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ABSTRACT

Estimating the number of distinct values is really well-known problems in network data measurement and many effective algorithms 

are suggested. Recent works have built upon technique called Linear Counting to solve the estimation problem for massive sets or 

spreaders in small memory. Sampling is used to reduce the measurement data, and it is assumed that sampling gives bad effect on the 

accuracy. In this paper, however, we show that the sampling on multi-set estimation sometimes gives better results for CSE with 

sampling than for MCSE that examines all the packets without sampling in terms of accuracy and estimation range. To prove this, we 

presented mathematical analysis, conducted experiment with real data, and compared the results of CSE, MCSE, and CSES.
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멀티셋의 크기 추정 기법에서 샘플링의 효과
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요     약

멀티셋에서 중복을 제외한 서로 다른 원소의 수를 추정하는 것은 네트워크 트래픽 측정 분야에서 매우 잘 알려진 문제이며, 많은 알고리즘

들이 제안되었다. 최근에는 선형 카운팅 기법(Linear Counting)에 기반해서 매우 작은 메모리만을 이용해서 멀티셋의 크기를 추정하는 알고리

즘이 개발되었다. 너무 많은 데이터를 처리하기 어려운 경우 전체 데이터를 처리하지 않고, 패킷의 일부를 샘플링해서 사용하는데, 이 샘플링은 

일반적으로 정확도에 부정적인 영향을 주는 것으로 알려져있다. 하지만, 이 논문에서는 멀티셋의 크기를 추정하는데 있어서 CSE를 이용하는 

경우 샘플링이 정확도와 측정 범위의 측면에서 오히려 전수조사를 하는 MCSE보다 더 좋은 결과를 낼 수 있음을 보였다. 이를 입증하기 위해 

수학적 분석, 실제 데이터를 이용한 실험을 수행하고, CSE, MCSE 그리고 CSES를 비교하였다.

키워드 : 트래픽 측정, 멀티셋 크기, 근사치 추정, 샘플링

1. Introduction1) 

Among various kinds of network traffic measurements, 

counting items with a distinct value plays a vital role in 

many applications. The values can be a combination of 

source address, destination address, a flow or a resource 

address. In this paper, we focus on the spreader which 

has contact with numerous destination addresses. High 

spreader can be used by a worm, or by malware. Thus, 

it is important to find out the spreads or the number of 
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distinct values. Certainly, the spread estimation algorithm 

can be extended to other fields that need to count the 

distinct value.

There have been many research works for spreader 

estimation such as [1-5], but these were for counting one 

flow. Because the number of spreads can be more than a 

million, the required amount of memory is still too large 

to be fit in a small memory. Other approaches such as 

[6-9] listed all the super spreaders of which spreads are 

greater than a defined threshold. It skips most of other 

small ones. Yoon [10] and Li [11] have a decent approach 

for this problem by adapting Linear Counting [12]. 

Instead of storing in an independent vector for each 

spreader, all the data is shared in a large memory by a 

random mapping process. However, this approach has its 
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drawback of small estimation range, and thus, sampling 

approach comes as a new solution.

Sampling means that we examine only a portion of 

packets instead of all packets, which might result in loss 

of information, and therefore, probably loss in the accuracy 

as widely accepted [13]. Nevertheless, by analyzing 

comparatively algorithms such as Compact Spread Estimator 

(CSE), Multiple Compact Spread Estimator (MCSE), and 

Compact Spread Estimator with sampling (CSES), we 

show that sampling is beneficial for estimation of high 

spreaders. Consequently, CSES is recommended to be 

used for high spreaders instead of using complicated and 

slow MCSE. In this paper, we show that the sampling on 

multi-set estimation sometimes gives better results in 

terms of accuracy and estimation range. To prove this, 

we presented mathematical analysis, conducted experiment 

with real data, and compared the results of CSE, MCSE, 

and CSES.

The remainder of this paper is organized into 4 sections. 

Section 2 describes how the Linear Counting and other 

work can estimate the cardinality for multi-set. Section 3 

analyzes the accuracy along with sampling. Experimental 

results are presented in Section 4. The conclusion is 

drawn in Section 5.

2. Background

In this section, we review several estimation algorithms 

such as Linear Counting, CSE, MCSE, and CSES in order 

to understand our argument. 

2.1 Linear Counting Algorithm

The number of distinct values, called n, can be counted 

exactly by keeping track of all unique values passing 

through. However, in many cases, the number of unique 

values is excessively large. For example, the number of 

IP addresses is n = 232. That requires impracticably large 

amount of memory. Whang’s approach [12] reduces the 

storage space using a hash function H() mapping the 

value into s = θ(n) bit size. The algorithm is depicted in 

Alg. 1. Apparently, the limitation of this method is that 

the space is linear to n, and thus, it may cause the waste 

of memory when the load factor is much smaller than the 

memory size. This is why Linear Counting can be adopted 

and used for multiple set efficiently.

Algorithm 1 : The Linear Counting algorithm [12]

1 Initialize bits M[0] to M[s-1] to 0.

2 for all value v do

3 idx := h(v)

4 M[idx] := 1

5 end for

6 Us := number of 0 bit in M

7 return s⋅ln(s/Us)

2.2 Compact Spread Estimator algorithm (CSE)

For estimating multi-spreader, if each spreader uses its 

own exclusive memory, then the required space will be 

too much. Moreover, the space is not used efficiently 

when the spreader is small. The solution for this problem 

is that the bit array for each spreader is not stored 

individually and explicitly but shared over the entire 

memory space. The group of these bits is called a virtual 

bit vector V. Each bit in the vector will be mapped to 

the memory by a hash function. The mapping process is 

visualized in Fig. 1.

Fig. 1. Mapping of virtual bit V(src) into the memory M

How to store a contact (a source and destination IP 

pair) in a virtual vector and how to estimate a spread 

are presented in Alg. 2. In CSE, two hash functions are 

used, and Hd() calculates the position of bits in a virtual 

bit vector and H() calculates the position in the memory. 

m is the total amount of memory in bits, s is the virtual 

vector size, and Um and Us are the fractions of the 

number of zero-bits in the memory and in a virtual 

vector, respectively. The estimation is obtained by 

 ∘ln

  and the noise caused by sharing memory 

equals to  ∘ln

.

The main advantage of CSE is that it can work on 
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Algorithm 2 : The CSE algorithm [10]

1 Initialize bits M[0] to M[m-1] to 0.

2 function CseStore(src,dest)

3 for all src do

4 d := Hd(dest)

5 idx := H(src; d)

6 M[idx] := 1

7 end for

8 end function

9 function CseEstimate(src)

10 Um := number of 0-bits in M

11 Us := number of 0-bits in V (src)

12 return (–s⋅ln(Um/m) + s⋅ln(Us/s))

13 end function

small memory while a previous algorithm such as OSM 

[9] cannot. Since the algorithm uses random bit sharing 

scheme, the bits of each virtual vector are used efficiently. 

Moreover, compared to OSM, the error is uniform, and 

therefore, it can be measured and removed. However, 

CSE also has problems. When the virtual vector size s 

becomes too large, the large spreaders are dominant over 

the total memory M. That makes more noise for other 

spreaders especially for small spreaders. Consequently, the 

constraint of s causes the limit in estimation range. For 

example, when s = 200, the upper bound for estimation is 

200.ln(200) ≈ 1060. To overcome this limitation, two 

ideas are proposed in Section 2.3 and 2.4.

2.3 Multiple Compact Spread Estimator algorithm (MCSE)

To extend the estimation range, Multiple CSE is 

proposed. It consists of multiple separate CSE estimators 

with different sampling probabilities. The final result is 

obtained from the CSE segment with the highest 

maximum likelihood value. 

Particularly, the memory M is divided into g segments 

M1 to Mg. Each segment is selected with the sampling 

probability pi = 1/2i, i=1, 2, ..., g. The size of Mi, denoted 

as mi, is the proportional to pi, and it is defined by 

  
  



 . The source and destination address pair 

are hashed and the segment is chosen according to the 

position of the rightmost 1 bit. In order to estimate the 

spreader, both estimation and likelihood of every segment 

are calculated, and the estimation is chosen from the 

segment that has the maximum likelihood.

Algorithm 3 :  The MCSE algorithm [10]

1 Initialize bits for all Mi[..]

2 function McseStore(src,dest)

3 for all src do

4
b:= the largest i that the i rightmost bits in 

H(src,dest) are all 0

5 i: = b+1;

6 CseStore(i, src, dest) //Insert to segment i

7 end for

8 end function

9 function McsmEstimate(src)

10 for i=1 to g do

11
L[i] = CalculateLikelihood(i,src) //Calculate likelihood 

value of each segment

12 end for

13
j := ||i : max(L[i])|| //Choose the estimation with highest 

likelihood 

14 return CseEstimate(j, src) 

15 end function

2.4 Compact Spread Estimator with sampling (CSES)

CSES algorithm is identically the same as CSE, where 

each contact (source, destination) is hashed to a position 

in the memory and that bit position is set to one. The 

difference from CSE and MCSE is that CSES uses 

probabilistic sampling with only one virtual vector while 

CSE examines all packets and MCSE uses multiple virtual 

vectors for estimation. It is presented in Alg. 4. Note that 

the estimation of Efficient Spreader Classification algorithm 

(ESC) [11] and CSES are identical since ln(1-p/s) - 

ln(1-p/m) ≃ (-p/s) - (-p/m) ≃p/s. (extended by its 

Taylor series, and s << m). 

Algorithm 4 : The CSE with sampling

1 Initialize bits M[0] to M[m-1] to 0.

2 p is the sampling ratio, in a range (0,1)

3 function CsesStore(src, dest)

4 h := H(src,dest). //h is in a range [0,N)

5 if h <= N⋅p then 

6 CseStore(src, dest)

7 end if

8 end function

9 function CsesEstimate(src)

10 return CseEstimate(src) / p

11 end function
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3. Sampling and Accuracy

The first advantage of sampling in CSES is that it 

increases the estimation range and reduces the encoding 

time, but using sampling technique is considered to 

reduce the accuracy of estimation [13]. In this section, 

however, we analyze the accuracy of the spread estimation 

with sampling, and we show that estimation with 

sampling increases accuracy for high spreaders. We 

mainly use the results in [10] for analysis CSE estimation 

equation with sampling where 
  


ln







ln


.

Using the same technique in [10] with sampling 

consideration, we derive the mean and variance of 

≃















 (1)

≃








 (2)

And the mean and variance of 

≃




















 (3)

≃










 (4)

To obtain , we only have to derive 
  since 

we already obtained  
 
 
. Let α = 

n/m; β = k/s then


≃




    




  
 (5)

Therefore,


 


≃ 




   




  
 (6)

From (2), (4) and (6), we obtain the variance of the 

estimation as following :

≃

   


    





   


  
 (7)

The the standard deviation of the ratio   is as 

follows :




(8)

The standard deviation embodies all the error caused 

by number of approximations. However, in [10], authors 

showed that the difference between analytical estimation 

and the result is minor.

From (8), we can examine the influence of sampling to 

the accuracy. We notice that α=n/m usually to be small 

and less than 2 to obtain the effective estimation. Thus, 










  is too small to have an impact on our 

result. So   get the minimize value when 



      is minimize.

Fig. 2. The plot measures the variance of , which 

mainly contribute the overall estimated variance, with different 

sampling rate and estimate value
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(a) CSE (s=256) (b) CSE (s=1024) (c)MCSE (d) CSES

Fig. 4. Estimation result with CSE (s = 256, 1024), MCSE (s=256,g=3) and CSES (s=256,p=0.25) with 1MB memory. Each 

point (in cross) stands for each spreader, and y = x line is the reference line. The closer the point is to y = x, the more 

accurate the estimation is. Note that both axes are in log scale

Fig. 2 shows the relationship among variance, sampling 

rate, and spreader size, when n = 8.4 million, m = 8 

million, s = 256, k has 4 different values 100; 250; 500; 

1000, and the sampling rate changes from 0 to 1. It shows 

that when we reduce the sampling rate, the accuracy 

slightly decreases for low spreaders. However, for high 

spreaders such as with k = 1000, the variance or the 

standard deviation reaches the minimum when p < 1. 

This means that sampling contributes to better estimation 

for large range, in this case is the range more than 500. 

The reason is that without sampling, the information 

stored in the memory is too much so that the error 

caused by sharing memory is significantly larger than the 

error caused by sampling. We will see more clearly this 

result in Section 4.

4. Experiments

In this section, we evaluate the performance of these 

algorithms (CSE, MCSE, CSES) in terms of processing 

time and estimation accuracy. We used 1 hour network 

traffic trace from CAIDA dataset which hold 8.4M distinct 

contacts (source IP, destination IP) with nearly 6M distinct 

spreaders. The range of spreader size is from 0 to 25,722 

and the average spread size per source is 13.3. See Fig. 3 

for spreader distribution of the dataset in a log scale. The 

total memory allocated for the measurement is 1MB, 

which means 1 contact is stored in 1 bit on average.

In the first experiment, we choose the vector size s = 

256, since its normal measurement range is from 0 to 

500. As shown in Fig. 4a, CSE shows its limitation, that 

is, the estimation cannot go beyond 1000. To overcome 

this limitation, we setup 3 more experiments in which the 

range will increase 4 times. In the first one, the vector 

size of CSE s is increased to 1,024. Second, we use 

MCSE with 3 segments. CSES with sampling rate of 0.25 

is the last experiment. You can find the estimation result 

in Fig. 4.

Fig. 3. Traffic distribution of CAIDA dataset. Each point 

represents the spreader to reach a certain size

As can be seen in Fig. 4a and Fig. 4b, when we 

increase s the size of virtual vector, the maximum spread 

estimation of CSE and the accuracy of high spreader 

increase. Also, high spreader uses more bits, so it causes 

more noise and reduces the accuracy of low spreaders. 

And by accessing larger vector size s then the decoding 

time will be increase. Fig. 4c illustrates MCSE with the 

number of segments g=3. Spreaders are distributed to 
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Range (A) CSE (s=256) (B) CSE (s=1024) (C)MCSE (D) CSES

1 8.9307 17.5627 16.966 14.2446

2-3 4.6239 8.8216 8.7167 7.1723

4-7 2.2008 3.977 4.1447 3.274

8-15 1.2774 2.1506 2.4086 1.8199

16-31 0.7527 1.2538 1.5486 1.0996

32-63 0.4181 0.7356 1.0148 0.6409

64-127 0.2299 0.4101 0.5842 0.3623

128-255 0.1364 0.2182 0.3094 0.2063

256-511 0.1066 0.1173 0.176 0.1324

512-1023 0.1305 0.0688 0.1174 0.0912

1024-2047 0.1947 0.0499 0.0713 0.07

2048-4095 0.5065 0.0635 0.0774 0.0966

Table 1. Estimation result with CSE (s = 256, 1024), MCSE (s=256, g=3) and CSES (s=256, p=0.25) with 1MB memory. The 

fraction of error () is calculated and put into a group according to size. Group i will have the spreaders which have the 
size in range from 2i-1 to 2i - 1 

Algorithm CSE CSE MCSE CSES

Cite [10] III.C [10] III.C [10] VI.D II.2.4

Parameters s=256 s=1024 s=256;g=3 s=256;p=0.25

Maximum Est. Range 1500 7000 12000 6000

Accuracy

Small range

(1-15)
= - - -

Large range

(256-4095)
= ++ + +

Processing 

Time

Encoding(Store) 2H + 2M 2H + 2M 3H + 2M 3H + 3M

Decoding(Estimate) 256*(H + M) 1024*(H + M) >>256*3*(H + M) 256*(H + M)

Table 2. The algorithms discussed in section when comparing with CSE(s=256). = dthe base for comparison, - means poor, -- 

means worse. Similarly, + means better than =, and ++ means better than +. H means hash calculation, and M means 

memory access

different segments according to its size. However, because 

the size for each segment is smaller than that of CSE, it 

comes with reducing the overall accuracy. As a result, 

the accuracy of MCSE is less than that of CSE (s=1024). 

Moreover, MCSE is significantly slower than CSE due to 

using maximum likelihood calculation [10]. In other 

experiment in Fig. 4d, CSES uses the sampling probability

p=0.25 instead of increasing the vector size s. Comparing 

to CSE with s=1024, in CSES, low spreaders are slightly 

better, while high spreaders are rather worse. However, 

because of the smaller vector size of CSES (s=256), the 

estimation time of CSES is faster than that of CSE 

(s=1024).

In order to look into the accuracy more clearly, we 

divide spreaders into groups based on its size. Group i 

will have the spreaders which have the size in range 

from 2i-1 to 2i-1. Afterwards, we do the descriptive 

statistics of   to show the accuracy of the estimation, 

the average values in each group are shown in Table 1. 

From this table, it can be seen that high spreaders (value 

from 512 to 2047) show better estimation in CSES than 

in CSE with the same vector size s = 256. Particularly, 

the accuracy is 1.3 times better in range 512-1023 and 

significantly increases to 5.24 times in range 2048-4095 

when the spreader reaches the upper bound in CSE.

In summary, CSES that adopts sampling for estimation 

is better compared to CSE or to MCSE in terms of 

accuracy, and is comparable to CSE in terms of speed, 

which is presented in Table 2. The result was determined 

according to Table 1 and the total processing time of 

main statements in 4 algorithms.
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5. Conclusion

In conclusion, CSE delivers better result when the 

spreader value is not high. With the traffic including high 

spreaders, however, increasing the vector size in CSE 

makes drawbacks in terms of estimation speed and error. 

MCSE tries to solve this problem by dividing into several 

segments and by using maximum likelihood for estimation. 

High spreaders are stored in all segments, and the estimation 

is calculated only from one segment. That makes a waste 

of memory, and the maximum likelihood requires a lot of 

time. Thus, CSES seems to be the best solution among 

them in terms of algorithm complexity, processing time, 

and accuracy when the available amount of memory is 

the same. It expands the range without increasing the 

estimation time, and improved accuracy in large range 

while accuracy in small range is compromised.
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