DOI QR코드

DOI QR Code

복합항법센서를 갖는 수중운동체의 정밀 유도제어 정확도 분석

Effectiveness Analysis for the Precision Guided and Controled Underwater Vehicle system with Integrated Navigation System

  • 투고 : 2015.07.28
  • 심사 : 2015.09.02
  • 발행 : 2015.11.30

초록

유도제어 시스템 체계 개발의 초기단계에는 운용 효과도 도출 및 요구사항 적합성 검토를 통한 체계 개략사양도출을 위해 효과도 분석을 수행한다. 본 논문에서는 M&S (Modeling & Simulation)를 활용하여 항법센서 성능과 환경영향(조류의 세기와 방향)에 따른 유도제어 시스템의 목표점 도달 정확도에 대한 운용 효과도 분석을 수행한다. 효과도 분석을 위해 6자유도 운동모델, 환경모델, 유도항법제어모델을 구성한다. 항법센서는 관성항법센서(Inertia Navigation Sensor, INS)와 도플러 속도센서(Doppler Velocity Log, DVL)로 구성하고, 환경변수는 조류(current)의 세기와 방향이다. 수치 시뮬레이션 결과는 CEP(Circular Error Probability)와 분산을 이용한 확률분석으로 분석한다. 효과도 분석 결과는 항법센서의 가격을 고려한 비용 대비 효율 분석에 활용하여 가격 대비 높은 성능의 센서 사양을 도출할 수 있다. 본 논문에서는 높은 수준의 INS와 낮은 수준의 DVL을 이용하면 가격 대비 성능이 높은 복합항법센서를 구성한다는 것을 보여준다.

To obtain the system requirement specification in the beginning of the precision guidance and control system development, the effectiveness and reliability analysis for the system are necessary. The main purpose of this research is to obtain the system requirement specification by carrying out the effectiveness analysis using the modeling and simulation(M&S) scheme. M&S model is constructed using 6-DOF dynamic model, environment model, guidanc -navigation & control model. Assume that the navigation sensor is consist of inertial navigation sensor(INS) and doppler velocity log(DVL), and the speed and direction of current is environment parameter. The effectiveness analysis is carried out using circular error probability(CEP) and variance analyze scheme. Also, the effectiveness analysis is utilized for cost-performance analysis considering the cost of commercial INS and DVL sensor. This paper shows the high-level INS and the low-level DVL configure a high price-performance integrated navigation system.

키워드

참고문헌

  1. M. Anders, "A Homing Torpedo the Effect of the Tactical Situation and the Torpedo Parameters on the Torpedo Effectiveness," Master's theis, Naval Postgraduate school, Monterey, CA., 1977.
  2. S. P. Hong, Y. S. Han, "Performance Analysis of Navigation System for Guidance and Control of High Speed Underwater Vehicle System," Journal of the Korea Institute of Information and Communication Engineering, Veol. 17, No. 9, pp. 2227-2232, Sep. 2013. https://doi.org/10.6109/jkiice.2013.17.9.2227
  3. S. Y. Yang, M. H. Lee, "A Study on the Design of a Path Tracker and Depth Controller for Autonomous Underwater Vehicles," Journal of Control, Automation and Systems Engineering, Vol. 4, No. 1, pp. 45-55, Feb. 1998.
  4. T. I. Fossen., Guidance and Control of Ocean Vehicles, JOHN WILEY and SONS, Chicheste, England, 1994.
  5. J. Bjorn, G. Kenneth, S. Kristian, "dvl velocity aiding in the hugin 1000 integrated inertial navigation system," Modeling, Identification and Control, vol. 24, no. 4, pp. 223-235, 2004.
  6. T. I. Fossen, Guidance and Control of Vehicles - Chapter 10: Guidance Systems, Lecture Note, Norwegian University of Science and Technology, Trondheim, Norway, 2013.
  7. Data sheet for the HG1700 Inertial Measure ment Unit. Honeywell Inc. [Internet]. Available: https://aerospace.honeywell.com/.
  8. Data sheet for the NavQuest 600 - Doppler Velocity Log (DVL). LinkQuest Inc. [Internet]. Available: http://www.link-quest.com/html/models_nq.htm.
  9. A. R. Hwang, N. H. Ahn, S. I. Yoon, "Development of Attitude Heading Reference System based on MEMS for High Speed Autonomous Underwater Vehicle," Journal of the Korean Society of Marine Environment & Safety, Vol. 19, No. 6, Dec. 2013.