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COMMON COUPLED FIXED POINT FOR HYBRID PAIR OF

MAPPINGS UNDER GENERALIZED NONLINEAR

CONTRACTION

Bhavana Deshpande and Amrish Handa

Abstract. We establish a coupled coincidence and common coupled

fixed point theorem for hybrid pair of mappings under generalized non-
linear contraction. An example supporting to our result has also been

cited. We improve, extend and generalize several known results.

1. Introduction and Preliminaries

Let (X, d) be a metric space and CB(X) be the set of all nonempty closed
bounded subsets of X. Let D(x, A) denote the distance from x to A ⊂ X and
H denote the Hausdorff metric induced by d, that is,

D(x, A) = inf
a∈A

d(x, a)

and H(A, B) = max

{
sup
a∈A

D(a, B), sup
b∈B

D(b, A)

}
, for all A, B ∈ CB(X).

The study of fixed points for multivalued contractions and non-expansive map-
pings using the Hausdorff metric was initiated by Markin [20]. The existence
of fixed points for various multivalued contractive mappings has been studied
by many authors under different conditions. For details, we refer the reader
to ([2], [7], [8], [9], [10], [11], [13], [14], [15], [16], [21], [25], [26], [27]) and the
reference therein. The theory of multivalued mappings has applications in con-
trol theory, convex optimization, differential inclusions and economics. Nadler
[21] extended the famous Banach Contraction Principle [3] from single-valued
mapping to multivalued mapping.

Bhaskar and Lakshmikantham [5] introduced the notion of coupled fixed
point and mixed monotone mappings for single valued mappings. Bhaskar
and Lakshmikantham [5] established some coupled fixed point theorems and
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applied these results to study the existence and uniqueness of solution for peri-
odic boundary value problems. Lakshmikantham and Ciric [17] proved coupled
coincidence and common coupled fixed point theorems for nonlinear contrac-
tive mappings in partially ordered complete metric spaces and extended the
results of Bhaskar and Lakshmikantham [5]. For more details on coupled fixed
point theory, we also refer the reader to ([1], [4], [6], [12], [18], [19], [22], [23],
[24]).

In [2], Abbas et al. introduced the following for multivalued mappings:

Definition 1. [2]. Let X be a nonempty set, F : X ×X → 2X (a collection
of all nonempty subsets of X) and g be a self-mapping on X. An element (x,
y) ∈ X ×X is called

(1) a coupled fixed point of F if x ∈ F (x, y) and y ∈ F (y, x).
(2) a coupled coincidence point of hybrid pair {F, g} if g(x) ∈ F (x, y) and

g(y) ∈ F (y, x).
(3) a common coupled fixed point of hybrid pair {F, g} if x = g(x) ∈ F (x,

y) and y = g(y) ∈ F (y, x).
We denote the set of coupled coincidence points of mappings F and g by

C(F, g). Note that if (x, y) ∈ C(F, g), then (y, x) is also in C(F, g).

Definition 2. [2]. Let F : X ×X → 2X be a multivalued mapping and g be
a self-mapping on X. The hybrid pair {F, g} is called w−compatible if g(F (x,
y)) ⊆ F (gx, gy) whenever (x, y) ∈ C(F, g).

Definition 3. [2]. Let F : X ×X → 2X be a multivalued mapping and g be
a self-mapping on X. The mapping g is called F−weakly commuting at some
point (x, y) ∈ X ×X if g2x ∈ F (gx, gy) and g2y ∈ F (gy, gx).

Lemma 1.1. [11]. Let (X, d) be a metric space. Then, for each a ∈ X
and B ∈ CB(X), there is b0 ∈ B such that D(a, B) = d(a, b0), where D(a,
B) = infb∈B d(a, b).

In this paper, we establish a coupled coincidence and common coupled fixed
point theorem for hybrid pair of mappings under generalized nonlinear con-
traction. We improve, extend and generalize the results of Ding et al. [12].
Theorem 14 of Abbas et al. [2] is a special case of our result. An example is
also given to validate our result.
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2. Main results

Let Φ denote the set of all functions ϕ : [0, +∞)→ [0, +∞) satisfying
(iϕ) ϕ is non-decreasing,
(iiϕ) limn→∞ ϕn(t) = 0 for all t > 0, where ϕn+1(t) = ϕn(ϕ(t)).

It is clear that ϕ(t) < t for each t > 0. In fact, if ϕ(t0) ≥ t0 for some t0 > 0,
then, since ϕ is non-decreasing, ϕn(t0) ≥ t0 for all n ∈ N, which contradicts
with limn→∞ ϕn(t0) = 0. In addition, it is easy to see that ϕ(0) = 0.

Theorem 2.1. Let (X, d) be a metric space, F : X × X → CB(X) and
g : X → X be two mappings. Assume there exists some ϕ ∈ Φ such that

H(F (x, y), F (u, v)) (1)

≤ ϕ

max


d(gx, gu), D(gx, F (x, y)), D(gu, F (u, v)),
d(gy, gv), D(gy, F (y, x)), D(gv, F (v, u)),

D(gx, F (u, v))+D(gu, F (x, y))
2 , D(gy, F (v, u))+D(gv, F (y, x))

2


 ,

for all x, y, u, v ∈ X. Furthermore assume that F (X ×X) ⊆ g(X) and g(X)
is a complete subset of X. Then F and g have a coupled coincidence point.
Moreover, F and g have a common coupled fixed point, if one of the following
conditions holds:

(a) F and g are w−compatible. limn→∞ gnx = u and limn→∞ gny = v for
some (x, y) ∈ C(F, g) and for some u, v ∈ X and g is continuous at u and v.

(b) g is F−weakly commuting for some (x, y) ∈ C(F, g) and gx and gy are
fixed points of g, that is, g2x = gx and g2y = gy.

(c) g is continuous at x and y. limn→∞ gnu = x and limn→∞ gnv = y for
some (x, y) ∈ C(F, g) and for some u, v ∈ X.

(d) g(C(F, g)) is a singleton subset of C(F, g).

Proof. Let x0, y0 ∈ X be arbitrary. Then F (x0, y0) and F (y0, x0) are well
defined. Choose gx1 ∈ F (x0, y0) and gy1 ∈ F (y0, x0), because F (X × X) ⊆
g(X). Since F : X × X → CB(X), therefore by Lemma 1.1, there exist z1 ∈
F (x1, y1) and z2 ∈ F (y1, x1) such that

d(gx1, z1) ≤ H(F (x0, y0), F (x1, y1)),

d(gy1, z2) ≤ H(F (y0, x0), F (y1, x1)).

Since F (X ×X) ⊆ g(X), therefore there exist x2, y2 ∈ X such that z1 = gx2
and z2 = gy2. Thus

d(gx1, gx2) ≤ H(F (x0, y0), F (x1, y1)),

d(gy1, gy2) ≤ H(F (y0, x0), F (y1, x1)).
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Continuing this process, we obtain sequences {xn} and {yn} in X such that
for all n ∈ N, we have gxn+1 ∈ F (xn, yn) and gyn+1 ∈ F (yn, xn) such that

d(gxn, gxn+1)

≤ H(F (xn−1, yn−1), F (xn, yn))

≤ ϕ

max


d(gxn−1, gxn), D(gxn−1, F (xn−1, yn−1)),

D(gxn, F (xn, yn)), d(gyn−1, gyn),
D(gyn−1, F (yn−1, xn−1)), D(gyn, F (yn, xn)),

D(gxn−1, F (xn, yn))+D(gxn, F (xn−1, yn−1))
2 ,

D(gyn−1, F (yn, xn))+D(gyn, F (yn−1, xn−1))
2




≤ ϕ

max


d(gxn−1, gxn), d(gxn−1, gxn), d(gxn, gxn+1),
d(gyn−1, gyn), d(gyn−1, gyn), d(gyn, gyn+1),

d(gxn−1, gxn+1)+d(gxn, gxn)
2 , d(gyn−1, gyn+1)+d(gyn, gyn)

2




≤ ϕ

max


d(gxn−1, gxn), d(gyn−1, gyn),
d(gxn, gxn+1), d(gyn, gyn+1),
d(gxn−1, gxn+1)

2 , d(gyn−1, gyn+1)
2


 .

Thus

d(gxn, gxn+1) ≤ ϕ

max


d(gxn−1, gxn), d(gyn−1, gyn),
d(gxn, gxn+1), d(gyn, gyn+1),
d(gxn−1, gxn+1)

2 , d(gyn−1, gyn+1)
2


 . (2)

Similarly

d(gyn, gyn+1) ≤ ϕ

max


d(gxn−1, gxn), d(gyn−1, gyn),
d(gxn, gxn+1), d(gyn, gyn+1),
d(gxn−1, gxn+1)

2 , d(gyn−1, gyn+1)
2


 . (3)

Combining (2) and (3), we get

max {d(gxn, gxn+1), d(gyn, gyn+1)}

≤ ϕ

max


d(gxn−1, gxn), d(gyn−1, gyn),
d(gxn, gxn+1), d(gyn, gyn+1),
d(gxn−1, gxn+1)

2 , d(gyn−1, gyn+1)
2




≤ ϕ

max


d(gxn−1, gxn), d(gyn−1, gyn),
d(gxn, gxn+1), d(gyn, gyn+1),

d(gxn−1, gxn)+d(gxn, gxn+1)
2 ,

d(gyn−1, gyn)+d(gyn, gyn+1)
2




≤ ϕ

[
max

{
d(gxn−1, gxn), d(gyn−1, gyn),
d(gxn, gxn+1), d(gyn, gyn+1)

}]
.



COUPLED GENERALIZED NONLINEAR CONTRACTION 81

Thus

max {d(gxn, gxn+1), d(gyn, gyn+1)} (4)

≤ ϕ

[
max

{
d(gxn−1, gxn), d(gyn−1, gyn),
d(gxn, gxn+1), d(gyn, gyn+1)

}]
.

If we suppose that

max

{
d(gxn−1, gxn), d(gyn−1, gyn),
d(gxn, gxn+1), d(gyn, gyn+1)

}
= max {d(gxn, gxn+1), d(gyn, gyn+1)} .

Then, by (4) and by the fact that ϕ(t) < t for all t > 0, we have

max {d(gxn, gxn+1), d(gyn, gyn+1)}
≤ ϕ [max {d(gxn, gxn+1), d(gyn, gyn+1)}]
< max {d(gxn, gxn+1), d(gyn, gyn+1)} ,

which is a contradiction. Thus, we must have

max

{
d(gxn−1, gxn), d(gyn−1, gyn),
d(gxn, gxn+1), d(gyn, gyn+1)

}
= max{d(gxn−1, gxn), d(gyn−1, gyn)}.

Hence by (4), we have for all n ∈ N,

max {d(gxn, gxn+1), d(gyn, gyn+1)}
≤ ϕ [max {d(gxn−1, gxn), d(gyn−1, gyn)}]
≤ ϕn [max {d(gx0, gx1), d(gy0, gy1)}]
≤ ϕn(δ),

where

δ = max {d(gx0, gx1), d(gy0, gy1)} .
Thus

max {d(gxn, gxn+1), d(gyn, gyn+1)} ≤ ϕn(δ). (5)

Without loss of generality, one can assume that max{d(gx0, gx1), d(gy0, gy1)} 6=
0. In fact, if this is not true, then gx0 = gx1 ∈ F (x0, y0) and gy0 = gy1 ∈ F (y0,
x0), that is, (x0, y0) is a coupled coincidence point of F and g.

Thus, for m, n ∈ N with m > n, by triangle inequality and (5), we get

d(gxn, gxm+n)

≤ d(gxn, gxn+1) + d(gxn+1, gxn+2) + ...+ d(gxn+m−1, gxm+n)

≤ max {d(gxn, gxn+1), d(gyn, gyn+1)}
+ max {d(gxn+1, gxn+2), d(gyn+1, gyn+2)}
+...+ max {d(gxn+m−1, gxn+m), d(gyn+m−1, gyn+m)}

≤ ϕn(δ) + ϕn+1(δ) + ...+ ϕn+m−1(δ)

≤
n+m−1∑

i=n

ϕi(δ),
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which implies, by (iiϕ), that {gxn} is a Cauchy sequence in g(X). Similarly we
obtain that {gyn} is also a Cauchy sequence in g(X). Since g(X) is complete,
therefore there exist x, y ∈ X such that

lim
n→∞

gxn = gx and lim
n→∞

gyn = gy. (6)

Now, since gxn+1 ∈ F (xn, yn) and gyn+1 ∈ F (yn, xn), therefore by using
condition (1), we get

D(gxn+1, F (x, y)) ≤ H(F (xn, yn), F (x, y)) ≤ ϕ[∆n], (7)

and

D(gyn+1, F (y, x)) ≤ H(F (yn, xn), F (y, x)) ≤ ϕ[∆n], (8)

where

∆n = max


d(gxn, gx), d(gxn, gxn+1), D(gx, F (x, y)),
d(gyn, gy), d(gyn, gyn+1), D(gy, F (y, x)),

D(gxn,F (x,y))+d(gx,gxn+1)
2 , D(gyn,F (y,x))+d(gy,gyn+1)

2

 .

Since limn→∞ gxn = gx and limn→∞ gyn = gy, therefore there exists n0 ∈ N
such that for all n > n0,

∆n = max {D(gx, F (x, y)), D(gy, F (y, x))} .

Combining this with (7) and (8), we get for all n > n0,

max {D(gxn+1, F (x, y)), D(gyn+1, F (y, x))} (9)

≤ ϕ [max {D(gx, F (x, y)), D(gy, F (y, x))}] .

Now, we claim that

max {D(gx, F (x, y)), D(gy, F (y, x))} = 0. (10)

If this is not true, then

max {D(gx, F (x, y)), D(gy, F (y, x))} > 0. (11)

Thus, by (9), (11) and by the fact that ϕ(t) < t for all t > 0, we get for all
n > n0,

max{D(gxn+1, F (x, y)), D(gyn+1, F (y, x))}
≤ ϕ [max {D(gx, F (x, y)), D(gy, F (y, x))}]
< max {D(gx, F (x, y)), D(gy, F (y, x))} .

Thus, we get for all n > n0,

max {D(gxn+1, F (x, y)), D(gyn+1, F (y, x))} (12)

< max {D(gx, F (x, y)), D(gy, F (y, x))} .

Letting n→∞ in (12), by using (6), we obtain

max {D(gx, F (x, y)), D(gy, F (y, x))}
< max {D(gx, F (x, y)), D(gy, F (y, x))} ,
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which is a contradiction. So (10) holds. Thus, it follows that

gx ∈ F (x, y) and gy ∈ F (y, x),

that is, (x, y) is a coupled coincidence point of F and g. Hence C(F, g) is
nonempty.

Suppose now that (a) holds. Assume that for some (x, y) ∈ C(F, g),

lim
n→∞

gnx = u and lim
n→∞

gny = v, (13)

where u, v ∈ X. Since g is continuous at u and v. We have, by (13), that u and
v are fixed points of g, that is,

gu = u and gv = v. (14)

As F and g are w−compatible, so

(gnx, gny) ∈ C(F, g), for all n ≥ 1, (15)

that is, for all n ≥ 1,

gnx ∈ F (gn−1x, gn−1y) and gny ∈ F (gn−1y, gn−1x). (16)

Now, by using (1) and (16), we obtain

D(gnx, F (u, v)) ≤ H(F (gn−1x, gn−1y), F (u, v)) ≤ ϕ[∇n], (17)

and
D(gny, F (v, u)) ≤ H(F (gn−1y, gn−1x), F (v, u)) ≤ ϕ[∇n], (18)

where

∇n = max

{
d(gnx, gu), D(gu, F (u, v)), D(gnx, F (u, v))+d(gu, gnx)

2 ,

d(gny, gv), D(gv, F (v, u)), D(gny, F (v, u))+d(gv, gny)
2

}
.

By (13) and (14), there exists n0 ∈ N such that for all n > n0,

∇n = max {D(gu, F (u, v)), D(gv, F (v, u))} .
Combining this with (17) and (18), we get for all n > n0,

max {D(gnx, F (u, v)), D(gny, F (v, u))} (19)

≤ ϕ [max {D(gu, F (u, v)), D(gv, F (v, u))}] .
Now, we claim that

max {D(gu, F (u, v)), D(gv, F (v, u))} = 0. (20)

If this is not true, then

max {D(gu, F (u, v)), D(gv, F (v, u))} > 0. (21)

Thus, by (19), (21) and by the fact that ϕ(t) < t for all t > 0, we get for all
n > n0,

max{D(gnx, F (u, v)), D(gny, F (v, u))}
≤ ϕ [max {D(gu, F (u, v)), D(gv, F (v, u))}]
< max {D(gu, F (u, v)), D(gv, F (v, u))} .
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Thus, we get for all n > n0,

max {D(gnx, F (u, v)), D(gny, F (v, u))} (22)

< max {D(gu, F (u, v)), D(gv, F (v, u))} .
On taking limit as n→∞ in (22), by using (13) and (14), we get

max{D(gu, F (u, v)), D(gv, F (v, u))}
< max {D(gu, F (u, v)), D(gv, F (v, u))} ,

which is a contradiction. So (20) holds. Thus, it follows that

gu ∈ F (u, v) and gv ∈ F (v, u). (23)

Now, from (14) and (23), we have

u = gu ∈ F (u, v) and v = gv ∈ F (v, u),

that is, (u, v) is a common coupled fixed point of F and g.
Suppose now that (b) holds. Assume that for some (x, y) ∈ C(F, g), g

is F−weakly commuting, that is, g2x ∈ F (gx, gy) and g2y ∈ F (gy, gx) and
g2x = gx and g2y = gy. Thus gx = g2x ∈ F (gx, gy) and gy = g2y ∈ F (gy,
gx), that is, (gx, gy) is a common coupled fixed point of F and g.

Suppose now that (c) holds. Assume that for some (x, y) ∈ C(F, g) and for
some u, v ∈ X,

lim
n→∞

gnu = x and lim
n→∞

gnv = y. (24)

Since g is continuous at x and y. Therefore, by (24), x and y are fixed points
of g, that is,

gx = x and gy = y. (25)

Since (x, y) ∈ C(F, g). Therefore, by (25), we obtain

x = gx ∈ F (x, y) and y = gy ∈ F (y, x),

that is, (x, y) is a common coupled fixed point of F and g.
Finally, suppose that (d) holds. Let g(C(F, g)) = {(x, x)}. Then {x} =

{gx} = F (x, x). Hence (x, x) is a common coupled fixed point of F and g.

Example 1. Suppose that X = [0, 1], equipped with the metric d : X×X → [0,
+∞) defined as d(x, y) = max{x, y} and d(x, x) = 0 for all x, y ∈ X. Let
F : X ×X → CB(X) be defined as

F (x, y) =

{
{0}, for x, y = 1,[

0, x2+y2

4

]
, for x, y ∈ [0, 1),

and g : X → X be defined as

g(x) = x2, for all x ∈ X.
Define ϕ : [0, +∞)→ [0, +∞) by

ϕ(t) =

{
t
2 , for t 6= 1,
3
4 , for t = 1.
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Now, for all x, y, u, v ∈ X with x, y, u, v ∈ [0, 1), we have
Case (a). If x2 + y2 = u2 + v2, then

H(F (x, y), F (u, v))

=
u2 + v2

4

≤ 1

4
max{x2, u2}+

1

4
max{y2, v2}

≤ 1

4
d(gx, gu) +

1

4
d(gy, gv)

≤ 1

2

max


d(gx, gu), D(gx, F (x, y)), D(gu, F (u, v)),
d(gy, gv), D(gy, F (y, x)), D(gv, F (v, u)),

D(gx, F (u, v))+D(gu, F (x, y))
2 ,

D(gy, F (v, u))+D(gv, F (y, x))
2




≤ ϕ

max


d(gx, gu), D(gx, F (x, y)), D(gu, F (u, v)),
d(gy, gv), D(gy, F (y, x)), D(gv, F (v, u)),

D(gx, F (u, v))+D(gu, F (x, y))
2 ,

D(gy, F (v, u))+D(gv, F (y, x))
2


 .

Case (b). If x2 + y2 6= u2 + v2 with x2 + y2 < u2 + v2, then

H(F (x, y), F (u, v))

=
u2 + v2

4

≤ 1

4
max{x2, u2}+

1

4
max{y2, v2}

≤ 1

4
d(gx, gu) +

1

4
d(gy, gv)

≤ 1

2

max


d(gx, gu), D(gx, F (x, y)), D(gu, F (u, v)),
d(gy, gv), D(gy, F (y, x)), D(gv, F (v, u)),

D(gx, F (u, v))+D(gu, F (x, y))
2 ,

D(gy, F (v, u))+D(gv, F (y, x))
2




≤ ϕ

max


d(gx, gu), D(gx, F (x, y)), D(gu, F (u, v)),
d(gy, gv), D(gy, F (y, x)), D(gv, F (v, u)),

D(gx, F (u, v))+D(gu, F (x, y))
2 ,

D(gy, F (v, u))+D(gv, F (y, x))
2


 .

Similarly, we obtain the same result for u2 +v2 < x2 +y2. Thus the contractive
condition (1) is satisfied for all x, y, u, v ∈ X with x, y, u, v ∈ [0, 1). Again,
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for all x, y, u, v ∈ X with x, y ∈ [0, 1) and u, v = 1, we have

H(F (x, y), F (u, v))

=
x2 + y2

4

≤ 1

4
max{x2, u2}+

1

4
max{y2, v2}

≤ 1

4
d(gx, gu) +

1

4
d(gy, gv)

≤ 1

2

max


d(gx, gu), D(gx, F (x, y)), D(gu, F (u, v)),
d(gy, gv), D(gy, F (y, x)), D(gv, F (v, u)),

D(gx, F (u, v))+D(gu, F (x, y))
2 ,

D(gy, F (v, u))+D(gv, F (y, x))
2




≤ ϕ

max


d(gx, gu), D(gx, F (x, y)), D(gu, F (u, v)),
d(gy, gv), D(gy, F (y, x)), D(gv, F (v, u)),

D(gx, F (u, v))+D(gu, F (x, y))
2 ,

D(gy, F (v, u))+D(gv, F (y, x))
2


 .

Thus the contractive condition (1) is satisfied for all x, y, u, v ∈ X with x,
y ∈ [0, 1) and u, v = 1. Similarly, we can see that the contractive condition (1)
is satisfied for all x, y, u, v ∈ X with x, y, u, v = 1. Hence, the hybrid pair {F,
g} satisfies the contractive condition (1), for all x, y, u, v ∈ X. In addition, all
the other conditions of Theorem 2.1 are satisfied and z = (0, 0) is a common
coupled fixed point of hybrid pair {F, g}. The function F : X ×X → CB(X)
involved in this example is not continuous at the point (1, 1) ∈ X ×X.

Remark 1. We improve, extend and generalize the result of Ding et al. [12] in
the following sense:

(i) We prove our result in the settings of multivalued mapping and for hybrid
pair of mappings while Ding et al. [12] proved result for single valued mappings.

(ii) To prove the result we consider non complete metric space and the space
is also not partially ordered.

(iii) The mapping F : X ×X → CB(X) is discontinuous and not satisfying
mixed g-monotone property.

(iv) The function ϕ : [0, +∞) → [0, +∞) involved in our theorem and
example is discontinuous.

(v) Our proof is simple and different from the other results in the existing
literature.

If we put g = I (the identity mapping) in the Theorem 2.1, we get the
following result:
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Corollary 2.2. Let (X, d) be a complete metric space, F : X ×X → CB(X)
be a mapping. Assume there exists some ϕ ∈ Φ such that

H(F (x, y), F (u, v))

≤ ϕ

max


d(x, u), D(x, F (x, y)), D(u, F (u, v)),
d(y, v), D(y, F (y, x)), D(v, F (v, u)),

D(x,F (u,v))+D(u,F (x,y))
2 , D(y,F (v,u))+D(v,F (y,x))

2


 ,

for all x, y, u, v ∈ X. Then F has a coupled fixed point.

If we put ϕ(t) = kt in Theorem 2.1 where 0 < k < 1, then we obtain the
following result of Abbas et al. [2]:

Corollary 2.3. Let (X, d) be a metric space. Assume F : X ×X → CB(X)
and g : X → X be two mappings satisfying

H(F (x, y), F (u, v))

≤ kmax


d(gx, gu), D(gx, F (x, y)), D(gu, F (u, v)),
d(gy, gv), D(gy, F (y, x)), D(gv, F (v, u)),

D(gx,F (u,v))+D(gu,F (x,y))
2 , D(gy,F (v,u))+D(gv,F (y,x))

2

 ,

for all x, y, u, v ∈ X, where 0 < k < 1. Furthermore assume that F (X ×
X) ⊆ g(X) and g(X) is a complete subset of X. Then F and g have a coupled
coincidence point. Moreover, F and g have a common coupled fixed point, if
one of the following conditions holds:

(a) F and g are w−compatible. limn→∞ gnx = u and limn→∞ gny = v for
some (x, y) ∈ C(F, g) and for some u, v ∈ X and g is continuous at u and v.

(b) g is F−weakly commuting for some (x, y) ∈ C(F, g) and gx and gy are
fixed points of g, that is, g2x = gx and g2y = gy.

(c) g is continuous at x and y. limn→∞ gnu = x and limn→∞ gnv = y for
some (x, y) ∈ C(F, g) and for some u, v ∈ X.

(d) g(C(F, g)) is a singleton subset of C(F, g).

If we put g = I (the identity mapping) in the Corollary 2.3, we get the
following result:

Corollary 2.4. Let (X, d) be a complete metric space, F : X ×X → CB(X)
be a mapping satisfying

H(F (x, y), F (u, v))

≤ kmax


d(x, u), D(x, F (x, y)), D(u, F (u, v)),
d(y, v), D(y, F (y, x)), D(v, F (v, u)),

D(x,F (u,v))+D(u,F (x,y))
2 , D(y,F (v,u))+D(v,F (y,x))

2

 ,

for all x, y, u, v ∈ X, where 0 < k < 1. Then F has a coupled fixed point.
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