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COMMON COUPLED FIXED POINT FOR HYBRID PAIR OF
MAPPINGS UNDER GENERALIZED NONLINEAR
CONTRACTION

BHAVANA DESHPANDE AND AMRISH HANDA

ABSTRACT. We establish a coupled coincidence and common coupled
fixed point theorem for hybrid pair of mappings under generalized non-
linear contraction. An example supporting to our result has also been
cited. We improve, extend and generalize several known results.

1. Introduction and Preliminaries

Let (X, d) be a metric space and CB(X) be the set of all nonempty closed
bounded subsets of X. Let D(z, A) denote the distance from z to A C X and
H denote the Hausdorff metric induced by d, that is,

D(z, A) = allelgd($, a)
and H(A, B) = max{sup D(a, B), sup D(b, A)}, for all A, B € CB(X).
acA beB

The study of fixed points for multivalued contractions and non-expansive map-
pings using the Hausdorff metric was initiated by Markin [20]. The existence
of fixed points for various multivalued contractive mappings has been studied
by many authors under different conditions. For details, we refer the reader
to (2], [7], [8], [9], [10], [11], [13], [14], [15], [16], [21], [25], [26], [27]) and the
reference therein. The theory of multivalued mappings has applications in con-
trol theory, convex optimization, differential inclusions and economics. Nadler
[21] extended the famous Banach Contraction Principle [3] from single-valued
mapping to multivalued mapping.

Bhaskar and Lakshmikantham [5] introduced the notion of coupled fixed
point and mixed monotone mappings for single valued mappings. Bhaskar
and Lakshmikantham [5] established some coupled fixed point theorems and
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applied these results to study the existence and uniqueness of solution for peri-
odic boundary value problems. Lakshmikantham and Ciric [17] proved coupled
coincidence and common coupled fixed point theorems for nonlinear contrac-
tive mappings in partially ordered complete metric spaces and extended the
results of Bhaskar and Lakshmikantham [5]. For more details on coupled fixed
point theory, we also refer the reader to ([1], [4], [6], [12], [18], [19], [22], [23],
24]).
In [2], Abbas et al. introduced the following for multivalued mappings:

Definition 1. [2]. Let X be a nonempty set, F : X x X — 2% (a collection
of all nonempty subsets of X) and g be a self-mapping on X. An element (z,
y) € X x X is called

(1) a coupled fixed point of F' if x € F(x, y) and y € F(y, ).

(2) a coupled coincidence point of hybrid pair {F, g} if g(z) € F(z, y) and
9(y) € F(y, x).

(3) a common coupled fixed point of hybrid pair {F, g} if x = g(z) € F(=,
y) and y = g(y) € F(y, x).

We denote the set of coupled coincidence points of mappings F' and g by
C(F, g). Note that if (x, y) € C(F, g), then (y, z) is also in C(F, g).

Definition 2. [2]. Let F': X x X — 2% be a multivalued mapping and g be
a self-mapping on X. The hybrid pair {F, g} is called w—compatible if g(F(z,
y)) C F(gz, gy) whenever (z, y) € C(F, g).

Definition 3. [2]. Let F: X x X — 2% be a multivalued mapping and g be
a self-mapping on X. The mapping g is called F'—weakly commuting at some
point (z, y) € X x X if g?x € F(gx, gy) and g%y € F(gy, gz).

Lemma 1.1. [11]. Let (X, d) be a metric space. Then, for each a € X
and B € CB(X), there is by € B such that D(a, B) = d(a, by), where D(a,
B) = infbeB d(a, b)

In this paper, we establish a coupled coincidence and common coupled fixed
point theorem for hybrid pair of mappings under generalized nonlinear con-
traction. We improve, extend and generalize the results of Ding et al. [12].
Theorem 14 of Abbas et al. [2] is a special case of our result. An example is
also given to validate our result.
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2. Main results

Let ® denote the set of all functions ¢ : [0, +00) — [0, +00) satisfying
(iy) @ is non-decreasing,
(i) limy, o0 ™ (t) = 0 for all ¢ > 0, where " T1(t) = " (p(t)).
It is clear that ¢(t) < ¢ for each ¢t > 0. In fact, if ¢(ty) > to for some ¢ty > 0,
then, since ¢ is non-decreasing, ¢™(ty) > to for all n € N, which contradicts
with lim,,_, o ©™(to) = 0. In addition, it is easy to see that ¢(0) = 0.

Theorem 2.1. Let (X, d) be a metric space, F : X x X — CB(X) and
g: X — X be two mappings. Assume there exists some ¢ € ® such that

H(F(z, y), F(u, v)) (1)
d(gz, gu), D(gz, F(z, y)), D(gu, F(u, v)),
< |max d(gy, gv), D(gy, F(y, z)), D(gv, F(v, u))v )

D(gz, F(u, v))+D(gu, F(z, y)) D(gy, F(v, u))+D(gv, F(y, x))
2 J 2

for all x, y, u, v € X. Furthermore assume that F(X x X) C g(X) and g(X)
is a complete subset of X. Then F and g have a coupled coincidence point.
Moreover, F' and g have a common coupled fixzed point, if one of the following
conditions holds:

(a) F and g are w—compatible. lim,_, ¢g"z = u and lim,,_,o, g"y = v for
some (z, y) € C(F, g) and for some u, v € X and g is continuous at u and v.

(b) g is F—weakly commuting for some (z, y) € C(F, g) and gz and gy are
fized points of g, that is, g°x = gz and gy = gy.

(¢) g is continuous at x and y. lim, o g"u = x and lim, . g"v =y for
some (x, y) € C(F, g) and for some u, v € X.

(d) g(C(F, g)) is a singleton subset of C(F, g).

Proof. Let xg, yo € X be arbitrary. Then F(xo, yo) and F(yo, o) are well
defined. Choose gz1 € F(xzo, yo) and gy1 € F(yo, o), because FI(X x X) C
g(X). Since F' : X x X — CB(X), therefore by Lemma 1.1, there exist 21 €
F(x1, y1) and 29 € F(y1, 1) such that

H(F(zo, y0)7 F(l‘h Y1))s
H(F(yo, x0), F(y1, x1))-

d(g'rlv Zl)

<
d(gyr, z2) <

Since F(X x X) C g(X), therefore there exist xa, yo € X such that z; = g
and z9 = gy». Thus

H(F(zo, yo), F(z1, y1)),
H(F(yo, x0), F(y1, 71))-

d(gxl, gxg)
d(gy1, gy2)

IAIA
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Continuing this process, we obtain sequences {x,} and {y,} in X such that
for all n € N, we have gz, +1 € F(2y, yn) and gyn+1 € F(yn, x,) such that

IA

IN

IN

IN

Thus

d(9Tn, 9Tni1)
H(F(xnfla ynfl)v F({En, yn))

Similarly

d(gxnflv gxn)a D(gxn,l, F("Enfla ynfl))a
D(g.’l?n, F(',I;TH y’n))a d(gynfh gy’n)7

max{ D(gYn—1, F(Yn—1, Tn-1)), D(gyn, F(Yn, n)),
D(9zn—1, F(@n, yn))+D(9%n, F(Tn_1, Yn—1))

2 b)
D(gyn—1, F(yn, n))+D(GYn; F(yn—1, Tn—1))
2

d(gxn—la ga:n)a d(gxn—la gl'n)y d(gmn, gxn—&-l)a

max d(9Yn—1, 9Yn), A(9Yn—-1, 9Yn)s A(GYn, 9Ynt1),
A(gTn—1, 9Tnt+1)+d(gTn, gTn)  d(gYn—1, 9Yn+1)+d(gYn, gyYn)
2 2

)

d(gTn-1, 9Tn), d(gYn—1, gYn),

max < d(gTn, 9Tni1), A(GYn, GYnt1),
A(gTn-1, 9Tnt1) d(gYn—1, 9Yn+1)
2 ’ 2

d(9Tn—1, 9Tn), d(gYn—1, gYn),

d(gTn, grns1) < @ |max d(9Tn, gTnt1)s A(GYn, gYnt1)s .2

d(gxn—1, gTn+1) d(9Yn—1, gYn+1)
2 ’ 2

d(92n—1, 92n), d(gYn—1, Yn),

d(gYns gyn+1) < ¢ |max] d(gTn, 9Tnt1), d(GYn, GYn+1), o[ . (3)

A(gTn—1, 9Tn+1) d(GYn—1, GYn+1)
2 ’ 2

Combining (2) and (3), we get

max {d(gzn, gTns1); A(9Yn, gYnt1)}

d(gTn—1, 9Tn), d(gYn—1, GYn)-

¢ |max{ d(9Tn, 9Tni1), d(GYns 9Ynt1),

A(gTn—1, 9Tnt1) A(GYn—1, GYnt1)
2 ) 2

IN

d(9Zn—-1, 9Tn), A(9Yn—1, GYn),

d(g2n, gTni1); d(gYn: gYnt1),
max d(gxn—h gxn)"l‘d(gxna gxn+l)
2 i
d(gynfh gy'n)“!‘d(gy'ru gyn+1)
2

IN
A

[ d(g2n-1, 9%n), d(gYn—1, 9Yn), H
max .
{ d(gxnv gxn—i—l)v d(gyna gyn-i-l)

IN
S
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Thus

max {d(92n, gTni1), d(9Yn, 9Yn+1)} (4)

d(gzn—1, 9%2), d(gYn—1, GYn); H
< max .
- @{ { d(92n, 9Tni1), Ad(9Yn, 9Yni1)

If we suppose that
d(gn—1, grn), d(gyn—1, gyn);
max
{ d(gTn; 9Tni1), d(9Yn, gYnt1)
Then, by (4) and by the fact that ¢(¢) <t for all t > 0, we have

} = max {d(gzn, 9Znt+1), A(GYn, 9Yn+t1)}-

max {d(9Zn, 9Tn+1), A(9Yn, GYn+1)}
< pmax{d(gzn, 9Tnt1), d(gYn: gYn+1)}]
< max{d(gzn, 9Tn+1); d(gYn, gYn+1)},
which is a contradiction. Thus, we must have
d(9Tn-1, 9Tn), d(gYn—1, GYn),
max{ d(gwn, gxn+1))7 d(9Yn, 9Yn+1)
Hence by (4), we have for all n € N,

}ZmaX{d(gwnh 9%y), Ad(gYn—1, 9yn)}-

max {d(gzn, gZn+1); A(9Yn, 9Ynt1)}

< pmax{d(gr,—1, gzn), d(gyn-1, gyn)}]
< ¢"[max{d(gzo, gz1), d(gyo, gy1)}]
< 9"(9),
where
0 = max {d(gxo, g1), d(gyo, gy1)}-
Thus

max {d(g2n, 9Tni1), d(gYn, gynt1)} < " (9). ()
Without loss of generality, one can assume that max{d(gzxo, gz1), d(g9yo, gy1)} #
0. In fact, if this is not true, then gxg = gx1 € F(x0, yo) and gyo = gy1 € F(yo,
Zo), that is, (zo, yo) is a coupled coincidence point of F' and g.
Thus, for m, n € N with m > n, by triangle inequality and (5), we get

d(gajn7 gmern)

< d(gTn, 9Tn+1) + d(9Tni1, 9Tni2) + oo+ A(GTnrm—1, 9Tmn)
< max{d(gzn, gTni1); d(9Yn, gYns1)}
+max {d(gTn+1, 9Tn+2); d(gYn+1, GYnt2)}
+ooo F max {d(9Tnym—15 9Tntm)s AIYntm—15 GYntm)}
< @M(8) + ") + . T T(6)
n+m—1
< )P0,

i=n
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which implies, by (éi,), that {gz,} is a Cauchy sequence in ¢g(X). Similarly we
obtain that {gy,} is also a Cauchy sequence in g(X). Since g(X) is complete,
therefore there exist x, y € X such that

lim gz, = gz and lim gy, = gy. (6)
n— 00 n—oo

Now, since gxni1 € F(Tn, Yn) and gyn+1 € F(yn, Tn), therefore by using
condition (1), we get

D(gxns1, F(z, y)) < H(F(zn, yn), F(z, y)) < @[An], (7)
and

D(gyn+lv F(y’ SL')) S H(F(yn> xn)7 F(ya l‘)) § @[An]a (8)
where

d(gzn, gx), d(9zn, 9Tns1), D(gzr, F(z, y)),

A, = max d(gyn, 9y); d(9Yn, gYn+1), D(gy, F(y, z)),
D(gzn, F(z,y))+d(92,9Tn+1) D(9yn,F(y,2))+d(9Y,9Yn+1)
2 ) 2

Since lim,, o0 g2, = gz and lim,,_, - gy, = gy, therefore there exists ng € N
such that for all n > ny,

Ap =max{D(gx, F(z, y)), D(gy, F(y, x))}.
Combining this with (7) and (8), we get for all n > ny,

max {D(gzny1, F(z, y)), D(gyns1, F(y, z))} 9)
< pmax{D(gx, F(z, y)), D(gy, F(y, x))}].

Now, we claim that

max {D(gz, F(z, y)), D(gy, F(y, x))} =0. (10)
If this is not true, then
max {D(gz, F(z, y)), D(gy, F(y, ))} > 0. (11)

Thus, by (9), (11) and by the fact that ¢(t) < t for all ¢ > 0, we get for all
n > no,
max{D(gzn+1, F(z, y)), D(gyn+1, F(y, 2))}
< pmax{D(gz, F(z, y)), D(gy, F(y, =))}]
< max{D(gz, F(z, y)), D(gy, Fly, x))}.

Thus, we get for all n > ny,

maX{D(gx’rH-lv F(Jf, y))7 D(gyn-l-lv F(Z/v Qf))} (12)
< max{D(gz, F(z, y)), D(gy, F(y, ))}.
Letting n — oo in (12), by using (6), we obtain

maX{D(gx’ F(l‘, y))’ D(gy, F(y’ .’17))}
< max{D(gﬂC, F(xv y))7 D(gya F(y7 1’))}7
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which is a contradiction. So (10) holds. Thus, it follows that

gr € F(z, y) and gy € F(y, x),
that is, (z, y) is a coupled coincidence point of F and g. Hence C(F, g) is
nonempty.

Suppose now that (a) holds. Assume that for some (z, y) € C(F, g),
lim ¢"x =wuand lim ¢g"y = v, (13)

n—roo n—roo

where u, v € X. Since g is continuous at u and v. We have, by (13), that u and
v are fixed points of g, that is,

gu =wu and gv = v. (14)
As F and g are w—compatible, so
(g"zx, g"y) € C(F, g), foralln >1, (15)
that is, for all n > 1,
g"z € F(g"'a, g"'y) and ¢"y € F(¢" 'y, ¢" ‘x). (16)

Now, by using (1) and (16), we obtain
D(g"x, F(u, v)) <H(F(¢" ', g"y), Flu, v)) <@[Val,  (17)
and

D(g"y, F(v, u)) <H(F(g" 'y, g" 'z), F(v, u)) <¢[V,], (18)

where

O — maxd 49"z, gu), D(gu, F(u, v)), Z(g @, F(u, ’02))+(ji(gu,g n
n — n ny F(v, u v, g"
d(g"y, gv), D(gv, F(v, u)), 2" Flv. w)+dlgv. g")

By (13) and (14), there exists ng € N such that for all n > ng,
V., = max{D(gu, F(u, v)), D(gv, F(v, uw))}.
Combining this with (17) and (18), we get for all n > ny,
max {D(g"z, F(u, v)), D(g"y, F(o, u))} (19)
< ¢[max{D(gu, F(u, v)), D(gv, F(v, u))}].

Now, we claim that

max {D(gu, F(u, v)), D(gv, F(v, u))} =0. (20)
If this is not true, then
max {D(gu, F(u, v)), D(gv, F(v, w)} > 0. (21)

Thus, by (19), (21) and by the fact that ¢(t) < t for all ¢ > 0, we get for all
n > ny,
max{D(g"z, F(u, v)), D(g"y, F(v, u))}
< gmax{D(gu, F(u, v)), D(gv, F(v, u))}]
< max{D(gu, F(u, v)), D(gv, F(v, u))}.
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Thus, we get for all n > ny,
max {D(g"z, F(u, v)), D(g"y, F(v, u))} (22)
< max{D(gu, F(u, v)), D(gv, F(v, u))}.
On taking limit as n — oo in (22), by using (13) and (14), we get
max{D(gu, F(u, v)), D(gv, F(v, u))}
< max{D(gu, F(u, v)), D(gv, F(v, u))},
which is a contradiction. So (20) holds. Thus, it follows that
gu € F(u, v) and gv € F(v, u). (23)
Now, from (14) and (23), we have
u= gu € F(u, v) and v =gv € F(v, u),

that is, (u, v) is a common coupled fixed point of F' and g.

Suppose now that (b) holds. Assume that for some (z, y) € C(F, g), g
is F—weakly commuting, that is, g’z € F(gx, gy) and g%y € F(gy, gx) and
g’z = gz and g%y = gy. Thus gz = g’z € F(gz, gy) and gy = g*y € F(gy,
gr), that is, (gz, gy) is a common coupled fixed point of F' and g.

Suppose now that (c) holds. Assume that for some (z, y) € C(F, g) and for
some u, v € X,

lim ¢"u =z and lim g"v =y. (24)
n—oo n—oo

Since g is continuous at x and y. Therefore, by (24), x and y are fixed points
of g, that is,
gr =z and gy = v. (25)
Since (z, y) € C(F, g). Therefore, by (25), we obtain
x =gz € F(z, y) and y = gy € F(y, z),

that is, (x, y) is a common coupled fixed point of F' and g.
Finally, suppose that (d) holds. Let g(C(F, g)) = {(z, x)}. Then {z} =
{gz} = F(x, x). Hence (z, x) is a common coupled fixed point of F' and g. I

Ezample 1. Suppose that X = [0, 1], equipped with the metric d : X x X — [0,
+00) defined as d(z, y) = max{z, y} and d(x, ) = 0 for all z, y € X. Let
F:X x X — CB(X) be defined as

{0}, for z, y =1,
Bz, y) = { [O, "”22?’2] , for z, y €10, 1),
and g : X — X be defined as
g(z) =22, for all z € X.
Define ¢ : [0, +00) — [0, +00) by
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Now, for all z, y, u, v € X with z, y, u, v € [0, 1), we have
Case (a). If 22 + y? = u? + v2, then

H(F(z, y), F(u, v))

. u2—|—v2
- 4
1 1
< Zmax{zQ, u?} + Zmax{gf, v?}
1 1
< Zd(gr, gu) + Zd(gy, gv)
i d(g9x, gu), D(gz, F(z, y)), D(gu, F(u, v)), )
1 d(gy, gv), D(gy, F(y, z)), D(gv, F(v, u)),
< 5 max D(gz, F(u, v))+D(gu, F(z, y))
2 ’
D(gy, F(v, u));rD(gv, F(y, z))
I d(gz, gu), D(gz, F(z, y)), D(gu, F(u, v)), )]
d(gy, gv), D(gy, F(y, x)), D(gv, F(v, u)),
< ¢ |max D(gz, F(u, v));D(gw F(z, y))
D(gy, F(v, u));rD(gw F(y, z))

Case (b). If 22 4+ y? # u® + v? with 22 + y? < u? + v?, then

H(F(z, y), F(u, v))

- u2+v2
- 4
1 1
< Zmax{xQ, u?} + Zmax{yz, v?}
1 1
< Zd(g:c, gu) + Zd(gy, gv)
I d(g9x, gu), D(gz, F(z, y)), D(gu, F(u, v)), )
1 d(gy, gv), D(gy, F(y, z)), D(gv, F(v, u)),
S 5 |max D(g, F(u, v))+D(gu, F(z, y))
D(gy, F(v, u));rD(gv, F(y, z))
I d(gz, gu), D(gz, F(z, y)), D(gu, F(u, v)), )]
d(gy, gv), D(gy, F(y, x)), D(gv, F(v, u)),
< ¢ |max D(gz, F(u, v))+D(gu, F(z, y))
Dlgy, F(v, u))zw(gv, F(y, 2))

Similarly, we obtain the same result for u? +v? < 224 y2. Thus the contractive
condition (1) is satisfied for all z, y, u, v € X with z, y, u, v € [0, 1). Again,
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for all z, y, u, v € X with x, y € [0, 1) and u, v = 1, we have

H(F(z, y), F(u, v))

B $2+y2
B 4
1 1
< zmax{mz, u?} + Zmax{yQ, v?}
1 1
< Zd(gx, gu) + Zd(gy, gv)
[ d(gz, gu), D(gz, F(z, y)), D(gu, F(u, v)), )]
P d(gy, gv), D(gy, F(y, z)), D(gv, F(v, u)),
< g [max Digz. F(u, v)}+D(gu. Pz, )
Digy. F(v. w)+D(gv. F(y. )
I d(gz, gu), D(gx, F(z, y)), D(gu, F(u, v)), )]
d(gy, gv), D(gy, F(y, x)), D(gv, F(v, u)),
< @ [Mmax D(gzx, F(u, v))JQrD(gu, F(z, y)),
D(gy, F (v, U));D(gv, F(y, z))

Thus the contractive condition (1) is satisfied for all z, y, v, v € X with =z,
y € [0, 1) and u, v = 1. Similarly, we can see that the contractive condition (1)
is satisfied for all z, y, u, v € X with x, y, u, v = 1. Hence, the hybrid pair {F,
g} satisfies the contractive condition (1), for all z, y, u, v € X. In addition, all
the other conditions of Theorem 2.1 are satisfied and z = (0, 0) is a common
coupled fixed point of hybrid pair {F, g}. The function F' : X x X — CB(X)
involved in this example is not continuous at the point (1, 1) € X x X.

Remark 1. We improve, extend and generalize the result of Ding et al. [12] in
the following sense:

(1) We prove our result in the settings of multivalued mapping and for hybrid
pair of mappings while Ding et al. [12] proved result for single valued mappings.

(1) To prove the result we consider non complete metric space and the space
is also not partially ordered.

(#41) The mapping F : X x X — CB(X) is discontinuous and not satisfying
mixed g-monotone property.

(tv) The function ¢ : [0, +00) — [0, +00) involved in our theorem and
example is discontinuous.

(v) Our proof is simple and different from the other results in the existing
literature.

If we put ¢ = I (the identity mapping) in the Theorem 2.1, we get the
following result:
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Corollary 2.2. Let (X, d) be a complete metric space, F': X x X — CB(X)
be a mapping. Assume there exists some ¢ € ® such that
H(F(z, y), F(u, v))
d(z, u), D(z, F(z, y)), D(u, F(u, v)),

< ¢ |max d(y, v), D(y, F(y, x)), D(v, F(v, u)),
D(LF(%U));-D(%F(%ZJ)) ’ D(%F(Uﬂ));-D(U»F(y@))

forall x, y, u, v e X. Then F has a coupled fixed point.

If we put ¢(t) = kt in Theorem 2.1 where 0 < k < 1, then we obtain the
following result of Abbas et al. [2]:

Corollary 2.3. Let (X, d) be a metric space. Assume F: X x X — CB(X)
and g : X = X be two mappings satisfying
H(F(z, y), F(u, v))

d(gx, gu), D(gx, F(z, y)), D(gu, F(u, v)),
< kmax d(gy, gv), D(gy, F(y, x)), D(gv, F(v, u)), ,
D(gw,F(u,v));D(gu,F(w,y)), D(gy,F(v,u));rD(gv,F(y’w))

for all x, y, u, v € X, where 0 < k < 1. Furthermore assume that F(X X
X) Cg(X) and g(X) is a complete subset of X. Then F and g have a coupled
coincidence point. Moreover, F' and g have a common coupled fized point, if
one of the following conditions holds:

(a) F and g are w—compatible. lim,_, ¢g"z = u and lim,,_,o, g"y = v for
some (x, y) € C(F, g) and for some u, v € X and g is continuous at u and v.

(b) g is F—weakly commuting for some (z, y) € C(F, g) and gz and gy are
fized points of g, that is, g°x = gz and gy = gy.

(¢) g is continuous at x and y. lim, o g"u = = and lim, . ¢g"v =y for
some (x, y) € C(F, g) and for some u, v € X.

(d) g(C(F, g)) is a singleton subset of C(F, g).

If we put ¢ = I (the identity mapping) in the Corollary 2.3, we get the
following result:

Corollary 2.4. Let (X, d) be a complete metric space, F': X x X — CB(X)
be a mapping satisfying
H(F(z, y), F(u, v))

d(z, u), D(z, F(z, y)), D(u, F(u, v)),

< kmax d(ya 'U), D(ya F(y7 :L'))v D(U, F(”U, u))7
D(%F(u’v));D(%F(w;y)), D(ny(Uxu));D(%F(y)I))

forall x, y, u, v € X, where 0 < k < 1. Then F has a coupled fized point.
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