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OPTIMAL CONTROL FOR BELOUSOV-ZHABOTINSKII

REACTION MODEL

Sang-Uk Ryu

Abstract. This paper is concerned with the optimal control problem for

Belousov-Zhabotinskii reaction model. That is, we show the existence of

the global weak solution. We also show that the existence of the optimal
control.

1. Introduction

In this paper we are concerned with the following optimal control problem:

(P) minimize J(u)

with the cost functional J(u) of the form

J(u) =

∫ T

0

‖y(u)− yd‖2H1(I)dt+

∫ T

0

‖ρ(u)− ρd‖2H1(I)dt

+γ‖u‖2H1(0,T ), u ∈ H1(0, T ),

where y = y(u) and ρ = ρ(u) is governed by Belousov-Zhabotinskii reaction
model

∂y

∂t
= a

∂2y

∂x2
+

1

ε2

[
y(1− y)− c(ρ+ u)

(y − q
y + q

)]
in I × (0, T ],

∂ρ

∂t
= b

∂2ρ

∂x2
+

1

ε
(y − ρ) in I × (0, T ], (1.1)

∂y

∂x
(0, t) =

∂y

∂x
(L, t) =

∂ρ

∂x
(0, t) =

∂ρ

∂x
(L, t) = 0 on (0, T ],

y(x, 0) = y0(x), ρ(x, 0) = ρ0(x) in I.

Here, I = (0, L) is a bounded interval in R. y(x, t) and ρ(x, t) denote the
concentrations in a vessel of HBrO2 and Ce4+ at x ∈ I and a time t ∈ [0, T ],
respectively. a > 0 and b > 0 represent the diffusion rate of each species.
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Finally, ε, q and c are positive constants where 0 < q < 1 and 0 < ε ≤ 1. The
control term u(t) denotes a light induced bromide production rate to intensity
of illumination at a time t ∈ [0, T ]([10], [11], [12], [13]).

Belousov-Zhabotinskii reaction models is known as a typical phenomenon
of self-organization in the chemical reactions([8]). The model (1.1) was intro-
duced by Keener and Tyson [6] for investigating the mechanics of the Belousov-
Zhabotinskii reaction models which is considered to consists of more than ten
elementary chemical reactions.

The optimal control problem for the reaction diffusion model is studied in
many papers([2], [4], [5], [9]). In particular, Ryu and Yagi [9] studied the
optimal control problem for the chemotaxis model of non-monotone type. In
this paper, we show the existence of the global weak solution of (1.1). We also
show that the existence of the optimal control.

The paper is organized as follows. Section 2 is a preliminary section. In
Section 3, we show the existence of the golbal weak solutions. Section 4 show
the existence of the optimal control.

2. Preliminaries

Let I be an interval in the real line R. Lp(I;H), 1 ≤ p ≤ ∞, denotes the Lp

space of measurable functions in I with values in a Hilbert space H. C(I;H)
denotes the space of continuous functions in I with values in H. For simplicity,
we shall use a universal constant C to denote various constants which are
determined in each occurrence in a specific way by a, b, c, ε, γ, m, l and I. In a
case when C depends also on some parameter, say θ, it will be denoted by Cθ.

We shall state some inequalities on the Sobolev spaces ([1]). When s > 1
2 ,

Hs(I) ⊂ C(Ī) with the estimate

‖ · ‖C ≤ Cs‖ · ‖Hs .

In particular, H1(I) ⊂ Lq(I) with

‖ · ‖Lq ≤ Cp,q‖ · ‖rH1‖ · ‖1−rLp , (2.1)

where 1 ≤ p < q ≤ ∞, r =
1
p−

1
q

1
p + 1

2

.

We take the identification of L2(I) and (L2(I))′ and consider that H1(I) ⊂
L2(I) ⊂ (H1(I))′. Then, Lq

′
(I) ⊂ (H1(I))′ for every q′ ∈ (1,∞] with

‖y‖(H1)′ ≤ Cq′‖y‖Lq′ , y ∈ Lq
′
(I). (2.2)

3. Global solutions

We set two product Hilbert spaces V ⊂ H as

V = H1(I)×H1(I), H = L2(I)× L2(I).
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By identifying H with its dual space, we consider V ⊂ H = H′ ⊂ V ′. It is then
seen that

V ′ = (H1(I))′ × (H1(I))′.

We set also a symmetric bilinear form on V × V:

a(Y, Ỹ ) =
(
A

1/2
1 y,A

1/2
1 ỹ

)
L2 +

(
A

1/2
2 y,A

1/2
2 ỹ

)
L2 , Y =

(
y

ρ

)
, Ỹ =

(
ỹ

ρ̃

)
∈ V,

where A1 = −a ∂2

∂x2 + 1 and A2 = −b ∂
2

∂x2 + 1 with the same domain D(Ai) =

H2
n(I) = {z ∈ H2(I); ∂z∂x (0) = ∂z

∂x (L) = 0} (i = 1, 2). Obviously, the form
satisfies

|a(Y, Ỹ )| ≤M‖Y ‖V‖Ỹ ‖V , Y, Ỹ ∈ V, (a.i)

a(Y, Y ) ≥ δ‖Y ‖2V , Y ∈ V (a.ii)

with some δ and M > 0. This form then defines a linear isomorphism A =(
A1 0
0 A2

)
from V to V ′, and the part of A inH is a positive definite self-adjoint

operator in H.
We consider the following problem

dY

dt
+AY = Fu(Y ), 0 < t ≤ T, (3.1)

Y (0) = Y0

in the space V ′. Here, Fu(·) : V → V ′ is the mapping

Fu(Y ) =

(
y + ε−2

[
y(1− y)− c(ρ+ u)

(
y−q
|y|+q

)]
ε−1y + (1− ε−1)ρ

)
. (3.2)

Here, Y0 is defined by Y0 =
(
y0
ρ0

)
. Uad = {u ∈ H1(0, T ); ‖u‖H1(0,T ) ≤ m, 0 ≤

u(t) ≤ l}.
For u ∈ Uad, Fu(·) satisfies the following conditions:

Lemma 3.1. (f.i) For each η > 0, there exists an increasing continuous func-
tion φη : [0,∞)→ [0,∞) such that

‖Fu(Y )‖V′ ≤ η‖Y ‖V + φη(‖Y ‖H), Y ∈ V, a.e. (0, T );

(f.ii) For each η > 0, there exists an increasing continuous function ψη :
[0,∞)→ [0,∞) such that

‖Fu(Ỹ )− Fu(Y )‖V′ ≤ η‖Ỹ − Y ‖V
+ (‖Ỹ ‖V + ‖Y ‖V + 1)ψη(‖Ỹ ‖H + ‖Y ‖H)‖Ỹ − Y ‖H, Ỹ , Y ∈ V, a.e. (0, T ).
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Proof. Indeed, by (2.1), (2.2), it is seen that

‖y2‖(H1(I))′ ≤ C‖y2‖
L

3
2 (I)
≤ C‖y‖

2
3

L2(I)‖y‖
4
3

L4(I)

≤ C‖y‖
2
3

L2(I)(‖y‖
1
2

L2(I)‖y‖
1
2

H1(I))
4
3 ≤ η‖y‖H1(I) + Cη‖y‖4L2(I), y ∈ H1(I)

and ∥∥∥ yρ

|y|+ q

∥∥∥
(H1(I))′

≤ C‖ρ‖L2(I), y, ρ ∈ H1(I).

Hence, the condition (f.i) is fulfilled.
On the other hand, since∣∣∣ yρ

|y|+ q
− ȳρ̄

|ȳ|+ q

∣∣∣ ≤ C[|ρ− ρ̄|+ (|ρ|+ |ρ̄|)|y − ȳ|
]
,

it is seen that for y, ȳ, ρ, ρ̄ ∈ H1(I),∥∥∥ yρ

|y|+ q
− ȳρ̄

|ȳ|+ q

∥∥∥
(H1(I))′

≤ C
∥∥∥ yρ

|y|+ q
− ȳρ̄

|ȳ|+ q

∥∥∥
L

3
2 (I)

≤ C
(
‖ρ− ρ̄‖L2(I) + ‖(|ρ|+ |ρ̄|)|y − ȳ|‖

L
3
2 (I)

)
≤ C

(
‖ρ− ρ̄‖L2(I) + (‖ρ‖L6(I) + ‖ρ̄‖L6(I))‖y − ȳ‖L2(I)

)
≤ C

(
‖ρ− ρ̄‖L2(I) + (‖ρ‖H1(I) + ‖ρ̄‖H1(I))‖y − ȳ‖L2(I)

)
with the use of (2.1) and (2.2). Hence, the condition (f.ii) is fulfilled. �

In view of above fact, we are led the space of initial values as

K =
{(y0

ρ0

)
∈ H; 0 ≤ y0 ∈ L2(I) and 0 ≤ ρ0 ∈ L2(I)

}
.

We then obtain the local existence of the weak solution (for the proof, see Ryu
and Yagi [9]).

Theorem 3.2. Let (a.i), (a.ii), (f.i), and (f.ii) be satisfied. Then, for any
Y0 ∈ K and u ∈ Uad, (3.1) has a unique weak solution

Y ∈ H1(0, T (Y0);V ′) ∩ C([0, T (Y0)];H) ∩ L2(0, T (Y0);V),

equivalently,

y, ρ ∈ H1(0, T (Y0); (H1(I))
′
) ∩ C([0, T (Y0)];L2(I)) ∩ L2(0, T (Y0);H1(I)).

Here, the number T (Y0) > 0 is determined by the norm ‖Y0‖H.

Theorem 3.3. For any Y0 ∈ K and u ∈ Uad, the weak solution Y of (3.1) is
nonnegative. Therefore Y is a weak solution of (1.1).
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Proof. We show nonnegative of solutions, which is proved by the same method
in Yagi([12]). We introduce the modified nonlinear operator

Fu(Y ) =

(
y + ε−2

[
|y|(1− y)− c(|ρ|+ u)

(
y−q
|y|+q

)]
ε−1|y|+ (1− ε−1)ρ

)
.

to (3.2). And we consider an auxiliary problem

dY

dt
+AY = Fu(Y ), 0 < t ≤ T, (3.3)

Y (0) = Y0.

Then, we also know that Y =
(
ȳ
ρ̄

)
∈ H1(0, T (Y0);V ′) ∩ L2(0, T (Y0);V). Let us

verify first that ȳ ≥ 0 by the truncation method. Consider H(ȳ) is C1.1 cutoff

function for −∞ < ȳ <∞ given by H(ȳ) = ȳ2

2 for −∞ ≤ ȳ < 0 and H(ȳ) = 0
for 0 ≤ ȳ <∞.
Since ȳ ∈ L2(0, T (Y0);H1(I)), we see that H ′(ȳ) ∈ L2(0, T (Y0);H1(I)).

Therefore, if we take H ′(ȳ) as the test function for the first equation in (3.3),
we obtain

〈ȳ′(t), H ′(ȳ(t))〉(H1(I))′,H1(I)

=
〈
a
∂2ȳ

∂x2
+ ε−2

[
|ȳ|(1− ȳ)− c(|ρ̄|+ u)

( ȳ − q
|ȳ|+ q

)]
, H ′(ȳ(t))

〉
(H1(I))′,H1(I)

=a
〈∂2ȳ

∂x2
, H ′(ȳ(t))

〉
(H1(I))′,H1(I)

+ ε−2
[ ∫ L

0

|ȳ|(1− ȳ)H ′(ȳ(t))dx

− c
∫ L

0

(|ρ̄|+ u)
( ȳ − q
|ȳ|+ q

)
H ′(ȳ(t))dx

]
=I1 + I2.

Since I1 = −a
∫ L

0
|∂H

′(ȳ(t))
∂x |2dx, we see that I1 ≤ 0. Since H ′(ȳ) ≤ 0, H ′(ȳ)ȳ ≥

0 and u ≥ 0, it follows that I2 ≤ 0. Therefore, we obtain

〈ȳ′(t), H ′(ȳ(t))〉(H1(I))′,H1(I) ≤ 0.

If we put

ψ(t) =

∫ L

0

H(ȳ(t))dx, 0 ≤ t ≤ T (Y0),

then we see that

d

dt
ψ(t) = 〈ȳ′(t), H ′(ȳ(t))〉(H1(I))′,H1(I) ≤ 0.

Therefore, ψ(t) ≤ ψ(0) for 0 ≤ t ≤ T (Y0). Thus, ψ(0) = 0 implies ψ(t) = 0,
that is, ȳ(t) ≥ 0 for 0 ≤ t ≤ T (Y0). Similarily, we obtain that ρ(t) ≥ 0 for
0 ≤ t ≤ T (Y0). We conclude that Fu(Y ) = Fu(Y ). Thus we see that Y is a
local solution of (3.1). By the uniqueness, we see that Y = Y for 0 ≤ t ≤ T (Y0).
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Therefore, Y (t) ≥ 0 for 0 ≤ t ≤ T (Y0). We can repeat the similar argument
until we obtain that Y (t) ≥ 0 for 0 ≤ t ≤ T (Y0). Hence, since |y(t)| = y(t), the
solution Y of (3.1) is a local solution of the problem (1.1). �

Theorem 3.4. For any Y0 ∈ K and u ∈ Uad, (3.1) has a unique global weak
solution

0 ≤ Y ∈ H1(0, T ;V ′) ∩ C([0, T ];H) ∩ L2(0, T ;V).

Proof. Let y, ρ be any weak solution as in Theorem 3.2 on an interval [0, S].
Then, if we use the method as in [12, pp.383-384], we obtain the following
estimates

d

dt

∫ L

0

(y2 + ρ2)dx+

∫ L

0

(y2 + ρ2)dx

+

∫ L

0

(
a
∣∣∣∂y
∂x

∣∣∣2 + b
∣∣∣∂ρ
∂x

∣∣∣2)dx ≤ Cε−3. (3.4)

If we solve the differential inequality

d

dt

∫ L

0

(y2 + ρ2)dx+

∫ L

0

(y2 + ρ2)dx ≤ Cε−3,

we have

‖y(t)‖2L2(I) + ‖ρ(t)‖2L2(I)

≤ ε−t(‖y0‖2L2(I) + ‖ρ1‖2L2(I)) + Cε−3, 0 ≤ t ≤ S. (3.5)

If we use (3.4), we obtain∫ t

0

(‖y(s)‖2H1(I) + ‖ρ(s)‖2H1(I))ds

≤ (‖y0‖2L2(I) + ‖ρ0‖2L2(I)) + Ctε−3, 0 ≤ t ≤ S. (3.6)

Thus, we take t1 ∈ (0, S) so that y(t1), ρ(t1) ∈ L2(I). By (3.5) and (3.6), we see
that ‖y‖L2(t1,S;H1(I))∩L∞(t1,S;L2(I)) and ‖ρ‖L2(t1,S;H1(I))∩L∞(t1,S;L2(I)) do not
depend on S. As a consequence, ‖y‖H1(t1,S;(H1(I))′) and ‖ρ‖H1(t1,S;(H1(I))′),
and ‖y‖C([t1,S];L2(I)) and ‖ρ‖C([t1,S];L2(I)) do not depend on S. This shows
that y, ρ can be extended as a weak solution beyond the S. By the standard
argument on the extension of the weak solutions, we can then prove the desired
result. �

4. Optimal controls

Now, let T > 0 be such that for each u ∈ Uad, (3.1) has a unique weak
solution Y (u) ∈ H1(0, T ;V ′) ∩ C([0, T ];H) ∩ L2(0, T ;V). Thus, the problem
(P) is obviously formulated as follows:

(P) minimize J(u),
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where

J(u) =

∫ T

0

‖Y (u)− Yd‖2Vdt+ γ‖u‖2H1(0,T ), u ∈ Uad.

Here, Yd =
(
yd
ρd

)
is a fixed element of L2(0, T ;V) with yd ∈ L2(0, T ;H1(I)) and

ρd ∈ L2(0, T ;H1(I)). γ is a positive constant.

Theorem 4.1. There exists an optimal control ū ∈ Uad for (P) such that
J(ū) = min

u∈Uad

J(u).

Proof. Let {un} ⊂ Uad be a minimizing sequence such that

lim
n→∞

J(un) = min
u∈Uad

J(u).

Since {un} is bounded in H1(0, T ), we can assume that un → ū weakly in
H1(0, T ). By the compactness of H1(0, T ) ↪→ L2(0, T ), we see that

un → ū strongly in L2(0, T ). (4.1)

For simplicity, we will write Yn instead of the solution Y (un) of (3.1) corre-
sponding to un. Using the similar estimates of Yn, we see as in the proof of
Theorem 3.4 that Yn → Y weakly in L2(0, T ;V) ∩ H1(0, T ;V ′). Since V is
compactly embedded in H, it is shown by [7, Chap. 1, Theorem 5.1] that

Yn → Y strongly in L2(0, T ;H). (4.2)

Let us verify that Y =
(
ȳ
ρ

)
is a solution to (3.1) with the control ū. For any

Φ =
(
φ1

φ2

)
∈ L2(0, T ;V),∫ T

0

〈Y ′n(t),Φ(t)〉V′,Vdt+

∫ T

0

〈AYn(t),Φ(t)〉V′,Vdt =

∫ T

0

〈Fun
(Yn(t)),Φ(t)〉V′,Vdt.

We first observed that for any φ1 ∈ L2([0, T ];H1(I)),

〈y2
n − ȳ2, φ1〉(H1(I))′,H1(I)

≤
(∫ L

0

|y2
n − ȳ2|dx

)
‖φ‖L∞(I)

≤ C
(
‖yn‖L2(I) + ‖y‖L2(I)

)
‖yn − y‖L2(I)‖φ1‖L∞(I)

≤ C
(
‖yn‖L2(I) + ‖y‖L2(I)

)
‖yn − y‖L2(I)‖φ1‖H1(I).

Therefore, we obtain∫ T

0

〈y2
n − ȳ2, φ1〉(H1(I))′,H1(I)dt

≤ C
(
‖yn‖L∞(0,T ;L2(I)) + ‖y‖L∞(0,T ;L2(I))

)
‖yn − y‖L2(0,T ;L2(I))‖φ1‖L2(0,T ;H1(I)).

From (4.2), we have

y2
n → ȳ2 weakly in L2(0, T ; (H1(I))′).
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On the other hand, we observed that〈
ρn
yn − q
yn + q

− ρ̄ ȳ − q
ȳ + q

, φ1

〉
(H1(I))′,H1(I)

=
〈

(ρn − ρ̄)
yn − q
yn + q

, φ1

〉
(H1(I))′,H1(I)

+
〈
ρ̄

2q(yn − ȳ)

(yn + q)(ȳ + q)
, φ1

〉
(H1(I))′,H1(I)

≤ C
(
‖ρn − ρ̄‖L2(I) + ‖yn − ȳ‖L2(I)‖ρ̄‖L2(I)

)
‖φ1‖H1(I).

Therefore, we obtain∫ T

0

〈
ρn
yn − q
yn + q

− ρ̄ ȳ − q
ȳ + q

, φ1

〉
(H1(I))′,H1(I)

dt

≤C
∫ T

0

(
‖ρn − ρ̄‖L2(I) + ‖yn − ȳ‖L2(I)‖ρ̄‖L2(I)

)
‖φ1‖H1(I)dt

≤C
(

1 + ‖ρ̄‖L∞(0,T ;L2(I))

)(
‖yn − ȳ‖L2(0,T ;L2(I))

+ ‖ρn − ρ̄‖L2(0,T ;L2(I))

)
‖φ1‖L2(0,T ;H1(I)).

From (4.2), we have

ρn
yn − q
yn + q

→ ρ̄
ȳ − q
ȳ + q

weakly in L2(0, T ; (H1(I))′).

Similarily, we obtain∫ T

0

〈
un
yn − q
yn + q

− ū ȳ − q
ȳ + q

, φ1

〉
(H1(I))′,H1(I)

dt

=

∫ T

0

〈
(un − ū)

yn − q
yn + q

+ ū
2q(yn − ȳ)

(yn + q)(ȳ + q)
, φ1

〉
(H1(I))′,H1(I)

dt

=

∫ T

0

〈yn − q
yn + q

, φ1

〉
(H1(I))′,H1(I)

(un − ū)dt

+

∫ T

0

〈 2q(yn − ȳ)

(yn + q)(ȳ + q)
, φ1

〉
(H1(I))′,H1(I)

ūdt

≤C
(
‖un − ū‖L2(0,T ) + ‖ū‖H1(0,T )‖yn − ȳ‖L2(0,T ;L2(I))

)
‖φ1‖L2(0,T ;H1(I)).

From (4.1) and (4.2), we have

un
yn − q
yn + q

→ ū
ȳ − q
ȳ + q

weakly in L2(0, T ; (H1(I))′).

Therefore, we obtain that∫ T

0

〈Y ′(t),Φ(t)〉V′,Vdt+

∫ T

0

〈AY (t),Φ(t)〉V′,Vdt =

∫ T

0

〈Fū(Y (t)),Φ(t)〉V′,Vdt.

This then shows that Y (t) satisfies the equation of (3.1) for almost all t ∈ (0, T ).
In a similar way it is also shown that Y (0) = Y0, note from [3, Chap. XVIII,
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Theorem 1] that Y ∈ C([0, T ];H). Hence, Y is the unique solution to (3.1) with
the control ū; that is, Y = Y (ū).

Since Yn − Yd is weakly convergent to Y − Yd in L2(0, T ;V), we have:

min
u∈Uad

J(u) ≤ J(ū) ≤ lim inf
n→∞

J(un) = min
u∈Uad

J(u).

Hence, J(ū) = min
u∈Uad

J(u). �
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