DIVISION PROBLEM IN GENERALIZED GROWTH SPACES ON THE UNIT BALL IN \mathbb{C}^{n}

Hong Rae Cho, Han-Wool Lee, and Soohyun Park

$$
\begin{aligned}
& \text { Abstract. Let } \mathbb{B} \text { be the unit ball in } \mathbb{C}^{n} \text {. For a weight function } \omega \text {, we } \\
& \text { define the generalized growth space } A^{\omega}(\mathbb{B}) \text { by the space of holomorphic } \\
& \text { functions } f \text { on } \mathbb{B} \text { such that } \\
& \qquad|f(z)| \leq C \omega(|\rho(z)|, \quad z \in \mathbb{B} .
\end{aligned}
$$

Our main purpose in this note is to get the corona type decomposition in generalized growth spaces on \mathbb{B}.

1. Introduction and statement of results

Let Ω be a bounded domain in \mathbb{C}^{n}. Let $H^{\infty}(\Omega)$ denote the space of all bounded holomorphic functions on Ω. Suppose that $G_{1}, G_{2}, \ldots, G_{m} \in H^{\infty}(\Omega)$ have no common zeroes, so that $|G|^{2}=\sum\left|G_{j}\right|^{2}>0$. Then we can state the corona problem : Do there exist functions $u_{1}, u_{2}, \ldots, u_{m} \in H^{\infty}(\Omega)$ such that

$$
\sum G_{j} u_{j} \equiv 1 \quad \text { on } \quad \Omega ?
$$

This problem has been solved by L. Carleson [8] when $n=1$ and Ω is the unit disk. It remains an open problem whether there are versions of the corona theorem for every planar domain or higher dimensional domains.

Let $\mathbb{B}=\left\{z \in \mathbb{C}^{n}:|z|^{2}<1\right\}$. For any holomorphic function ϕ on \mathbb{B} one can consider holomorphic functions $u_{1}, u_{2}, \ldots, u_{m}$ on \mathbb{B} such that

$$
\sum G_{j} u_{j} \equiv \phi \quad \text { on } \quad \mathbb{B}
$$

Formulas for explicit solutions of such division problems were studied by many authors in various situations and norms (see [1], [2], [3], [4], [5], [11], [12], [14], [15], [16], [17], [18]). In particular, the H^{p}-corona problem asks for the condition on holomorphic n-tuples $G=\left(G_{1}, G_{2}, \ldots, G_{m}\right)$ such that the map \mathcal{M}_{G} given by $\mathcal{M}_{G}(u)=\sum G_{j} u_{j}$ sends $H^{p} \times H^{p} \times \cdots \times H^{p}$ onto H^{p}. Of course,

[^0]the conditions $G_{1}, G_{2}, \ldots, G_{m} \in H^{p}$ and
$$
|G|^{2}=\sum\left|G_{j}\right|^{2}>0
$$
are necessary.
Our main purpose in this note is to consider solutions of such division problem in holomorphic growth type spaces on the unit ball \mathbb{B} in \mathbb{C}^{n}.

Let $\rho(z)=|z|^{2}-1$. Let $A^{-\alpha}(\mathbb{B})$ be the growth space of holomorphic functions f satisfying

$$
|f(z)| \leq C \frac{1}{|\rho(z)|^{\alpha}}, \quad z \in \mathbb{B}
$$

We define the growth space $A^{\log }(\mathbb{B})$ to be the space of holomorphic functions such that

$$
|f(z)| \leq C \log \left(\frac{1}{|\rho(z)|}\right), \quad z \in \mathbb{B}
$$

We denote by $\mathcal{B}(\mathbb{B})$ the usual Bloch space on \mathbb{B}. Then the following inclusions between the above spaces are known [10]:

$$
\begin{equation*}
H^{\infty}(\mathbb{B})=A^{-0}(\mathbb{B}) \nsubseteq \mathcal{B}(\mathbb{B}) \nsubseteq A^{\log }(\mathbb{B}) \nsubseteq A^{-\alpha}(\mathbb{B}) \tag{1}
\end{equation*}
$$

In [9], they proved the embedding of Hardy spaces into weighted Bergman spaces on a general bounded domain in \mathbb{C}^{n} by using the growth spaces.

Now we introduce a notion of the general weight function.
Let $\omega(t)$ be a positive real-valued function. We say that $\omega(t)$ is almost increasing (or decreasing, resp.), if there exists $C>0$ such that

$$
\omega(t) \leq C \omega(\tau) \quad \text { (or, } C \omega(t) \geq \omega(\tau), \text { resp.) for } \quad t<\tau
$$

Definition 1. ([7]) Let $\omega(t)$ be a positive real-valued function defined on $(0,1]$. Then ω is called a weight function of order α if there exists a constant α such that

$$
\begin{aligned}
\alpha & =\sup \left\{\gamma: \frac{\omega(t)}{t^{\gamma}} \text { is almost increasing on }(0,1]\right\} \\
& =\inf \left\{\delta: \frac{\omega(t)}{t^{\delta}} \text { is almost decreasing on }(0,1]\right\}
\end{aligned}
$$

In this case we write $\operatorname{ord}(\omega)=\alpha$.
Definition 2. ([7]) For a weight function ω, we define the generalized growth space $A^{\omega}(\mathbb{B})$ by the space of holomorphic functions f on \mathbb{B} such that

$$
|f(z)| \leq C \omega(|\rho(z)|, \quad z \in \mathbb{B}
$$

and

$$
\|f\|_{A^{\omega}}=\sup _{z \in \mathbb{B}} \frac{|f(z)|}{\omega(|\rho(z)|)}
$$

The above $\|\cdot\|_{A^{\omega}}$ is semi norm. Hence, the norm $\|f\|$ is given by $|f(0)|+$ $\|f\|_{A^{\omega}}$ for all order α.

Example 1.1. (i) For any positive number α, the functions $t^{-\alpha}$ and $\log \left(\frac{1}{t}\right)$ are the most typical examples of the weight functions of negative order and zero order, respectively. In these cases, the class A^{ω} is the growth space $A^{-\alpha}$, and log-growth space $A^{\log }$, respectively.
(ii) Non-typical examples of weight functions are $\omega_{1}(t)=t^{-\alpha}\left(\log \left(\frac{C_{D}}{t}\right)\right)^{\beta}$ and $\omega_{2}(t)=t^{-\alpha}\left(2+\cos \left(\frac{1}{t}\right)\right)$, where $\alpha>0, \beta \in \mathbb{R}$. Both of $\omega_{1}(t)$ and $\omega_{2}(t)$ have ord $=-\alpha$.

Remark 1. Let ω_{α} and ω_{β} be weight functions of ord $\left(\omega_{\alpha}\right)=\alpha$ and $\operatorname{ord}\left(\omega_{\beta}\right)=\beta$. (i) For $\epsilon>0$, it follows that

$$
\left(\frac{\omega_{\beta}(t)}{\omega_{\alpha}(t)}\right) / t^{\beta-\alpha-\epsilon}=\left(\frac{\omega_{\beta}(t)}{t^{\beta-\epsilon / 2}}\right) /\left(\frac{\omega_{\alpha}(t)}{t^{\alpha+\epsilon / 2}}\right)
$$

is almost increasing and that

$$
\left(\frac{\omega_{\beta}(t)}{\omega_{\alpha}(t)}\right) / t^{\beta-\alpha+\epsilon}=\left(\frac{\omega_{\beta}(t)}{t^{\beta+\epsilon / 2}}\right) /\left(\frac{\omega_{\alpha}(t)}{t^{\alpha-\epsilon / 2}}\right)
$$

is almost decreasing. Thus ord $\left(\omega_{\beta} / \omega_{\alpha}\right)=\beta-\alpha$.
(ii) Let $\alpha<\beta$. For $\epsilon>0$, since

$$
\left(\frac{\omega_{\beta}(t)}{\omega_{\alpha}(t)}\right) / t^{\beta-\alpha-\epsilon}
$$

is almost increasing, it follows that $\omega_{\beta}(t) \lesssim \omega_{\alpha}(t)$ on $(0,1]$. Thus $A^{\omega_{\beta}} \subset A^{\omega_{\alpha}}$. However, if $\alpha=\beta$, then there is no inclusion relation between $A^{\omega_{\alpha}}$ and $A^{\omega_{\beta}}$.

Remark 2. Let ω be a weight function of $\operatorname{ord}(\omega)=\alpha$. If $\alpha<0$, then

$$
\omega(t)=\frac{\omega(t)}{t^{\alpha+\epsilon}} \cdot t^{\alpha+\epsilon}
$$

is almost decreasing, if $\epsilon>0$ is chosen such that $\alpha+\epsilon<0$. However, if $\alpha=0$, then there is no such information.

Theorem 1.2. Let $G_{1}, G_{2}, \ldots, G_{m} \in H^{\infty}(\mathbb{B})$. Let ω be a weight function such that $-1<\operatorname{ord}(\omega) \leq 0$. Let $\phi \in A^{\omega}(\mathbb{B})$. Suppose that

$$
\sum\left|G_{j}\right|^{2} \geq \delta^{2}
$$

for some $\delta>0$. Then there exist $u_{1}, u_{2}, \ldots, u_{m} \in A^{\tilde{\omega}}(\mathbb{B})$ such that

$$
G_{1} u_{1}+G_{2} u_{2}+\cdots+G_{m} u_{m}=\phi \quad \text { on } \quad \mathbb{B},
$$

where

$$
\tilde{\omega}=\left\{\begin{array}{l}
\omega(t), \quad \text { if } \quad-1<\operatorname{ord}(\omega)<0 \\
\omega(t) \log \left(\frac{1}{t}\right), \quad \text { if } \quad \operatorname{ord}(\omega)=0 \text { and } \omega \text { is almost decreasing. }
\end{array}\right.
$$

Corollary 1.3. Let $\phi, G_{1}, G_{2}, \ldots, G_{m} \in H^{\infty}(\mathbb{B})$. Suppose that

$$
\sum\left|G_{j}\right|^{2} \geq \delta^{2}
$$

for some $\delta>0$. Then there exist $u_{1}, u_{2}, \ldots, u_{m} \in A^{\log }(\mathbb{B})$ such that

$$
G_{1} u_{1}+G_{2} u_{2}+\cdots+G_{m} u_{m}=\phi \quad \text { on } \quad \mathbb{B} .
$$

2. The solution operator for the division problem

For the construction of the solution operator for the division problem we use the integral representation for the solution of the $\bar{\partial}$-equation introduced by Berndtsson and Andersson [6]. Let

$$
Q=-\frac{\partial \rho}{\rho}=\partial\left(\log \frac{1}{-\rho}\right)
$$

Then for any $r>0$ we have the integral kernel for the solution of the $\bar{\partial}$-equation such that

$$
K^{r}(\zeta, z)=\sum_{\nu=0}^{n-1} C_{\nu, r} \frac{|\rho(\zeta)|^{r+\nu}}{|1-\bar{\zeta} z|^{r+\nu}} \frac{\partial_{\zeta}|\zeta-z|^{2} \wedge\left(\partial_{\zeta} \bar{\partial}_{\zeta}|\zeta-z|^{2}\right)^{n-1-\nu} \wedge\left(\bar{\partial}_{\zeta} Q\right)^{\nu}}{|\zeta-z|^{2(n-\nu)}}
$$

which induces a solution operator

$$
S^{r} \eta(z)=\int_{\zeta \in \mathbb{B}} \eta(\zeta) \wedge K^{r}(\zeta, z), \quad z \in \mathbb{B}
$$

such that $\bar{\partial}\left(S^{r} \eta\right)=\eta$ for a $\bar{\partial}$-closed $(0,1)$ form η (see [1]). We note that

$$
\begin{aligned}
\bar{\partial}_{\zeta} Q & =\partial \bar{\partial}\left(\log \frac{1}{-\rho}\right) \\
& =-\frac{1}{\rho} \bar{\partial} \partial \rho+\frac{1}{\rho^{2}} \bar{\partial} \rho \wedge \partial \rho
\end{aligned}
$$

and thus

$$
\left(\bar{\partial}_{\zeta} Q\right)^{\nu}=\mathcal{O}\left(\frac{1}{|\rho|^{\nu}}+\frac{\bar{\partial} \rho}{|\rho|^{\nu+1}}\right) .
$$

Since $|\zeta-z|^{2} \leq 2|1-\bar{\zeta} z|$, we have

$$
K^{r}(\zeta, z)=\frac{|\rho(\zeta)|^{r} \omega_{1}(\zeta, z)}{|1-\bar{\zeta} z|^{r}|\zeta-z|^{2 n-1}}+\frac{\bar{\partial} \rho(\zeta) \wedge|\rho(\zeta)|^{r-1} \omega_{2}(\zeta, z)}{|1-\bar{\zeta} z|^{r+1}|\zeta-z|^{2 n-3}}
$$

where the forms ω_{1} and ω_{2} have bounded coefficients on $\overline{\mathbb{B}} \times \overline{\mathbb{B}}$.
We have

$$
\begin{aligned}
S^{r} \eta(z) & =\int_{\zeta \in \mathbb{B}} \eta(\zeta) \wedge|\rho(\zeta)|^{r} K_{1}^{r}(\zeta, z)+\int_{\zeta \in \mathbb{B}} \eta(\zeta) \wedge \bar{\partial} \rho(\zeta) \wedge|\rho(\zeta)|^{r-1} K_{2}^{r}(\zeta, z) \\
& =S_{1} \eta(z)+S_{2} \eta(z)
\end{aligned}
$$

where $K_{1}^{r}(\zeta, z)$ and $K_{2}^{r}(\zeta, z)$ are defined by

$$
K_{1}^{r}(\zeta, z)=\frac{\omega_{1}(\zeta, z)}{|1-\bar{\zeta} z|^{r}|\zeta-z|^{2 n-1}}
$$

and

$$
K_{2}^{r}(\zeta, z)=\frac{\omega_{2}(\zeta, z)}{|1-\bar{\zeta} z|^{r+1}|\zeta-z|^{2 n-3}}
$$

First we solve the division problem for only the case $m=2$. We may apply Koszul complex theory [11] to extend to general m.

Let $G_{1}, G_{2} \in H^{\infty}(\mathbb{B})$ and $\delta>0$ be such that

$$
\left|G_{1}(\zeta)\right|^{2}+\left|G_{2}(\zeta)\right|^{2} \geq \delta, \quad \zeta \in \mathbb{B}
$$

Let

$$
\mathcal{G}=\frac{\bar{G}_{1} \overline{\partial G_{2}}-\bar{G}_{2} \overline{\partial G_{1}}}{|G|^{4}}
$$

We note that

$$
\mathcal{G}=\frac{1}{G_{1}} \bar{\partial}\left(\frac{\bar{G}_{2}}{|G|^{2}}\right) \quad \text { or } \quad-\frac{1}{G_{2}} \bar{\partial}\left(\frac{\bar{G}_{1}}{|G|^{2}}\right) .
$$

Thus \mathcal{G} is a $\bar{\partial}$-closed $(0,1)$ form. For $\phi \in \mathcal{O}(\mathbb{B})$ we have

$$
\bar{\partial} S^{r}(\phi \mathcal{G})=\phi \mathcal{G}
$$

Put

$$
\gamma_{1}=\frac{\bar{G}_{1}}{|G|^{2}} \quad \text { and } \quad \gamma_{2}=\frac{\bar{G}_{2}}{|G|^{2}}
$$

Then

$$
\mathcal{G}=\frac{1}{G_{1}} \bar{\partial} \gamma_{2} \quad \text { or } \quad-\frac{1}{G_{2}} \bar{\partial} \gamma_{1} .
$$

Clearly, $G_{1} \gamma_{1}+G_{2} \gamma_{2} \equiv 1$. Let

$$
u_{1}=\gamma_{1} \phi+G_{2} S^{r}(\phi \mathcal{G}) \quad \text { and } \quad u_{2}=\gamma_{2} \phi-G_{1} S^{r}(\phi \mathcal{G})
$$

Then

$$
G_{1} u_{1}+G_{2} u_{2} \equiv \phi .
$$

We know that $\bar{\partial} u_{1}=\bar{\partial} u_{2}=0$. Thus $u_{1}, u_{2} \in \mathcal{O}(\mathbb{B})$. It remains to prove that $u_{1}, u_{2} \in A^{\tilde{\omega}}(\mathbb{B})$.

Since $\gamma_{j}, G_{j} \in H^{\infty}(\mathbb{B})$ and $\phi \in A^{\omega}(\mathbb{B}) \subset A^{\tilde{\omega}}(\mathbb{B})$, it is enough to prove that

$$
\left|S^{r}(\phi \mathcal{G})(z)\right| \lesssim \tilde{\omega}(|\rho(z)|), \quad z \in \mathbb{B} .
$$

For any bounded holomorphic function h on \mathbb{B} we have

$$
|\partial h| \lesssim \frac{1}{|\rho|}, \quad|\partial \rho \wedge \partial h| \lesssim \frac{1}{|\rho|^{1 / 2}}
$$

We recall the Cauchy integral formula

$$
h(z)=\int_{\zeta \in \partial \mathbb{B}} \frac{h(\zeta) \partial \rho(\zeta) \wedge(\partial \bar{\partial} \rho(\zeta))^{n-1}}{(1-\bar{\zeta} z)^{n}} .
$$

By the Cauchy integral formula and noting that

$$
\partial_{z}(1-\bar{\zeta} z)=-\partial_{z} \rho(z)+\partial_{z}|\zeta-z|^{2}
$$

we have

$$
\partial h(z)=\alpha(z) \partial \rho(z)+\beta(z),
$$

where $|\alpha| \lesssim 1 /|\rho|$ and $|\beta| \lesssim 1 / \sqrt{|\rho|}$.

3. Estimates for integral kernels

Lemma 3.1. If ω is a weight function of order α with $-1<\alpha \leq 0$, then it holds that
$\int_{0}^{1} \frac{\omega(t)}{|\rho(z)|+t} d t \lesssim\left\{\begin{array}{l}\omega(|\rho(z)|), \quad \text { if }-1<\alpha<0, \\ \omega(|\rho(z)|) \log \frac{1}{|\rho(z)|}, \quad \text { if } \alpha=0 \text { and } \omega \text { is almost decreasing. }\end{array}\right.$
Proof. Write $r=|\rho(z)|$ and

$$
\int_{0}^{1} \frac{\omega(t)}{r+t} d t=\int_{0}^{r} \frac{\omega(t)}{r+t} d t+\int_{r}^{1} \frac{\omega(t)}{r+t} d t=: I_{1}+I_{2}
$$

We choose $\epsilon>0$ so small that $\alpha-\epsilon>-1$. Then we have

$$
I_{1}=\int_{0}^{r} \frac{\omega(t)}{t^{\alpha-\epsilon}} \cdot \frac{t^{\alpha-\epsilon}}{r+t} d t \lesssim \frac{\omega(r)}{r^{\alpha-\epsilon}} \int_{0}^{r} \frac{t^{\alpha-\epsilon}}{r+t} d t \leq \frac{\omega(r)}{r^{\alpha-\epsilon}} \int_{0}^{r} \frac{t^{\alpha-\epsilon}}{r} d t \lesssim \omega(r)
$$

since $\omega(t) / t^{\alpha-\epsilon}$ is almost increasing. For the case of I_{2}, if $-1<\alpha<0$, then we choose $\epsilon>0$ so small that $\alpha+\epsilon<0$. Then we have

$$
I_{2} \leq \int_{r}^{\infty} \frac{\omega(t)}{t^{\alpha+\epsilon}} \cdot \frac{t^{\alpha+\epsilon}}{r+t} d t \lesssim \frac{\omega(r)}{r^{\alpha+\epsilon}} \int_{r}^{\infty} \frac{t^{\alpha+\epsilon}}{r+t} d t \leq \frac{\omega(r)}{r^{\alpha+\epsilon}} \int_{r}^{\infty} \frac{d t}{t^{1-\alpha-\epsilon}} \lesssim \omega(r),
$$

since $\omega(t) / t^{\alpha+\epsilon}$ is almost decreasing. If $\alpha=0$, since $\omega(t)$ is almost decreasing, we have

$$
I_{2} \lesssim \omega(r) \int_{r}^{1} \frac{d t}{r+t}=\omega(r) \log \left(\frac{r+1}{2 r}\right) \leq \omega(r) \log \frac{1}{r}
$$

Lemma 3.2. Let r be sufficiently large. If ω is a weight function of order α with $-1<\alpha \leq 0$, then it holds that
$\int_{\zeta \in \mathbb{B}} \frac{|\rho(\zeta)|^{r-1} \omega(|\rho(\zeta)|)}{|1-\bar{\zeta} z|^{r}|\zeta-z|^{2 n-1}} d V(\zeta) \lesssim\left\{\begin{array}{l}\omega(|\rho(z)|), \quad \text { if } \quad-1<\alpha<0, \\ \omega(|\rho(z)|) \log \frac{1}{|\rho(z)|}, \quad \text { if } \alpha=0 \text { and } \omega \text { is almost decreasing. }\end{array}\right.$
Proof. We have

$$
2 \operatorname{Re}(1-\bar{\zeta} z)=|\rho(\zeta)|+|\rho(z)|+|\zeta-z|^{2}, \quad \zeta, z \in \mathbb{B}
$$

Thus

$$
|1-\bar{\zeta} z| \gtrsim|\rho(\zeta)|+|\operatorname{Im}(1-\bar{\zeta} z)|+|\zeta-z|^{2}+|\rho(z)|, \quad \zeta, z \in \mathbb{B}
$$

We choose local coordinate $t_{z}(\zeta)=\left(t_{1}, t_{2}, \ldots, t_{2 n}\right)$ such that

$$
t_{1}=-\rho(\zeta), t_{2}=\operatorname{Im}(1-\bar{\zeta} z), t_{3}(z)=\cdots=t_{2 n}(z)=0,\left|t_{z}(\zeta)\right| \sim|\zeta-z| .
$$

Then we have

$$
\begin{aligned}
I(z) & =\int_{\zeta \in \mathbb{B} \cap B(z, \epsilon)} \frac{|\rho(\zeta)|^{r-1} \omega(|\rho(\zeta)|)}{|1-\bar{\zeta} z|^{r}|\zeta-z|^{2 n-1}} d V(\zeta) \\
& \lesssim \int_{|t|<1} \frac{\left|t_{1}\right|^{r-1} \omega\left(t_{1}\right)}{|t|^{2 n-1}\left(\left|t_{1}\right|+\left|t_{2}\right|+|\rho(z)|\right)^{r}} d t \\
& \lesssim \int_{\left|\left(t_{1}, t_{2}\right)\right|<1} \frac{\omega\left(t_{1}\right) d t_{1} d t_{2}}{\left(\left|t_{1}\right|+\left|t_{2}\right|\right)\left(\left|t_{1}\right|+\left|t_{2}\right|+|\rho(z)|\right)} \\
& \lesssim \int_{0}^{1} \frac{\omega(t)}{t+|\rho(z)|} d t \\
& \lesssim \begin{cases}\omega(|\rho(z)|), \quad \text { if } \quad-1<\alpha<0, \\
\omega(|\rho(z)|) \log \frac{1}{|\rho(z)|}, \quad \text { if } \alpha=0 \text { and } \omega \text { is almost decreasing },\end{cases}
\end{aligned}
$$

by Lemma3.1.
Lemma 3.3. Let r be sufficiently large. If ω is a weight function of order α with $-1<\alpha \leq 0$, then it holds that
$\int_{\zeta \in \mathbb{B}} \frac{|\rho(\zeta)|^{r-3 / 2} \omega(|\rho(\zeta)|)}{|1-\bar{\zeta} z|^{r+1}|\zeta-z|^{2 n-3}} d V(\zeta) \lesssim\left\{\begin{array}{l}\omega(|\rho(z)|), \quad \text { if }-1<\alpha<0, \\ \omega(|\rho(z)|) \log \frac{1}{|\rho(z)|}, \quad \text { if } \alpha=0 \text { and } \omega \text { is almost decreasing. }\end{array}\right.$
Proof. As the proof of Lemma 3.2, we have

$$
\begin{aligned}
J(z) & =\int_{\zeta \in \mathbb{B} \cap B(z, \epsilon)} \frac{|\rho(\zeta)|^{r-3 / 2} \omega(|\rho(\zeta)|)}{|1-\bar{\zeta} z|^{r+1}|\zeta-z|^{2 n-3}} d V(\zeta) \\
& \lesssim \int_{|t|<1} \frac{\left|t_{1}\right|^{r-3 / 2} \omega\left(t_{1}\right)}{|t|^{2 n-3}\left(\left|t_{1}\right|+\left|t_{2}\right|+|t|^{2}+|\rho(z)|\right)^{r+1}} d t \\
& \lesssim \int_{\xi \in \mathbb{C},|\xi|<1} \int_{0}^{1} \int_{0}^{1} \frac{t_{1}^{r-3 / 2} \omega\left(t_{1}\right) d t_{1} d t_{2} d \xi}{|\xi|\left(t_{1}+t_{2}+|\xi|^{2}+|\rho(z)|\right)^{r+1}} \\
& \lesssim \int_{0}^{1} \int_{0}^{1} \frac{t_{1}^{r-3 / 2} \omega\left(t_{1}\right) d t_{1} d t_{2}}{\left(t_{1}+t_{2}+|\rho(z)|\right)^{r+1 / 2}} \\
& \lesssim \int_{0}^{1} \frac{\omega\left(t_{1}\right)}{t_{1}+|\rho(z)|} d t_{1} \\
& \lesssim \begin{cases}\omega(|\rho(z)|), \quad \text { if } \quad-1<\alpha<0, \\
\omega(|\rho(z)|) \log \frac{1}{|\rho(z)|}, \quad \text { if } \alpha=0 \text { and } \omega \text { is almost decreasing },\end{cases}
\end{aligned}
$$

by Lemma3.1.

4. Proof of Theorem 1.2

We assume that $G_{1}, G_{2} \in H^{\infty}(\mathbb{B})$ have no common zeroes, so that $|G|^{2}=$ $\sum\left|G_{j}\right|^{2}>0$. We will prove that

$$
\left|S_{1}^{r}(\phi \mathcal{G})(z)\right|,\left|S_{2}^{r}(\phi \mathcal{G})(z)\right| \lesssim \tilde{\omega}(|\rho(z)|), \quad z \in \mathbb{B} .
$$

Since $G_{1}, G_{2} \in H^{\infty}$, we have

$$
|\mathcal{G}| \lesssim \frac{1}{|G|^{4}}\left(\left|G_{1}\right|\left|\partial G_{2}\right|+\left|G_{2}\right|\left|\partial G_{1}\right|\right) \lesssim \frac{1}{|\rho|}
$$

and

$$
|\mathcal{G} \wedge \bar{\partial} \rho| \lesssim \frac{1}{|G|^{4}}\left(\left|G_{1}\right|\left|\partial G_{2} \wedge \partial \rho\right|+\left|G_{2}\right|\left|\partial G_{1} \wedge \partial \rho\right|\right) \lesssim \frac{1}{|\rho|^{1 / 2}}
$$

Thus we have

$$
\begin{aligned}
\left|S_{1}^{r}(\phi \mathcal{G})(z)\right| & \lesssim \int_{\zeta \in \mathbb{B}}|\phi(\zeta)||\mathcal{G}(\zeta)||\rho(\zeta)|^{r}\left|K_{1}^{r}(\zeta, z)\right| d V(\zeta) \\
& \lesssim \int_{\zeta \in \mathbb{B}} \frac{|\rho(\zeta)|^{r-1} \omega(|\rho(\zeta)|)}{|1-\bar{\zeta} z|^{r}|\zeta-z|^{2 n-1}} d V(\zeta) \\
& \lesssim \begin{cases}\omega(|\rho(z)|), \quad \text { if }-1<\alpha<0 \\
\omega(|\rho(z)|) \log \frac{1}{\frac{1}{\rho(z) \mid}, \quad \text { if } \alpha=0 \text { and } \omega \text { is almost decreasing }}\end{cases}
\end{aligned}
$$

and

$$
\begin{aligned}
\left|S_{2}^{r}(\phi \mathcal{G})(z)\right| & \lesssim \int_{\zeta \in \mathbb{B}}|\phi(\zeta)||\mathcal{G}(\zeta) \wedge \bar{\partial} \rho(\zeta)||\rho(\zeta)|^{r-1}\left|K_{2}^{r}(\zeta, z)\right| d V(\zeta) \\
& \lesssim \int_{\zeta \in \mathbb{B}} \frac{|\rho(\zeta)|^{r-3 / 2} \omega(|\rho(\zeta)|)}{|1-\bar{\zeta} z|^{r+1}|\zeta-z|^{2 n-3}} d V(\zeta) \\
& \lesssim\left\{\begin{array}{l}
\omega(|\rho(z)|), \quad \text { if }-1<\alpha<0 \\
\omega(|\rho(z)|) \log \frac{1}{|\rho(z)|}, \quad \text { if } \alpha=0 \text { and } \omega \text { is almost decreasing },
\end{array}\right.
\end{aligned}
$$

by Lemma 3.2 and Lemma 3.3, respectively.

References

[1] E. Amar, On the corona problem, J. Geom. Anal. 1 (1991), no. 4, 291-305.
[2] M. Andersson, The H^{p} corona problem in weakly pseudoconvex domains, Trans. Amer. Math. Soc. 342 (1994), 241-255.
[3] M. Andersson and H. Carlsson, Wolff-type estimates for $\bar{\partial}_{b}$ and the H^{p}-corona problem in strictly pseudoconvex domains, Ark. Mat. 32 (1994) 255-276.
[4] M. Andersson and H. Carlsson, H^{p}-estimates of holomorphic division formulas, Pacific J. Math. 173 (1996), 307-335.
[5] M. Andersson and H. Carlsson, Estimates of solutions of the H^{p} and BMOA corona problem, Math. Ann. 316 (2000), 83-102.
[6] B. Berndtsson and M. Andersson, Henkin-Ramirez formulas with weight factors, Ann. Inst. Fourier 32(1982), 91-110.
[7] J. Byun, H. R. Cho, and J.-D. Park, Weighted Lipschitz estimates for $\bar{\partial}$ on convex domains of finite type, J. Math. Anal. Appl. 368 (2010) 190210
[8] L. Carleson, Interpolation of bounded analytic functions and the corona problem, Ann. of Math. 76(1961), 547-559.
[9] H. R. Cho and E. G. Kwon, Embedding of Hardy spaces into weighted Bergman spaces in bounded domains with C^{2} boundary, Illinois J. Math. 48-3(2004), 747757.
[10] D. Girela, M. Nowak, and P. Waniurski, On the zeros of Bloch functions, Math. Proc. Camb. Phil. Soc. 129(2000), 117-128.
[11] P. Koosis, Introduction to H^{p}-spaces. With an appendex on Wolff's proof of the corona theorem, Lond. Math. Soc. Lecture Note Series, 40(1980).
[12] S. G. Krantz and S.-Y. Li, Some remarks on the corona problem on strongly pseudoconvex domains in \mathbb{C}^{n}, Illinois J. Math. 39-1(1995), 323-349.
[13] K. Lin, The $\bar{\partial} u=f$ corona theorem for the polydisc, Trans. Amer. Math. Soc. 341(1994), 371-375.
[14] J. M. Ortega, J. Fabrega, Corona type decomposition in some Besov spaces, Math. Scand. 78(1996), 93-111.
[15] J. M. Ortega, J. Fabrega, Pointwise multipliers and corona type decomposition in $B M O A$, Ann. Inst. Fourier 46(1996), 111-137.
[16] J. M. Ortega, J. Fabrega, Pointwise multipliers and decomposition theorems in analytic Besov spaces, Math. Z. 235(2000), 53-81.
[17] J. M. Ortega, J. Fabrega, Pointwise multipliers and decomposition theorems in $F_{s}^{\infty, q}$, Math. Ann. 329(2004), 247-277
[18] N. Varopoulos, $B M O$ functions and the $\bar{\partial}$-equation, Pacific J. Math. 71(1977), 221273.

Hong Rae Cho

Department of Mathematics, Pusan National University, Pusan 609-735, Korea
E-mail address: chohr@pusan.ac.kr
Han-Wool Lee
Department of Mathematics, Pusan National University, Pusan 609-735, Korea
E-mail address: eyeq@nate.com
Soohyun Park
Department of Mathematics, Pusan National University, Pusan 609-735, Korea

[^0]: Received October 22, 2014; Accepted December 9, 2014.
 2010 Mathematics Subject Classification. 32A37, 30H80, 32A25.
 Key words and phrases. division problem; generalized growth spaces; unit ball.
 This study was supported by a 2-Year Research Grant of Pusan National University.

