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CONIC REGULAR FUNCTIONS OF CONIC QUATERNION

VARIABLES IN THE SENSE OF CLIFFORD ANALYSIS

Ji Eun Kim and Kwang Ho Shon*

Abstract. The aim of this paper is to research certain properties of

conic regular functions of conic quaternion variables in C2. We generalize

the properties of conic regular functions and the Cauchy theorem of conic
regular functions in conic quaternion analysis.

1. Introduction

We introduce the four dimensional commutative conic quaternions, not quater-
nions, and its associated function theory and analysis. Conic quaternions have
the following advantages: It is a classical four dimensional function theory and
has something that is impossible with quaternions and other non-commutative
or non-associative systems. Musès [11, 12] discussed specific examples and
theorems, specially, the relation of hypernumbers to time, developed in terms
of hypernumber computation. Davenport [1] worked with numbers that have
four distinct components and constructed a formal algebra formed upon a ba-
sis commutative ring and a consistent definition of multiplication and some
operators. Kajiwara etal . [2, 3] obtained mathematical results of quaternion
algebra, properties of several operators in quaternions and regenerations for
the inhomogeneous Cauchy Riemann system of quaternion and Clifford anal-
ysis. Koriyama etal . [8] gave some definitions and properties of regularities of
quaternionic functions with regular mappings in a domain in C2. Nôno [13, 14]
and Sudbery [15] gave some properties of quaternionic hyperregular functions
and developed theories of quaternionic analysis, by using the exterior differen-
tial calculus and the relationship between quaternionic analysis and complex
analysis.

We [9, 10] investigated the existence of hyper-conjugate harmonic functions
of an octonion number system and some properties of dual quaternion func-
tions. And, we [4, 5, 6] researched the corresponding Cauchy-Riemann systems
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and properties of regularities of functions with values in special quaternions on
Clifford analysis. Also, we [7] gave a regular function with values in dual split
quaternions and relations between the corresponding Cauchy-Riemann system
and a regularity of functions with values in dual split quaternions.

In this paper, we research the properties of conic regular functions of conic
quaternion variables in C2. Also, we generalize certain properties of conic
regular functions in conic quaternion analysis for the forms and structures of
conic Cauchy-Riemann systems. Also, we investigate the Cauchy theorem of
conic regular functions in conic quaternion analysis.

2. Preliminaries

The field of quaternions,

CQ = {Z = x0 + x1e1 + x2e2 + x3e3| xl(l = 0, 1, 2, 3) ∈ R}, (1)

is a four dimensional commutative R-field generated by four base elements

e0 =

(
1 0
0 1

)
, e1 =

(
i 0
0 i

)
, e2 =

(
0 1
1 0

)
, e3 =

(
0 i
i 0

)
with the following commutative multiplication rules:

e20 = e22 = 1, e21 = e23 = −1, e1e2 = e3, e2e3 = e1, e3e1 = −e2.

The element e0 is the identity of CQ and e1 identifies the imaginary unit
√
−1 in

the C-field of complex numbers. A conic quaternion Z given by (1) is regarded
as

Z = z1 + z2e2 ∈ CQ,

where z1 = x0 + x1e1 and z2 = x2 + x3e1 are complex numbers in C. Conic
quaternions form a commutative, associative, and distributive arithmetic. Also,
conic quaternions contain non-trivial idempotents and zero divisors, but no
nilpotents. They are isomorphic to tessarines and to bicomplex numbers. Thus,
we identify CQ with C2.

We use three cases of the conic quaternion conjugate numbers as follows:

(i) Z†1 = z1 − z2e2,
(ii) Z†2 = z1 + z2e2,

(iii) Z†3 = z1 − z2e2.

Then we have three cases of the analogous norm as follows:

(i) ZZ†1 = z21 + z22 = (x0 + x1e1)2 + (x2 + x3e1)2,
(ii) ZZ†2 = z1z1 + z2z2 + (z1z2 + z2z1)e2 = (x0 + x2e2)2 + (x1 + x3e2)2,
(iii) ZZ†3 = z1z1 − z2z2 − (z1z2 − z2z1)e2 = (x0 + x3e3)2 + (x1 − x2e3)2.
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Consider the following differential operators:

∂

∂Z
:=

∂

∂z1
+ e2

∂

∂z2
=

1

2

( ∂

∂x0
− e1

∂

∂x1
+ e2

∂

∂x2
− e3

∂

∂x3

)
,

∂

∂Z†1
=

∂

∂z1
− e2

∂

∂z2
=

1

2

( ∂

∂x0
− e1

∂

∂x1
− e2

∂

∂x2
+ e3

∂

∂x3

)
,

∂

∂Z†2
=

∂

∂z1
+ e2

∂

∂z2
=

1

2

( ∂

∂x0
+ e1

∂

∂x1
+ e2

∂

∂x2
+ e3

∂

∂x3

)
,

∂

∂Z†3
=

∂

∂z1
− e2

∂

∂z2
=

1

2

( ∂

∂x0
+ e1

∂

∂x1
− e2

∂

∂x2
− e3

∂

∂x3

)
,

where ∂
∂z1

, ∂
∂z1

, ∂
∂z2

, ∂
∂z2

are usual differential operators used in complex anal-
ysis.

3. Some properties of conic regular functions on CQ

Let Ω be a bounded open set in CQ. A function f(Z) is defined on Ω with
values in CQ as follows:

f(Z) : Ω → CQ
f(Z) = f(z1 + z2e2) = f1(z1, z2) + f2(z1, z2)e2,

where

f1(z1, z2) = u0(x0, x1, x2, x3) + u1(x0, x1, x2, x3)e1

and

f2(z1, z2) = u2(x0, x1, x2, x3) + u3(x0, x1, x2, x3)e1

are complex valued functions with real valued functions ul (l = 0, 1, 2, 3).

Definition 1. Let Ω be an open set in CQ. A function f(Z) is said to be
then1st conic regular in Ω, if it admits a conic derivative at each point, i.e. if
the limit

f ′(Z0) := lim
Z→Z0

f(Z)− f(Z0)

Z − Z0

exists and is finite for any Z0 in Ω. The limit will be called the derivative of f
and denoted by f ′(Z0).

By the definition of a conic regular function, since the limit has results in
any pathes,

f ′(Z0) = lim
z1→z01
z2=z02

(f1(z1, z2)− f1(z01 , z
0
2)

z1 − z01
+ e2

f2(z1, z2)− f2(z01 , z
0
2)

z1 − z01

)

= lim
z2→z02
z1=z01

e2

(f1(z1, z2)− f1(z01 , z
0
2)

z2 − z02
+

f2(z1, z2)− f2(z01 , z
0
2)

z2 − z02

)
.
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That is,

f ′ =
∂f1
∂z2

e2 +
∂f2
∂z2

=
∂f1
∂z1

+
∂f2
∂z1

e2.

Therefore, we have a system such that

∂f1
∂z1

=
∂f2
∂z2

,
∂f2
∂z1

=
∂f1
∂z2

, (2)

which is called the 1st conic Cauchy-Riemann system.

Remark 1. In detail, for the system (2), we have

∂u0

∂x0
+

∂u0

∂x0
=

∂u2

∂x2
+

∂u3

∂x3
,

∂u1

∂x0
− ∂u0

∂x1
=

∂u3

∂x2
− ∂u2

∂x3
,

∂u2

∂x0
+

∂u3

∂x1
=

∂u0

∂x2
+

∂u1

∂x3
,

∂u3

∂x0
− ∂u2

∂x1
=

∂u1

∂x2
− ∂u0

∂x3
.

Remark 2. From the definition of differential operators, we have the following
equations:

∂f

∂Z
=

(∂f1
∂z1

+
∂f2
∂z2

)
+
(∂f2
∂z1

+
∂f1
∂z2

)
e2,

∂f

∂Z†1
=

(∂f1
∂z1
− ∂f2

∂z2

)
+
(∂f2
∂z1
− ∂f1

∂z2

)
e2,

∂f

∂Z†2
=

(∂f1
∂z1

+
∂f2
∂z2

)
+
(∂f2
∂z1

+
∂f1
∂z2

)
e2,

∂f

∂Z†3
=

(∂f1
∂z1
− ∂f2

∂z2

)
+
(∂f2
∂z1
− ∂f1

∂z2

)
e2.

Definition 2. Let Ω be an open set in CQ. A function f = f1 + f2e2 is the
2nd conic regular in Ω if and only if :

(i) f1 and f2 are continuously differential functions in Ω,
(ii) f satisfies the following equation

∂f

∂Z†2
= 0.

Moreover, from the condition (ii) of Definition 2, we have the following system

∂f1
∂z1

= −∂f2
∂z2

,
∂f2
∂z1

= −∂f1
∂z2

which is said to be the 2nd conic Cauchy-Riemann system on Ω.
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Definition 3. Let Ω be an open set in CQ. A function f = f1 + f2e2 is the
3rd conic regular in Ω if and only if :

(i) f1 and f2 are continuously differential functions in Ω,
(ii) f satisfies the following equation

∂f

∂Z†3
= 0.

Moreover, from the condition (ii) of Definition 3, we have the following system

∂f1
∂z1

=
∂f2
∂z2

,
∂f2
∂z1

=
∂f1
∂z2

,

which is said to be the 3rd conic Cauchy-Riemann system on Ω.

Theorem 3.1. Let Ω be an open set in CQ and let f(Z) = f1(z1, z2) +
f2(z1, z2)e2 ∈ C1(Ω). Then f is 1st conic regular in Ω if and only if it sat-
isfies the system

∂f

∂Z†1
= 0.

Proof. By Remarks 1 and 2, the system

∂f

∂Z†1
= 0

is equivalent to Equation (2). That is, since we have the equation

0 =
∂f

∂Z†1
=
(∂f1
∂z1
− ∂f2

∂z2

)
+
(∂f2
∂z1
− ∂f1

∂z2

)
e2, (3)

it satisfies the system

∂f

∂Z†1
= 0.

Conversely, by Equation (3), we obtain the result. �

Corollary 3.2. Let Ω be an open set in CQ and let f(Z) = f1(z1, z2) +
f2(z1, z2)e2 ∈ C1(Ω). Then f is conic regular in Ω if and only if it satisfies the
systems either

∂f

∂Z†2
=

∂f

∂x0
+ e3

∂f

∂x3
or

∂f

∂Z†2
= e1

∂f

∂x1
+ e2

∂f

∂x2
.
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Proof. From Remarks 1 and 2, we have some different terms of the following
polynomials

∂f

∂Z†1
,

∂f

∂Z†2
,

∂f

∂Z†3
,

such that 
∂f

∂x0
=

∂f

∂z1
+

∂f

∂z1
,

∂f

∂x1
=
( ∂f

∂z1
− ∂f

∂z1

)
e1,

∂f

∂x2
=

∂f

∂z2
+

∂f

∂z2
,

∂f

∂x3
=
( ∂f

∂z2
− ∂f

∂z2

)
e1.

(4)

By the definition of differential operators, we obtain the results. �

Corollary 3.3. Let Ω be an open set in CQ and let f(Z) = f1(z1, z2) +
f2(z1, z2)e2 ∈ C1(Ω). Then f is the 1st conic regular in Ω if and only if it
satisfies the systems either

∂f

∂Z†3
=

∂f

∂x0
− e2

∂f

∂x2
or

∂f

∂Z†3
= e1

∂f

∂x1
− e3

∂f

∂x3
.

Proof. Arranging and calculating terms of (4), we obtain the results. �

We let a differential form

ω1 := dz1 ∧ dz1 ∧ dz2 + e2dz2 ∧ dz1 ∧ dz2.

Theorem 3.4. Let Ω be a domain in CQ and U be any domain in Ω with a
smooth boundary bU such that U ⊂ Ω. If a function f is the 1st conic regular
in Ω, then ∫

bU

ω1f = 0,

where ω1f is the product on CQ of the form ω1 on the function f(Z).

Proof. Since the function f = f1 + f2e2 has the equation

ω1f = f1dz1 ∧ dz1 ∧ dz2 + f2dz2 ∧ dz1 ∧ dz2

+(f1dz2 ∧ dz1 ∧ dz2 + f2dz1 ∧ dz1 ∧ dz2)e2,

we have

d(ω1f) =
(∂f2
∂z1
− ∂f2

∂z1

)
dV +

(∂f1
∂z1
− ∂f2

∂z2

)
e2dV,

where dV = dz1 ∧ dz2 ∧ dz1 ∧ dz2. Since f is the 1st conic regular function in
Ω, f satisfies Equation (2). Hence, we have d(ω1f) = 0. Therefore, by Stokes’
theorem, we obtain the result. �
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Corollary 3.5. Let Ω be a domain in CQ and U be any domain in Ω with a
smooth boundary bU such that U ⊂ Ω. Let

ω2 := dz1 ∧ dz1 ∧ dz2 + e2dz1 ∧ dz2 ∧ dz2.

If a function f is the 2nd conic regular in Ω, then∫
bU

ω2f = 0,

where ω2f is the product on CQ of the form ω2 on the function f(Z).

Proof. Since the function f = f1 + f2e2 has the equation

ω2f = f1dz1 ∧ dz1 ∧ dz2 + f2dz1 ∧ dz2 ∧ dz2

+(f1dz1 ∧ dz2 ∧ dz2 + f2dz1 ∧ dz1 ∧ dz2)e2,

we have

d(ω2f) = −
(∂f1
∂z1

+
∂f2
∂z2

)
dV −

(∂f2
∂z1

+
∂f1
∂z2

)
e2dV,

where dV = dz1∧dz2∧dz1∧dz2. Since f is a the 2nd conic regular function in Ω,
f satisfies the 2nd conic Cauchy-Riemann system. Hence, we have d(ω2f) = 0.
Therefore, by Stokes’ theorem, we obtain the result. �

Corollary 3.6. Let Ω be a domain in CQ and U be any domain in Ω with a
smooth boundary bU such that U ⊂ Ω. Let

ω3 := dz1 ∧ dz1 ∧ dz2 − e2dz1 ∧ dz2 ∧ dz2,

and a function f is the 3rd conic regular in Ω. Then∫
bU

ω3f = 0,

where ω3f is the product on CQ of the form ω3 on the function f(Z).

Proof. Since the function f = f1 + f2e2 has the equation

d(ω3f) = d{f1dz1 ∧ dz1 ∧ dz2 − f2dz1 ∧ dz2 ∧ dz2

+(f1dz1 ∧ dz2 ∧ dz2 − f2dz1 ∧ dz1 ∧ dz2)e2}

=
(
−∂f1
∂z1

+
∂f2
∂z2

)
dV −

(∂f2
∂z1
− ∂f1

∂z2

)
e2dV,

where dV = dz1 ∧ dz2 ∧ dz1 ∧ dz2, from which f satisfies the 3rd conic Cauchy-
Riemann system in Ω, we have d(ω3f) = 0. Therefore, by Stokes’ theorem, the
result is obtained. �
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