DOI QR코드

DOI QR Code

Influence of Spatial Rainfall Distribution on Sediment Yield: An Experimental Study

강우 공간분포가 토사유출에 미치는 영향의 실험적 고찰

  • 신상훈 (고려대학교 방재과학기술연구소) ;
  • 김원 (고려대학교 건축사회환경공학과) ;
  • 이승엽 (고려대학교 건축사회환경공학과) ;
  • 백경록 (고려대학교 건축사회환경공학과)
  • Received : 2014.06.16
  • Accepted : 2014.12.23
  • Published : 2015.02.01

Abstract

We investigate the influence of spatial rainfall distribution on hillslope soil erosion through laboratory experiments. Two distinct spatial distributions are examined in this study, i.e., rainfall concentrated on central area versus upper area of hillslope. During the entire period of 8 hours for each experiment, direct runoff, subsurface flow, and sediment yield are measured at high temporal resolution (10 minutes). Compared to the case that rainfalll concentrated on central area, upstream concentrated rainfall results in lower peak of the sediment yield curve while greater cumulative sediment yield. Cumulative sediment yield increases over time linearly but its growth rate shows a sudden decrease at around 2 hours. This should be taken into consideration when temporal variability of sediment yield is estimated from observed total amount, and demonstrates the necessity of measuring sediment yield at high temporal resolution.

본 연구에서는 강우의 공간분포에 따른 토사유출의 특성을 토조 실험을 통해 탐구하였다. 강우의 공간분포는 강우 집중위치를 사면의 중앙부와 상류부로 각각 설정함으로 조정하였다. 토사유출의 시간적 변동성을 충분히 포착하기 위해 장시간(8 시간)의 실험시간 동안 높은 시간해상도(10 분)로 직접유출량, 지하수유출량, 토사유출량을 측정하였다. 그 결과, 강우를 토조의 상류부에 위치시킬수록 토사유출량곡선의 첨둣값은 감소하고 누적토사유출량은 증가하였다. 누적토사유출량은 시간에 따라 선형적으로 증가하였으나, 그 증가율이 2 시간을 기준으로 급격히 감소하였다. 이러한 점은 현재 총량 위주로 기록되어있는 토사유출 실측자료를 사용함에 있어 고려해야 할 사항이라고 결론지을 수 있다. 본 연구 결과는 또한, 향후의 토사유출량 실측은 높은 시간해상도로 측정될 필요가 있음을 시사한다.

Keywords

References

  1. De Roo, A. P. J., Wesseling, C. G. and Ritsema, C. J. (1996). "LISEM: A single-event physically based hydrological and soil erosion model for drainage basins. I: theory, input and output." Hydrol. process., Vol. 10, No. 8, pp. 1107-1117. https://doi.org/10.1002/(SICI)1099-1085(199608)10:8<1107::AID-HYP415>3.0.CO;2-4
  2. Dong, J., Zhang, K. and Guo, Z. (2012). "Runoff and soil erosion from highway construction spoil deposits: A rainfall simulation study." Transport. Res. D-Tr. E., Vol. 17, No. 1, pp. 8-14. https://doi.org/10.1016/j.trd.2011.09.007
  3. Durnford, D. and King, J. P. (1993). "Experimental study of processes and particle-size distributions of eroded soil." J. Irrig. Drain. E.-ASCE, Vol. 119, No. 2, pp. 383-398. https://doi.org/10.1061/(ASCE)0733-9437(1993)119:2(383)
  4. Favis-Mortlock, D. T., Boardman, J., Parsons, A. J. and Lascelles, B. (2000). "Emergence and erosion: A model for rill initiation and development." Hydrol. process., Vol. 14, pp. 2173-2205. https://doi.org/10.1002/1099-1085(20000815/30)14:11/12<2173::AID-HYP61>3.0.CO;2-6
  5. Johansen, M. P., Hakonson, T. E. and Breshears, D. D. (2001). "Post-fire runoff and erosion from rainfall simulation: contrasting forests with shrublands and grasslands." Hydrol. process., Vol. 15, No. 15, pp. 2953-2965. https://doi.org/10.1002/hyp.384
  6. Keller, T. and Arvidsson, J. (2004). "Technical solutions to reduce the risk of subsoil compaction: Effects of dual wheels, tandem wheels and tyre inflation pressure on stress propagation in soil." Soil Till. Res., Vol. 79, No. 2, pp. 2953-2965.
  7. Krajewski, W. F., Ciach, G. J. and Habib, E. (2003). "An analysis of small-scale rainfall variability in different climatic regimes." Hydrolog. Sci. J., Vol. 48, No. 2, pp. 151-162. https://doi.org/10.1623/hysj.48.2.151.44694
  8. Lee, G. J., Lee, J. T., Ryu, J. S., Oh, D. S. and Kim, J. S. (2012). "Effects of slope gradient and rainfall intensity on soil losses with rainfall simulator experiment." Korean J. of Soil Sci. Fert., Vol. 45, No. 6, pp. 877-881 (in Korean). https://doi.org/10.7745/KJSSF.2012.45.6.877
  9. Marston, R. A. and Dolan, L. S. (1999). "Effectiveness of sediment control structures relative to spatial patterns of upland soil loss in an arid watershed, Wyoming." Geomorphology, Vol. 31, No. 1, pp. 313-323. https://doi.org/10.1016/S0169-555X(99)00089-6
  10. Moreno-de las Heras, M., Nicolau, J. M., Merino-Martin, L. and Wilcox, B. P. (2010). "Plot-scale effects on runoff and erosion along a slope degradation gradient." Water Resour. Res., Vol. 46, W04503.
  11. National Research Council (1998). Global energy and water cycle experiment (GEWEX) continental-scale international project (GCIP): A review of progress and opportunities, National Academy Press, Washington, D.C.
  12. Nearing, M. A., Foster, G. R., Lane, L. J. and Finkner, S. C. (1989). "A process-based soil erosion model for USDA-Water Erosion Prediction Project technology." T. ASAE, Vol. 32, No. 5, pp. 1587-1593. https://doi.org/10.13031/2013.31195
  13. Nicolau, J. M. (2002). "Runoff generation and routing on artificial slopes in a Mediterranean-continental environment: The Teruel coalfield, Spain" Hydrol. process., Vol. 16, pp. 631-647. https://doi.org/10.1002/hyp.308
  14. Park, S. D., Lee, K. S., Shin, S. S., Chae, K. S., Kim, T. G. and Won, D. K. (2005). A basic study on the development of the soil erosion model in the mountain area (SEMMA). Publication No. 11-1660030-00035-01, National Institute for Disaster Prevention (in Korean).
  15. Park, S. D., Shin, S. S., Kim, S. J. and Choi, B. (2013). "Effects of surface compaction treatment on soil loss from disturbed bare slopes under simulated rainfalls." J. Korea Water Resour. Assoc, Vol. 46, No. 5, pp. 559-568 (in Korean). https://doi.org/10.3741/JKWRA.2013.46.5.559
  16. Renard, K. G., Foster, G. R., Weesies, G. A., McCool, D. K. and Yoder, D. C. (1997). Predicting soil erosion by water: a guide to conservation planning with the revised universal soil loss equation (RUSLE). Agriculture Handbook 703.
  17. Renschler, C. S. (2003). "Designing geo-spatial interfaces to scale process models: The GeoWEPP approach." Hydrol. process., Vol. 17, No. 5, pp. 1005-1017. https://doi.org/10.1002/hyp.1177
  18. Romkens, M. J. M., Helming, K. and Prasad, S. N. (2002). "Soil erosion under different rainfall intensities, surface roughness, and soil water regimes." Catena, Vol. 46, No. 2, pp. 103-123. https://doi.org/10.1016/S0341-8162(01)00161-8
  19. Shin, M., Won, C., Choi, Y., Seo, J., Lee, J., Lim, K. and Choi, J. (2009). "Simulation of field soil loss by artificial rainfall simulator-by varying rainfall intensity, surface condition and slope-." J. Korean Soc. Water Qual., Vol. 25, No. 5, pp. 785-791 (in Korean).
  20. van de Giesen, N. C., Stomph, T. J. and de Ridder, N. (2000). "Scale effects of Hortonian overland and rainfall-runoff dynamics in a West African catena landscape." Hydrol. process., Vol. 14, pp. 165-175. https://doi.org/10.1002/(SICI)1099-1085(200001)14:1<165::AID-HYP920>3.0.CO;2-1
  21. Williams, J. R. (1975). "Sediment-yield prediction with universal equation using runoff energy factor." Present and Prospective Technology for Predicting Sediment Yields and Sources: Proc. of the Sediment-Yield Workshop, Washington, D.C., Vol. 40, pp. 244-252.
  22. Wischmeier, W. H. and Smith, D. D. (1965). Predicting rainfall-erosion losses from cropland east of the Rocky Mountains: Guide for selection of practices for soil and water conservation. Agricultural Research Service, Vol. 282, U.S. Department of Agriculture.
  23. Zech, W. C., Halverson, J. L. and Clement, T. P. (2008). "Intermediatescale experiments to evaluate silt fence designs to control sediment discharge from highway construction sites." J. of Hydrol. Eng., Vol. 13, No. 6, pp. 497-504. https://doi.org/10.1061/(ASCE)1084-0699(2008)13:6(497)