DOI QR코드

DOI QR Code

Performance Investigation of Visible Light Communication Using Super Bright White LED and Fresnel Lens

조명용 고출력 백색 LED와 프레넬 렌즈를 이용한 가시광 통신 성능연구

  • Kim, Min-Soo (Department of Electronics and Communications Engineering, Korea Maritime and Ocean University) ;
  • Sohn, Kyung-Rak (Department of Electronics and Communications Engineering, Korea Maritime and Ocean University)
  • Received : 2014.08.22
  • Accepted : 2014.12.26
  • Published : 2015.01.31

Abstract

White light-emitting diode (WLED) is growing interest in using both illumination and communications. This paper reports visible light communication (VLC) composed of a super bright white light-emitting diode, low cost commercial photo-diode and a Fresnel lens. LED driver is consisted of the power MOSFET and MOSFET driver that switches the LED on and off. The modulation bandwidth of the LED used was determined to be 8 MHz. However, it was possible to communicate up to 1 Mbps under illumination of 500 lx because of the weak signal power and a low spectral sensitivity of the SHF213 as a PIN photodiode. In order to enhance the system bandwidth, the LED light was focused on the PIN photodiode by use of the Fresnel lens. As a result of that, visible light link was operated up to modulation bandwidth of the LED. The signal to noise ratio can be improved by 40 dB using an optical concentration at the receiver.

백색 발광 다이오드는 조명과 통신이 동시에 가능하여 많은 주목을 받고 있다. 본 논문에서는 고출력 백색 LED와 저가형 광 다이오드, 프레넬 렌즈로 구성된 가시광 통신의 특성을 연구하였다. LED 구동회로는 고전력 MOSFET과 MOSFET 전용 구동칩을 사용하여 LED가 고속으로 온오프 되게 스위칭 하였다. 사용한 LED의 대역폭은 8 MHz로 측정되었다. 그러나 실내 조명환경을 고려한 500 lx 조도 하에서 통신 속도는 PIN 광 다이오드인 SFH213의 낮은 스펙트럼 감도와 낮은 신호전력으로 인해 1 Mbps까지만 가능하였다. 시스템 대역폭을 확장하기 위하여 프레넬 렌즈를 적용한 경우 수신단의 PIN 광 다이오드에 LED의 집광된 광 전력이 입사되도록 하여 LED의 대역폭까지 변조될 수 있었다. 프레넬 렌즈에 의한 신호대 잡음비는 40 dB 이상 향상되었다.

Keywords

References

  1. H. L. Minh, D. O'Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. Oh, "High-speed visible light communications using multiple-resonant equalization," IEEE Photonics Technology Letters, vol. 20, no. 14, pp. 1243-1245, 2008. https://doi.org/10.1109/LPT.2008.926030
  2. H. Shin, S. Park, K. Lee, D. Jung, Y. Lee, S. Song, and J. Park, "Investigation of visible light communication transceiver performance for short-range wireless data interfaces," Proceedings of the International Conference on Networking and Services, vol. 1, no. 1, pp. 213-216, 2011.
  3. L. Grobe, A. Paraskevopoulos, J Hilt, D. Schulz, F. Lassak, F. Hartlieb, C. Kottke, V. Jungnickel, and K-D. Langer, "High-speed visible light communication systems," IEEE Communications Magazine, vol. 51, no. 12, pp. 60-66, 2013. https://doi.org/10.1109/MCOM.2013.6685758
  4. K. D. Langer, J. Vucic, C. Kottle, L. Fernandez, K. Habel, A. Paraskevopoulos, M. Wendl, and Veselin Markov, "Exploring the potentials of optical-wireless communication using white LEDs," Proceedings of the International Conference on Transparent Optical Networks, Tu. D5.2, 2011.
  5. K. R. Sohn and M. S. Kim, "LED transceivers with beehive-shaped reflector for visible light communication," Journal of the Korean Society of Marine Engineering, vol. 38, no. 2, pp. 169-174, 2014. https://doi.org/10.5916/jkosme.2014.38.2.169
  6. K. R. Sohn, "A study on the short-range underwater communication using visible LEDs," Journal of the Korean Society of Marine Engineering, vol. 37, no. 4, pp. 425-430, 2013 (in Korean). https://doi.org/10.5916/jkosme.2013.37.4.425
  7. H. Brundage, Designing a wireless underwater optical communication system, Master of science in mechanical engineering, Master Dissertation, Mechanical Engineering, Massachusetts Institute of Technology (MIT), USA, 2010.
  8. S. M. Kim and S. M. Kim, "Wireless visible light communication technology using optical beam-forming," Journal of Optical Engineering, vol. 52, no. 10, pp. 1-6, 2013.
  9. K. R. Sohn, "Performance analysis of the visible light communication in seawater channel," Journal of the Korean Society of Marine Engineering, vol. 37, no. 5, pp. 527-532, 2013 (in Korean). https://doi.org/10.5916/jkosme.2013.37.5.527
  10. The Illuminating Engineering Society of North America, http://www.iesrms.org/, Accessed January 24, 2015.

Cited by

  1. A study on indoor visible light communication localization based on manchester code using walsh code vol.39, pp.9, 2015, https://doi.org/10.5916/jkosme.2015.39.9.959
  2. Radio map fingerprint algorithm based on a log-distance path loss model using WiFi and BLE vol.40, pp.1, 2016, https://doi.org/10.5916/jkosme.2016.40.1.62
  3. A study on 3-D indoor localization based on visible-light communication considering the inclination and azimuth of the receiver vol.40, pp.7, 2016, https://doi.org/10.5916/jkosme.2016.40.7.647
  4. 위치기반서비스 제공을 위한 휴대기기용 가시광통신 송수신기 구현 vol.42, pp.4, 2015, https://doi.org/10.7840/kics.2017.42.4.889
  5. 압출떡의 유통기한 연장을 위한 LED 조사의 Bacillus cereus 억제 효과 및 LED의 배열에 따른 빛의 조사 패턴 시뮬레이션 vol.62, pp.2, 2015, https://doi.org/10.3839/jabc.2019.025