
Effect of Sampling for Multi-set Cardinality Estimation 15

Effect of Sampling for Multi-set Cardinality Estimation

DinhNguyen Dao†⋅DaeHun Nyang††⋅KyungHee Lee†††

ABSTRACT

Estimating the number of distinct values is really well-known problems in network data measurement and many effective algorithms

are suggested. Recent works have built upon technique called Linear Counting to solve the estimation problem for massive sets or

spreaders in small memory. Sampling is used to reduce the measurement data, and it is assumed that sampling gives bad effect on the

accuracy. In this paper, however, we show that the sampling on multi-set estimation sometimes gives better results for CSE with

sampling than for MCSE that examines all the packets without sampling in terms of accuracy and estimation range. To prove this, we

presented mathematical analysis, conducted experiment with real data, and compared the results of CSE, MCSE, and CSES.

Keywords : Traffic Measurement, Spreader, Estimation, Sampling

멀티셋의 크기 추정 기법에서 샘플링의 효과

DinhNguyen Dao
†
⋅양 대 헌

††
⋅이 경 희

†††

요 약

멀티셋에서 중복을 제외한 서로 다른 원소의 수를 추정하는 것은 네트워크 트래픽 측정 분야에서 매우 잘 알려진 문제이며, 많은 알고리즘

들이 제안되었다. 최근에는 선형 카운팅 기법(Linear Counting)에 기반해서 매우 작은 메모리만을 이용해서 멀티셋의 크기를 추정하는 알고리

즘이 개발되었다. 너무 많은 데이터를 처리하기 어려운 경우 전체 데이터를 처리하지 않고, 패킷의 일부를 샘플링해서 사용하는데, 이 샘플링은

일반적으로 정확도에 부정적인 영향을 주는 것으로 알려져있다. 하지만, 이 논문에서는 멀티셋의 크기를 추정하는데 있어서 CSE를 이용하는

경우 샘플링이 정확도와 측정 범위의 측면에서 오히려 전수조사를 하는 MCSE보다 더 좋은 결과를 낼 수 있음을 보였다. 이를 입증하기 위해

수학적 분석, 실제 데이터를 이용한 실험을 수행하고, CSE, MCSE 그리고 CSES를 비교하였다.

키워드 : 트래픽 측정, 멀티셋 크기, 근사치 추정, 샘플링

1. Introduction1)

Among various kinds of network traffic measurements,

counting items with a distinct value plays a vital role in

many applications. The values can be a combination of

source address, destination address, a flow or a resource

address. In this paper, we focus on the spreader which

has contact with numerous destination addresses. High

spreader can be used by a worm, or by malware. Thus,

it is important to find out the spreads or the number of

†준 회 원 :인하대학교 컴퓨터정보공학과 석사과정
††정 회 원 :인하대학교 컴퓨터정보공학과 교수
†††종신회원:수원대학교 전기공학과 부교수

Manuscript Received : July 17, 2014
First Revision : September 12, 2014; Second Revision : September 29, 2014
Accepted : September 30, 2014

* Corresponding Author : KyungHee Lee(khlee@suwon.ac.kr)

distinct values. Certainly, the spread estimation algorithm

can be extended to other fields that need to count the

distinct value.

There have been many research works for spreader

estimation such as [1-5], but these were for counting one

flow. Because the number of spreads can be more than a

million, the required amount of memory is still too large

to be fit in a small memory. Other approaches such as

[6-9] listed all the super spreaders of which spreads are

greater than a defined threshold. It skips most of other

small ones. Yoon [10] and Li [11] have a decent approach

for this problem by adapting Linear Counting [12].

Instead of storing in an independent vector for each

spreader, all the data is shared in a large memory by a

random mapping process. However, this approach has its

KIPS Tr. Comp. and Comm. Sys.
Vol.4, No.1 pp.15~22 pISSN: 2287-5891 http://dx.doi.org/10.3745/KTCCS.2015.4.1.15

16 정보처리학회논문지/컴퓨터 및 통신 시스템 제4권 제1호(2015. 1)

drawback of small estimation range, and thus, sampling

approach comes as a new solution.

Sampling means that we examine only a portion of

packets instead of all packets, which might result in loss

of information, and therefore, probably loss in the accuracy

as widely accepted [13]. Nevertheless, by analyzing

comparatively algorithms such as Compact Spread Estimator

(CSE), Multiple Compact Spread Estimator (MCSE), and

Compact Spread Estimator with sampling (CSES), we

show that sampling is beneficial for estimation of high

spreaders. Consequently, CSES is recommended to be

used for high spreaders instead of using complicated and

slow MCSE. In this paper, we show that the sampling on

multi-set estimation sometimes gives better results in

terms of accuracy and estimation range. To prove this,

we presented mathematical analysis, conducted experiment

with real data, and compared the results of CSE, MCSE,

and CSES.

The remainder of this paper is organized into 4 sections.

Section 2 describes how the Linear Counting and other

work can estimate the cardinality for multi-set. Section 3

analyzes the accuracy along with sampling. Experimental

results are presented in Section 4. The conclusion is

drawn in Section 5.

2. Background

In this section, we review several estimation algorithms

such as Linear Counting, CSE, MCSE, and CSES in order

to understand our argument.

2.1 Linear Counting Algorithm

The number of distinct values, called n, can be counted

exactly by keeping track of all unique values passing

through. However, in many cases, the number of unique

values is excessively large. For example, the number of

IP addresses is n = 232. That requires impracticably large

amount of memory. Whang’s approach [12] reduces the

storage space using a hash function H() mapping the

value into s = θ(n) bit size. The algorithm is depicted in

Alg. 1. Apparently, the limitation of this method is that

the space is linear to n, and thus, it may cause the waste

of memory when the load factor is much smaller than the

memory size. This is why Linear Counting can be adopted

and used for multiple set efficiently.

Algorithm 1 : The Linear Counting algorithm [12]

1 Initialize bits M[0] to M[s-1] to 0.

2 for all value v do

3 idx := h(v)

4 M[idx] := 1

5 end for

6 Us := number of 0 bit in M

7 return s⋅ln(s/Us)

2.2 Compact Spread Estimator algorithm (CSE)

For estimating multi-spreader, if each spreader uses its

own exclusive memory, then the required space will be

too much. Moreover, the space is not used efficiently

when the spreader is small. The solution for this problem

is that the bit array for each spreader is not stored

individually and explicitly but shared over the entire

memory space. The group of these bits is called a virtual

bit vector V. Each bit in the vector will be mapped to

the memory by a hash function. The mapping process is

visualized in Fig. 1.

Fig. 1. Mapping of virtual bit V(src) into the memory M

How to store a contact (a source and destination IP

pair) in a virtual vector and how to estimate a spread

are presented in Alg. 2. In CSE, two hash functions are

used, and Hd() calculates the position of bits in a virtual

bit vector and H() calculates the position in the memory.

m is the total amount of memory in bits, s is the virtual

vector size, and Um and Us are the fractions of the

number of zero-bits in the memory and in a virtual

vector, respectively. The estimation is obtained by

 ∘ln

 and the noise caused by sharing memory

equals to  ∘ln

.

The main advantage of CSE is that it can work on

Effect of Sampling for Multi-set Cardinality Estimation 17

Algorithm 2 : The CSE algorithm [10]

1 Initialize bits M[0] to M[m-1] to 0.

2 function CseStore(src,dest)

3 for all src do

4 d := Hd(dest)

5 idx := H(src; d)

6 M[idx] := 1

7 end for

8 end function

9 function CseEstimate(src)

10 Um := number of 0-bits in M

11 Us := number of 0-bits in V (src)

12 return (–s⋅ln(Um/m) + s⋅ln(Us/s))

13 end function

small memory while a previous algorithm such as OSM

[9] cannot. Since the algorithm uses random bit sharing

scheme, the bits of each virtual vector are used efficiently.

Moreover, compared to OSM, the error is uniform, and

therefore, it can be measured and removed. However,

CSE also has problems. When the virtual vector size s

becomes too large, the large spreaders are dominant over

the total memory M. That makes more noise for other

spreaders especially for small spreaders. Consequently, the

constraint of s causes the limit in estimation range. For

example, when s = 200, the upper bound for estimation is

200.ln(200) ≈ 1060. To overcome this limitation, two

ideas are proposed in Section 2.3 and 2.4.

2.3 Multiple Compact Spread Estimator algorithm (MCSE)

To extend the estimation range, Multiple CSE is

proposed. It consists of multiple separate CSE estimators

with different sampling probabilities. The final result is

obtained from the CSE segment with the highest

maximum likelihood value.

Particularly, the memory M is divided into g segments

M1 to Mg. Each segment is selected with the sampling

probability pi = 1/2i, i=1, 2, ..., g. The size of Mi, denoted

as mi, is the proportional to pi, and it is defined by

  
  



 . The source and destination address pair

are hashed and the segment is chosen according to the

position of the rightmost 1 bit. In order to estimate the

spreader, both estimation and likelihood of every segment

are calculated, and the estimation is chosen from the

segment that has the maximum likelihood.

Algorithm 3 : The MCSE algorithm [10]

1 Initialize bits for all Mi[..]

2 function McseStore(src,dest)

3 for all src do

4
b:= the largest i that the i rightmost bits in

H(src,dest) are all 0

5 i: = b+1;

6 CseStore(i, src, dest) //Insert to segment i

7 end for

8 end function

9 function McsmEstimate(src)

10 for i=1 to g do

11
L[i] = CalculateLikelihood(i,src) //Calculate likelihood

value of each segment

12 end for

13
j := ||i : max(L[i])|| //Choose the estimation with highest

likelihood

14 return CseEstimate(j, src)

15 end function

2.4 Compact Spread Estimator with sampling (CSES)

CSES algorithm is identically the same as CSE, where

each contact (source, destination) is hashed to a position

in the memory and that bit position is set to one. The

difference from CSE and MCSE is that CSES uses

probabilistic sampling with only one virtual vector while

CSE examines all packets and MCSE uses multiple virtual

vectors for estimation. It is presented in Alg. 4. Note that

the estimation of Efficient Spreader Classification algorithm

(ESC) [11] and CSES are identical since ln(1-p/s) -

ln(1-p/m) ≃ (-p/s) - (-p/m) ≃p/s. (extended by its

Taylor series, and s << m).

Algorithm 4 : The CSE with sampling

1 Initialize bits M[0] to M[m-1] to 0.

2 p is the sampling ratio, in a range (0,1)

3 function CsesStore(src, dest)

4 h := H(src,dest). //h is in a range [0,N)

5 if h <= N⋅p then

6 CseStore(src, dest)

7 end if

8 end function

9 function CsesEstimate(src)

10 return CseEstimate(src) / p

11 end function

18 정보처리학회논문지/컴퓨터 및 통신 시스템 제4권 제1호(2015. 1)

3. Sampling and Accuracy

The first advantage of sampling in CSES is that it

increases the estimation range and reduces the encoding

time, but using sampling technique is considered to

reduce the accuracy of estimation [13]. In this section,

however, we analyze the accuracy of the spread estimation

with sampling, and we show that estimation with

sampling increases accuracy for high spreaders. We

mainly use the results in [10] for analysis CSE estimation

equation with sampling where 
  


ln







ln


.

Using the same technique in [10] with sampling

consideration, we derive the mean and variance of 

≃















 (1)

≃








 (2)

And the mean and variance of 

≃




















 (3)

≃










 (4)

To obtain , we only have to derive 
 since

we already obtained  
 
 
. Let α =

n/m; β = k/s then


≃




    




  
 (5)

Therefore,


 


≃ 




   




  
 (6)

From (2), (4) and (6), we obtain the variance of the

estimation as following :

≃

   


    





   


  
 (7)

The the standard deviation of the ratio  is as

follows :




(8)

The standard deviation embodies all the error caused

by number of approximations. However, in [10], authors

showed that the difference between analytical estimation

and the result is minor.

From (8), we can examine the influence of sampling to

the accuracy. We notice that α=n/m usually to be small

and less than 2 to obtain the effective estimation. Thus,










 is too small to have an impact on our

result. So  get the minimize value when



     is minimize.

Fig. 2. The plot measures the variance of , which

mainly contribute the overall estimated variance, with different

sampling rate and estimate value

Effect of Sampling for Multi-set Cardinality Estimation 19

(a) CSE (s=256) (b) CSE (s=1024) (c)MCSE (d) CSES

Fig. 4. Estimation result with CSE (s = 256, 1024), MCSE (s=256,g=3) and CSES (s=256,p=0.25) with 1MB memory. Each

point (in cross) stands for each spreader, and y = x line is the reference line. The closer the point is to y = x, the more

accurate the estimation is. Note that both axes are in log scale

Fig. 2 shows the relationship among variance, sampling

rate, and spreader size, when n = 8.4 million, m = 8

million, s = 256, k has 4 different values 100; 250; 500;

1000, and the sampling rate changes from 0 to 1. It shows

that when we reduce the sampling rate, the accuracy

slightly decreases for low spreaders. However, for high

spreaders such as with k = 1000, the variance or the

standard deviation reaches the minimum when p < 1.

This means that sampling contributes to better estimation

for large range, in this case is the range more than 500.

The reason is that without sampling, the information

stored in the memory is too much so that the error

caused by sharing memory is significantly larger than the

error caused by sampling. We will see more clearly this

result in Section 4.

4. Experiments

In this section, we evaluate the performance of these

algorithms (CSE, MCSE, CSES) in terms of processing

time and estimation accuracy. We used 1 hour network

traffic trace from CAIDA dataset which hold 8.4M distinct

contacts (source IP, destination IP) with nearly 6M distinct

spreaders. The range of spreader size is from 0 to 25,722

and the average spread size per source is 13.3. See Fig. 3

for spreader distribution of the dataset in a log scale. The

total memory allocated for the measurement is 1MB,

which means 1 contact is stored in 1 bit on average.

In the first experiment, we choose the vector size s =

256, since its normal measurement range is from 0 to

500. As shown in Fig. 4a, CSE shows its limitation, that

is, the estimation cannot go beyond 1000. To overcome

this limitation, we setup 3 more experiments in which the

range will increase 4 times. In the first one, the vector

size of CSE s is increased to 1,024. Second, we use

MCSE with 3 segments. CSES with sampling rate of 0.25

is the last experiment. You can find the estimation result

in Fig. 4.

Fig. 3. Traffic distribution of CAIDA dataset. Each point

represents the spreader to reach a certain size

As can be seen in Fig. 4a and Fig. 4b, when we

increase s the size of virtual vector, the maximum spread

estimation of CSE and the accuracy of high spreader

increase. Also, high spreader uses more bits, so it causes

more noise and reduces the accuracy of low spreaders.

And by accessing larger vector size s then the decoding

time will be increase. Fig. 4c illustrates MCSE with the

number of segments g=3. Spreaders are distributed to

20 정보처리학회논문지/컴퓨터 및 통신 시스템 제4권 제1호(2015. 1)

Range (A) CSE (s=256) (B) CSE (s=1024) (C)MCSE (D) CSES

1 8.9307 17.5627 16.966 14.2446

2-3 4.6239 8.8216 8.7167 7.1723

4-7 2.2008 3.977 4.1447 3.274

8-15 1.2774 2.1506 2.4086 1.8199

16-31 0.7527 1.2538 1.5486 1.0996

32-63 0.4181 0.7356 1.0148 0.6409

64-127 0.2299 0.4101 0.5842 0.3623

128-255 0.1364 0.2182 0.3094 0.2063

256-511 0.1066 0.1173 0.176 0.1324

512-1023 0.1305 0.0688 0.1174 0.0912

1024-2047 0.1947 0.0499 0.0713 0.07

2048-4095 0.5065 0.0635 0.0774 0.0966

Table 1. Estimation result with CSE (s = 256, 1024), MCSE (s=256, g=3) and CSES (s=256, p=0.25) with 1MB memory. The

fraction of error () is calculated and put into a group according to size. Group i will have the spreaders which have the
size in range from 2i-1 to 2i - 1

Algorithm CSE CSE MCSE CSES

Cite [10] III.C [10] III.C [10] VI.D II.2.4

Parameters s=256 s=1024 s=256;g=3 s=256;p=0.25

Maximum Est. Range 1500 7000 12000 6000

Accuracy

Small range

(1-15)
= - - -

Large range

(256-4095)
= ++ + +

Processing

Time

Encoding(Store) 2H + 2M 2H + 2M 3H + 2M 3H + 3M

Decoding(Estimate) 256*(H + M) 1024*(H + M) >>256*3*(H + M) 256*(H + M)

Table 2. The algorithms discussed in section when comparing with CSE(s=256). = dthe base for comparison, - means poor, --

means worse. Similarly, + means better than =, and ++ means better than +. H means hash calculation, and M means

memory access

different segments according to its size. However, because

the size for each segment is smaller than that of CSE, it

comes with reducing the overall accuracy. As a result,

the accuracy of MCSE is less than that of CSE (s=1024).

Moreover, MCSE is significantly slower than CSE due to

using maximum likelihood calculation [10]. In other

experiment in Fig. 4d, CSES uses the sampling probability

p=0.25 instead of increasing the vector size s. Comparing

to CSE with s=1024, in CSES, low spreaders are slightly

better, while high spreaders are rather worse. However,

because of the smaller vector size of CSES (s=256), the

estimation time of CSES is faster than that of CSE

(s=1024).

In order to look into the accuracy more clearly, we

divide spreaders into groups based on its size. Group i

will have the spreaders which have the size in range

from 2i-1 to 2i-1. Afterwards, we do the descriptive

statistics of  to show the accuracy of the estimation,

the average values in each group are shown in Table 1.

From this table, it can be seen that high spreaders (value

from 512 to 2047) show better estimation in CSES than

in CSE with the same vector size s = 256. Particularly,

the accuracy is 1.3 times better in range 512-1023 and

significantly increases to 5.24 times in range 2048-4095

when the spreader reaches the upper bound in CSE.

In summary, CSES that adopts sampling for estimation

is better compared to CSE or to MCSE in terms of

accuracy, and is comparable to CSE in terms of speed,

which is presented in Table 2. The result was determined

according to Table 1 and the total processing time of

main statements in 4 algorithms.

Effect of Sampling for Multi-set Cardinality Estimation 21

5. Conclusion

In conclusion, CSE delivers better result when the

spreader value is not high. With the traffic including high

spreaders, however, increasing the vector size in CSE

makes drawbacks in terms of estimation speed and error.

MCSE tries to solve this problem by dividing into several

segments and by using maximum likelihood for estimation.

High spreaders are stored in all segments, and the estimation

is calculated only from one segment. That makes a waste

of memory, and the maximum likelihood requires a lot of

time. Thus, CSES seems to be the best solution among

them in terms of algorithm complexity, processing time,

and accuracy when the available amount of memory is

the same. It expands the range without increasing the

estimation time, and improved accuracy in large range

while accuracy in small range is compromised.

References

[1] Z. Bar-Yossef and T. Jayram. “Counting distinct elements

in a data stream”, Randomization and Approximation

Techniques in Computer Science, pp.1-10, 2002.

[2] A. Chen and J. Cao. “Distinct counting with a self-learning

bitmap,” Journal of the American Statistical Association, pp.

1171-1174, Mar., 2011.

[3] P. Flajolet, E. Fusy, O. Gandouet, and F. Meunier.

“HyperLogLog: the analysis of a near-optimal cardinality

estimation algorithm”, DMTCS Proceedings, 2008.

[4] P. Flajolet and G. Nigel Martin. “Probabilistic counting

algorithms for data base applications,” Journal of Computer

and System Sciences, pp.182-209, Oct., 1985.

[5] D. Kane, J. Nelson, and D. Woodruff. “An optimal algorithm

for the distinct elements problem,” Proceedings of the

twenty-ninth ACM, pp.41-52, 2010.

[6] J. Cao, Y. Jin, A. Chen, T. Bu, and Z.-L. Zhang. “Identifying

high cardinality internet hosts,” INFOCOM 2009, IEEE, pp.

810-818, 2009.

[7] C. Estan, G. Varghese, and M. Fisk. “Bitmap algorithms for

counting active flows on high speed links”, Proceedings of

the 3rd ACM SIGCOMM, pp.925-937, Oct., 2003.

[8] X. Shi, D. Chiu, and J. Lui. “An online framework for catching

top spreaders and scanners”, Computer Networks, pp.

1375-1388, June, 2010.

[9] Q. Zhao, J. Xu, and A. Kumar. “Detection of Super Sources

and Destinations in High-Speed Networks: Algorithms,

Analysis and Evaluation”, IEEE Journal on Selected Areas

in Communications, pp.1840-1852, Oct., 2006.

[10] M. Yoon, T. Li, S. Chen, and J. Peir, “Fit a spread estimator

in small memory”, INFOCOM 2009, IEEE, 2009.

[11] T. Li, S. Chen, and W. Luo, “Spreader classification based

on optimal dynamic bit sharing”, Networking, IEEE/ACM

Transactions on, pp.817-830, 2013.

[12] K.-Y. Whang, B. T. Vander-Zanden, and H. M. Taylor, “A

linear-time probabilistic counting algorithm for database

applications”, ACM Transactions on Database Systems, pp.

208-229, June, 1990.

[13] B. Choi and S. Bhattacharyya, “Observations on cisco

sampled net flow”, ACM SIGMETRICS Performance

Evaluation pp.18-23, 2005.

DinhNguyen Dao

e-mail : nguyendd@seclab.inha.ac.kr

He received the B.S in Vietnam and is

currently pursuing the M.S. degree in

computer science and engineering at Inha

University, Incheon, Korea, His research

interests include cryptography and network

 measurement..

양 대 헌

e-mail : nyang@inha.ac.kr

He received his BS degree in electronic

engineering from KAIST in 1994, the

MS and the PhD degrees in computer

science from YONSEI Univ. in 1996 and

2000, respectively. From 2000 to 2003,

he had worked for Electronics and Telecommunications

Research Institute as a senior researcher. Since 2003, he has

been with INHA Univ., Korea, where he is currently assistant

professor in Graduate School of Information Technology and

Telecommunications. His research interests include cryptography,

network security including WPAN security, ad hoc network

security and wireless LAN security.

22 정보처리학회논문지/컴퓨터 및 통신 시스템 제4권 제1호(2015. 1)

이 경 희

e-mail : khlee@suwon.ac.kr

She received B.S., M.S. and Ph.D. degrees

in computer science from Yonsei University,

Korea. She was a researcher at the LG

Soft Company, Korea, from 1993 to 1996.

She was a senior member of the engineering

staff at the Electronics and

Telecommunications Research Institute, Korea, from 2000 to

2005. Since 2005, she has been an assistant professor of

Electrical Engineering at University of Suwon, Korea. Her

research interests include information security, privacy,

biometrics, image processing, artificial intelligence and pattern

recognition.

