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SOME RELATIONSHIPS BETWEEN THE INTEGRAL

TRANSFORM AND THE CONVOLUTION PRODUCT ON

ABSTRACT WIENER SPACE

Jeong Eun Lee and Seung Jun Chang∗

Abstract. In this paper we establish several formulas for multiple inte-

gral transform of functionals defined on abstract Wiener space. We then
use the these results to establish several basic formulas involving multiple

convolution products.

1. Introduction

Let H be a real separable infinite dimensional Hilbert space with inner prod-
uct 〈·, ·〉 and norm | · |H =

√
〈·, ·〉. Let ‖ · ‖0 be a measurable norm on H with

respect to the Gauss measure µ [9]. Let B denote the completion of H with
respect to ‖ · ‖0. Let i denote the natural injection form H into B. The adjoint
operator i∗ of i is one-to-one and maps B∗ continuously onto a dense subset of
H∗, where H∗ and B∗ are topological duals of H and B, respectively. We then
have a triple (B∗, H,B) such that B∗ ⊂ H∗ ≡ H ⊂ B and 〈h, x〉 = (h, x) for all
x in B∗ and h in H, where (·, ·) denotes the natural dual pairing between B∗

and B. By the results of Gross in [6], µ ◦ i−1 has a unique countably additive
extension m to the Borel σ-algebra B(B) on B. The triple (B,H,m) is called
an abstract Wiener space. For more details see [3, 5, 7, 9, 13]. The classical
Wiener space is an example of abstract Wiener space.

In 1981, Lee introduced an integral transform which is called the Fourier-
Gauss transform, on abstract Wiener space in his unifying paper [13]. He
then applied the integral transform to investigate the existence of solutions
of the system of the differential equations (1.1) and (1.2) (Cauchy problems)
associated with an appropriate operator Nc;{

ut(x, t) = P (Nc)u(x, t), x ∈ B, t > 0

u(x, 0) = f(x)
(1.1)
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and {
utt(x, t) = P (Nc)u(x, t), x ∈ B, t > 0

P (Nc)u(x) = f(x)
(1.2)

where P (η) = a0 + a1η + · · · + amη
m, f is an appropriate function and c is a

fixed nonzero complex number. He also showed that the solutions of differential
equations (1.1) and (1.2) above can be represented as integrals with respect to
the Wiener measure.

Since the concept of the integral transform was introduced by Lee, many
mathematicians studied the integral transform and related topics for function-
als in several classes [2, 4, 10, 11]. In particular, Chang, Chung and Skoug
established several basic formulas for the integral transform and the convo-
lution product [2]. They also established a Fubini theorem for the integral
transform and the convolution product of functionals on classical Wiener space
[4].

In this paper, we extend the results in [2, 4] to functionals on the abstract
Wiener space B. The most results and formulas in [2, 4] follow immediately
from the results and the formulas in this paper.

2. Definitions and preliminaries

In this section we list some definitions and results from [13]. First, we denote
the abstract Wiener integral of a functional F by∫

B

F (x)m(dx).

A subset E of B is said to be scale-invariant measurable [8] provided ρE
is measurable for all ρ > 0, and a scale-invariant measurable set N is said to
be scale-invariant null provided m(ρE) = 0 for all ρ > 0. A property that
holds except on a scale-invariant null set is said to hold scale-invariant almost
everywhere(s-a.e.).

Throughout this paper we will assume that each functional F : B → C we
consider is scale-invariant measurable and that∫

B

|F (ρx)|m(dx) <∞

for each ρ > 0.
Let [B] be the space of all complex-valued continuous functions defined on

[0, T ] which vanish at t = 0 and whose real and imaginary parts are elements
of B.

First we state the definition of the integral transform Fγ,β introduced in
[13].
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Definition 1. Let F be a functional defined on [B]. For each pair of nonzero
complex numbers γ and β, the integral transform Fγ,βF of F is defined by

Fγ,βF (y) ≡ Fγ,β(F )(y) ≡
∫
B

F (γx+ βy)m(dx), y ∈ [B], (2.1)

if it exists.

Remark 1. When γ =
√
c(c > 0) and β = i, Fγ,β is the Fourier-Wiener c-

transform introduced in [12] and is denoted by Fc. When γ = (−iq)− 1
2 (q > 0)

and β = 1, Fγ,β is the Fourier-Feynman transform in [1] and is denoted by Tq.

Next we state the definition of the convolution product (F ∗G)γ .

Definition 2. Let F andG be functionals defined on [B]. Then the convolution
product (F ∗G)γ of F and G is defined by

(F ∗G)γ(y) =

∫
B

F

(
y + γx√

2

)
G

(
y − γx√

2

)
m(dx), y ∈ [B],

if it exists.

Now we are ready to describe the class of functionals that we work with
in this paper. Let Ea be the class of functionals F defined on [B] with the
following properties;

(1) |F (z)| ≤ c exp(c′‖z‖[B]) for some positive real numbers c and c′ depend-

ing only on F where ‖z‖[B] = (‖x‖20 + ‖y‖20)
1
2 for z = x+ iy with x, y ∈ B.

(2) F (x+ λy) is an entire function of λ ∈ C.
We call Ea the space of exponential type analytic functionals. By Fernique’s

theorem [9], there exists some constant a such that
∫
B

exp(a‖x‖2[B])m(dx) <∞
and so the integral transform Fγ,β is well-defined on Ea for each pair of γ and
β on C.

The following lemma is due to Lee in [13].

Lemma 2.1. Let F be an element of Ea and let γ and β be nonzero complex
numbers. Then we have

Fγ,β(Ea) ⊂ Ea; (2.2)∫
B

∫
B

F (γx+ βy)m(dx)m(dy) =

∫
B

F (
√
γ2 + β2z)m(dz). (2.3)

Remark 2. (1) Equation (2.2) tells us that the integral transform Fγ,βF of a
functional F in Ea is an element of Ea again.

(2) For nonzero complex numbers γ and β, we note that
√
γ2 + β2 = δ for

some δ ∈ C. Since the Wiener measure m is even, the integral on the right-
hand side of (2.3) remains of single value no matter, +δ or −δ, which value we

choose for
√
γ2 + β2.

Definition 3. Let

A = {(γ, β) ∈ C× C : γ2 + β2 = 1, γ 6= 0, β 6= 0}.
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Remark 3. For all (γ, β) ∈ A and F ∈ Ea, the integral transform always exists
and belongs to Ea. Furthermore the equation (2.3) becomes∫

B

∫
B

F (γx+ βy)m(dx)m(dy) =

∫
B

F (z)m(dz). (2.4)

3. Multiple integral transforms

In this section we establish the existence of multiple integral transforms of
functionals in Ea.

In our next theorem, we establish the Fubini theorem for the integral trans-
form of functionals in Ea.

Theorem 3.1. Let F be an element of Ea. Then for all (γ1, β1) and (γ2, β2)
in A,

Fγ2,β2
(Fγ1,β1

F )(y) = Fγ′,β′F (y) = Fγ1,β1
(Fγ2,β2

F )(y) (3.1)

for y ∈ [B], where γ′ =
√
γ21 + β2

1γ
2
2 and β′ = β1β2. Furthermore (γ′, β′) is an

element of A.

Proof. Using (2.1) and (2.3) it follows that for y ∈ [B],

Fγ2,β2
(Fγ1,β1

F )(y) =

∫
B

∫
B

F (γ1z + β1γ2x+ β1β2y)m(dz)m(dx)

=

∫
B

F (
√
γ21 + β2

1γ
2
2w + β1β2y)m(dw)

= Fγ′,β′F (y).

On the other hand, using (2.1) and (2.3) it follows that for y ∈ [B],

Fγ1,β1
(Fγ2,β2

F )(y) =

∫
B

∫
B

F (γ2z + β2γ1x+ β1β2y)m(dz)m(dx)

=

∫
B

F (
√
γ22 + β2

2γ
2
1w + β1β2y)m(dw).

Since γ21 + β2
1γ

2
2 = γ22 + β2

2γ
2
1 , we can establish the equation (3.1) as desired.

Furthermore (γ′, β′) is an element of A since (γ1, β1) and (γ2, β2) are elements
of A.

Putting γ1 = γ2 = γ and β1 = β2 = β, the following corollary follows
immediately form equation (3.1).

Corollary 3.2. Let F be as in Theorem 3.1. Then for all (γ, β) ∈ A,
Fγ,β(Fγ,βF )(y) = Fγ′′,β′′F (y)

for y ∈ [B], where γ′′ =
√
γ2(1 + β2) and β′′ = β2.

Corollary 3.3. Let Fc be the Fourier-Wiener c-transform used in [12]. Then

F√2(F√2F )(y) = F0,−1F (y) = F (−y) = F√2(F√2F )(y)

for y ∈ [B].
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Note that if (γ, β) is an element of A, then (iβγ ,
1
β ) also is an element of A,

and so using equation (3.1), we can establish a basic formula for the inverse
integral transform.

Theorem 3.4. Let F be as in Theorem 3.1. For all (γ, β) ∈ A,

Fi γβ , 1β (Fγ,βF )(y) = Fγ′,β′F (y) = Fγ,β(Fi γβ , 1β F )(y)

for y ∈ B. But γ′ =
√
γ2 + β2(i γβ )2 = 0 and β′ = β 1

β = 1 and so

Fi γβ , 1β (Fγ,βF )(y) = F (y) = Fγ,β(Fi γβ , 1β F )(y) (3.2)

for y ∈ [B].

To obtain an n-dimensional version of Theorem 3.1, we use the following
notations. Let {(γn, βn)} be a sequence in A. For all n = 1, 2, · · · , let

γ̃n =

√√√√ n∑
k=1

γ2k(

k∏
i=1

β2
i−1) (3.3)

and

β̃n =

n∏
k=1

βk (3.4)

where β0 = 1. Note that (γ̃1, β̃1) = (γ1, β1), (γ̃2, β̃2) = (γ′, β′) and (γ̃n, β̃n) are
also elements of A for all n = 1, 2, · · · .

In our next theorem, we give an n-dimensional version of Theorem 3.1. The
following theorem is one of our main results in this paper.

Theorem 3.5. Let F be as in Theorem 3.1. For all (γ1, β1), · · · , (γn, βn) ∈ A,

Fγn,βn · · · Fγ1,β1
F (y) = Fγ̃n,β̃nF (y) = Fγ1,β1

· · · Fγn,βnF (y) (3.5)

for y ∈ [B], where γ̃n and β̃n are given by (3.3) and (3.4) above.

Proof. To prove this theorem, we use the mathematical induction for n ≥ 2.
First note that for n = 2, using (3.1) it follows that for y ∈ [B],

Fγ2,β2
Fγ1,β1

F (y) = Fγ′,β′F (y) = Fγ̃2,β̃2
F (y).

Now we assume that for n,

Fγn,βn · · · Fγ1,β1
F (y) = Fγ̃n,β̃nF (y). (3.6)
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Then using (2.3) and (3.6) it follow that for y ∈ [B],

Fγn+1,βn+1
Fγn,βn · · · Fγ1,β1

F (y) = Fγn+1,βn+1
Fγ̃n,β̃nF (y)

=

∫
B

Fγ̃n,β̃nF (γn+1x+ βn+1y)m(dx)

=

∫
B

∫
B

F (γ̃nz + β̃nγn+1x+ β̃nβn+1y)m(dz)m(dx)

=

∫
B

F (
√
γ̃2n + β̃2

nγ
2
n+1w + β̃nβn+1y)m(dw).

Now using (3.3) and (3.4), we can easily check that√
γ̃2n + β̃2

nγ
2
n+1 =

√√√√ n∑
k=1

γ2k

k∏
i=1

β2
i−1 +

n∏
k=1

β2
kγ

2
n+1

=

√√√√n+1∑
k=1

γ2k

k∏
i=1

β2
i−1

= γ̃n+1

and
β̃nβn+1 = β1 · · ·βnβn+1 = β̃n+1.

Hence
Fγn+1,βn+1

Fγn,βn · · · Fγ1,β1
F (y) = Fγ̃n+1,β̃n+1

F (y),

and so using (3.1) we can establish equation (3.5) as desired.

Corollary 3.6. Let F be as in Theorem 3.5 and let (γ, β) be an element of A.
Then

Fγ,β
n-times︷︸︸︷
· · · Fγ,βF (y) = F√

1−β2n,βn
F (y)

for y ∈ [B]. Furthermore

F√2

n-times︷︸︸︷
· · · F√2F (y) = F√

1−(−1)n,inF (y)

for y ∈ [B].

Remark 4. In fact, there are n!-formulas corresponding for the equation (3.5).
For example, if n = 3, then there are six-formulas ;

Fγ3,β3
(Fγ2,β2

(Fγ1,β1
F )))(y)

= Fγ3,β3(Fγ1,β1(Fγ2,β2F )))(y)

= Fγ2,β2(Fγ3,β3(Fγ1,β1F )))(y)

= Fγ2,β2
(Fγ1,β1

(Fγ3,β3
F )))(y)

= Fγ1,β1
(Fγ2,β2

(Fγ3,β3
F )))(y)

= Fγ1,β1(Fγ3,β3(Fγ2,β2F )))(y)
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for y ∈ [B].

4. Application

In this section we use the result of the multiple integral transform to establish
basic formulas involving convolution product.

In our next lemma, we give a basic formula for integral transform for con-
volution product.

Lemma 4.1. Let F and G be elements of Ea and let (γ, β) be an element of
A. Then

Fγ,β(F ∗G)γ(y) = Fγ,βF (y/
√

2)Fγ,βG(y/
√

2)

= Fγ,β/√2F (y)Fγ,β/√2G(y)
(4.1)

for y ∈ [B].

Next we give several corollaries of Lemma 4.1.

Corollary 4.2. Let Fc be the Fourier-Wiener c-transform used in [12]. Then

F√2(F ∗G)√2(y) = F√2F (y/
√

2)F√2G(y/
√

2).

Corollary 4.3. For F ∈ Ea and (γ, β) ∈ A,

Fγ,β(F ∗ F )γ(y) = [Fγ,βF (y/
√

2)]2

and
Fγ,β(F ∗ 1)γ(y) = Fγ,βF (y/

√
2)

for y ∈ [B].

The following theorem is also one of our main results in this paper.

Theorem 4.4. Let F and G be as in Lemma 4.1. For all (γ, β) in A,

(F ∗G)γ(y) = Fi γβ , 1β (Fγ,βF (·/
√

2)Fγ,βG(·/
√

2))(y) (4.2)

for y ∈ [B].

Proof. Using (4.1) and (3.2) with F replaced with (F ∗G)γ , we can obtain the
equation (4.2) as desired.

Remark 5. Interchanging (γ, β) and (i γβ ,
1
β ) in equation (4.2) we obtain the

formula

(F ∗G)i γβ (y) = Fγ,β(Fi γβ , 1β F (·/
√

2)Fi γβ , 1βG(·/
√

2))(y)

for y ∈ [B].

The following theorem is the last main theorem in this paper.

Theorem 4.5. Let F and G be as in Lemma 4.1. For all (γ1, β1) and (γ2, β2)
in A,

Fγ1,β1
(Fγ2,β2

F ∗ Fγ2,β2
G)γ1(y) = Fγ2,β2

(Fγ1,β1
F ∗ Fγ1,β1

G)γ2(y)

for y ∈ [B].
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Proof. Using equations (4.1) and (3.1) it follows that for y ∈ [B],

Fγ1,β1
(Fγ2,β2

F ∗ Fγ2,β2
G)γ1(y)

= Fγ1,β1
(Fγ2,β2

F )(y/
√

2)Fγ1,β1
(Fγ2,β2

G)(y/
√

2)

= Fγ2,β2
(Fγ1,β1

F )(y/
√

2)Fγ2,β2
(Fγ1,β1

G)(y/
√

2)

= Fγ2,β2(Fγ1,β1F ∗ Fγ1,β1G)γ2(y),

which completes the proof of Theorem 4.5.

We obtain the following corollary by letting G(y) = F (y) or by letting G(y)
be identically one on [B].

Corollary 4.6. Let F be as in Theorem 3.1. Then for all (γ1, β1) and (γ2, β2)
in A,

Fγ1,β1
(Fγ2,β2

F ∗ Fγ2,β2
F )γ1(y) = [Fγ1,β1

(Fγ2,β2
F )(y/

√
2)]2

and

Fγ1,β1(Fγ2,β2F ∗ 1)γ1(y) = Fγ1,β1(Fγ2,β2F )(y/
√

2) = Fγ2,β2(Fγ1,β1F ∗ 1)γ2(y)

for y ∈ [B].

Corollary 4.7. Let F and G be as in Theorem 4.5. For all (γ, β) ∈ A,
Fi γβ , 1β (Fγ,βF ∗ Fγ,βG)i γβ (y)

= Fi γβ , 1β (Fγ,βF )(y/
√

2)Fi γβ , 1β (Fγ,βG)(y/
√

2)

= F (y/
√

2)G(y/
√

2)

(4.3)

for y ∈ [B]. Now taking the integral transform Fγ,β of each side of equation
(4.3), we can obtain a basic formula for convolution product

(Fγ,βF ∗ Fγ,βG)i γβ (y) = Fγ,β(F (·/
√

2)G(·/
√

2))(y) (4.4)

y ∈ [B]. Furthermore, interchanging (γ, β) and (i γβ ,
1
β ) in equation (4.4) we

obtain the formula

(Fi γβ , 1β F ∗ Fi γβ , 1βG)γ(y) = Fi γβ , 1β (F (·/
√

2)G(·/
√

2))(y)

y ∈ [B].

Remark 6. Clearly there is an n-dimensional version of the Theorem 4.5. For
example, if n = 3, then there are six formulas as follows;

Fγ3,β3
(Fγ2,β2

Fγ1,β1
F ∗ Fγ2,β2

Fγ1,β1
G)γ3(y)

= Fγ3,β3(Fγ1,β1Fγ2,β2F ∗ Fγ1,β1Fγ2,β2G)γ3(y)

= Fγ2,β2
(Fγ3,β3

Fγ1,β1
F ∗ Fγ3,β3

Fγ1,β1
G)γ2(y)

= Fγ2,β2
(Fγ1,β1

Fγ3,β3
F ∗ Fγ1,β1

Fγ3,β3
G)γ2(y)

= Fγ1,β1
(Fγ3,β3

Fγ2,β2
F ∗ Fγ3,β3

Fγ2,β2
G)γ1(y)

= Fγ1,β1(Fγ2,β2Fγ3,β3F ∗ Fγ2,β2Fγ3,β3G)γ1(y)
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for y ∈ [B]. Hence we know that there are n! formulas for the case of n-
dimensional.

5. Conclusions

For certain values of the parameters γ and β and for certain classes of func-
tionals, the Fourier-Wiener transform, the modified Fourier-Wiener transform,
the Fourier-Feynman transform and the Gauss transform are special cases of
Lee’s integral transform Fγ,β . These transforms play an important role in the
studies of stochastic processes and functional integrals on infinite dimensional
spaces. In this paper, we have extended various results and formulas in pre-
vious papers. That is to say, all results and formulas in previous papers are
special cases in this paper.
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