22, 1053-1063.
  2. Hong, C. S., Jung, M. S.and Lee, H. J. (2010). Prediction model analysis of 2010 South Africa world cup. Journal of the Korean Data & Information Society, 21, 1137-1146.
  3. Hughes, M. (2004). Notational analysis-a mathematical perspective. International Journal of Performance Analysis in Sports, 4, 97-139. https://doi.org/10.1080/24748668.2004.11868308
  4. Karlis, D. and Ntzoufras, L. (2003). Analysis of sports data by using bivariate Poisson models. The Statistician, 52, 381-393.
  5. Keller, B. J. (1994). A characterization of the Poisson distribution and the probability of winning a game. The American Statistician, 48, 294-298.
  6. Kim, N. J. and Min, D. K. (2014). The study of changes in performance in KLPGA using growth curve analysis. Journal of the Korean Data & Information Society, 25, 847-845. https://doi.org/10.7465/jkdi.2014.25.4.847
  7. Olsen, E. and Larsen, O. (1997). Use of match analysis by coaches. Science and Football , III, 209-220
  8. Perl, J. (2001). Artificial neural networks in sports: New concepts and approaches. International Journal of Performance Analysis in Sports, 1, 106-121. https://doi.org/10.1080/24748668.2001.11868253
  9. Reilly, T. and Thomas, V. (1976). Motion analysis of work-rate in different position roles in professional football match-play. Journal of Human Movement Studies, 2, 87-97.
  10. Suzuki, K. and Nishijima, T. (2004). Validity of a soccer defending skill scale using game performances. International Journal of Sport and Health Science, 2, 34-49. https://doi.org/10.5432/ijshs.2.34
  11. Taylor, J, B., Mellalieu, S, D., James, N. and Shearer, D, A. (2008). The influence of match location, quality of opposition and match status on technical performance in professional association football. Journal of Sports Science, 26, 885-895. https://doi.org/10.1080/02640410701836887

Cited by

  1. 사회연결망 분석을 활용한 축구경기 패스분석 vol.15, pp.7, 2015, https://doi.org/10.14400/jdc.2017.15.7.479
  2. 시간과 공간적 특성에 따른 축구 패스 성공률 분석: 2018 러시아 월드컵 대회 자료를 중심으로 vol.19, pp.1, 2015, https://doi.org/10.14400/jdc.2021.19.1.475