DOI QR코드

DOI QR Code

A Study on Mixed Noise Removal using Pixel Direction Factors and Weighted Value Mask

화소의 방향요소 및 가중치 마스크를 이용한 복합잡음 제거에 관한 연구

  • Kwon, Se-Ik (Dept. of Control and Instrumentation Eng., Pukyong National University) ;
  • Kim, Nam-Ho (Dept. of Control and Instrumentation Eng., Pukyong National University)
  • Received : 2015.07.14
  • Accepted : 2015.08.20
  • Published : 2015.11.30

Abstract

Recently, digital image processing is being applied in various areas of broadcasting, communication, computer graphic and medical science. But, degradation of images occurs in the process of digital image acquisition, processing and transmission. Therefore, in order to remove the mixed noise, this paper suggested the image restoration algorithm to process salt and pepper noise with weighted filters according to 4 direction pixel changes after judging the noise and to process AWGN with weighted filters which have individually different characteristics. Regarding the processed results by applying Boat images which were corrupted by salt and pepper noise(P=40%), suggested algorithm showed the improvement by 1.33[dB], 1.41[dB], 0.51[dB] respectively compared with the existing CWMF, AWMF, MMF.

최근, 디지털 영상처리는 방송, 통신, 컴퓨터 그래픽, 의학 분야 등에서 많이 응용되고 있다. 그러나 디지털 영상을 획득, 처리, 전송하는 과정에서 여러 외부 원인에 의해 영상의 열화가 발생된다. 따라서 본 논문에서는 복합잡음을 제거하기 위해 잡음 판단 후, salt and pepper 잡음은 네 방향의 화소 변화에 따른 가중치 필터로 처리하고, AWGN은 세개의 서로 다른 특성을 갖는 가중치 필터를 이용하여 처리하는 영상복원 필터 알고리즘을 제안하였다. 제안한 알고리즘은 salt and pepper 잡음(P=40)에 훼손된 Boat 영상을 적용하여 처리한 결과, 기존의 CWMF, AWMF, MMF에 비해 각각 1.33[dB], 1.41[dB], 0.51[dB] 개선었다.

Keywords

References

  1. K. N. Plataniotis and A. N. Venetsanopoulos, Eds., Colir Image Processing and Applications, Springer, Berlin, Germany, 2000.
  2. R. C. Gonzalez and R.E. woods, Eds., Digital Image Processing, Prentice Hall, 2007.
  3. A. S. A wad and H. Man, "High Performance Detection Filter for Impulse Noise Removal in Images," IEEE Electronic Letters, vol. 44,, no.3, pp. 192-194, Jan. 2008. https://doi.org/10.1049/el:20083401
  4. Y. Dong and S. Xu, "A New Directional Weighted Median Filter for Removal Random-Valued Impulse Noise", IEEE signal Processing Lett., vol 14, no.3, pp. 193-196, 2007. https://doi.org/10.1109/LSP.2006.884014
  5. Se-Ik Kwon and Nam-Ho Kim, "A Study on Modified Spatial Weighted Filter in Mixed Noise Environments", JKIICE, vol. 19, no. 1, pp. 237-243, Jan 2015.
  6. Jiahui Wang and Jingxing Hong, "a New Selt-Adaptive Weighted Filter for Removing Noise in Infrared images," IEEE Information Engineering and Computer Science, ICIECS International Conference, 2009.
  7. Xu Long and Nam-Ho Kim, "A Study on Directionally Weighted Filter Algorithm in Impulse Noise Environments", JKIICE, vol. 18, no.7, pp.1734-1739, 2014.
  8. Tadahiro Azetsu, Noriaki Suetake and Eiji Uchino, "Trilateral Filter Using Rank Order Information of Pixel Value for Mixed Gaussian and Impulsive Noise Removal", ISPACS, pp. 303-306, 2013.
  9. Tian Bai and Jieqing Tan, "Automatic detection and removal of high-density impulse noises", Image Processing, IET, vol. 9, Issue.2, pp.162-172, 2014.