DOI QR코드

DOI QR Code

Shear Behavior of Web Element in PSC Beams Incorporated with Arch Action

아치작용을 고려한 PSC보의 복부전단거동

  • 정제평 (호남대학교 토목환경공학과) ;
  • 신근옥 (전남대학교 토목공학과) ;
  • 김우 (호남대학교 토목환경공학과)
  • Received : 2014.08.04
  • Accepted : 2014.12.14
  • Published : 2015.02.01

Abstract

It is well known that axial tension decreases the shear strength of RC & PSC beams without transverse reinforcement, and axial compression increases the shear resistance. What is perhaps not very well understood is how much the shear resistance capacity is influenced by axial load. RC beams without shear reinforcement subjected to large axial compression and shear may fail in a very brittle manner at the instance of first diagonal cracking. As a result, a conservative approach should be used for such members. According to the ACI Code, the shear strength in web is calculated by effect of axial force and the vertical force in the stirrups calculated by $45^{\circ}$ truss model. This study was performed to examine the effect of axial force in reinforced concrete beams by nonlinear FEM program (ATENA-2D).

횡방향 철근이 없는 RC와 PSC 보에서 축방향 인장력은 전단강도를 감소시키고, 축압축력은 전단저항력을 증가시킨다는 것은 잘 알려진 사실이다. 그러나 축력이 전단에 얼마만큼 영향을 미치고, 전단 저항성능에 어떠한 영향을 주는가에 대한 이해가 부족한 현실이다. 횡방향 보강철근이 없는 부재가 큰 압축력과 전단력을 받으면 첫 번째 경사균열이 일어나면서 그대로 취성파괴가 발생하기 때문에 상당히 보수적 관점을 유지하고 있다. 이런 배경에서 ACI의 복부전단강도는 경사균열각 ${\theta}$$45^{\circ}$로 하는 트러스모델을 사용하여 스터럽의 수직력과 축력효과를 반영하고 있다. 본 연구는 파괴역학을 근간으로 한 비선형 유한요소해석 프로그램 ATENA-2D (Cervenka, 2000)를 사용하여 철근콘크리트 보의 축력작용에 따른 검증을 수행한 것이다.

Keywords

References

  1. ACI Committee 318 (2011). Building code requirement for reinforced concrete and commentary (318R-01), ACI, Detroit, M.I., 391., pp. 120-150.
  2. ASCE-ACI Committee 426 (1973). "The shear strength of reinforced concrete members." Journal of Structural Division, ASCE, Vol. 99, No. 6, pp. 1091-1187.
  3. ASCE-ACI Committee 445 (1998). "Recent approaches to shear design of structural concrete." Journal of Structural Engineering, ASCE, Vol. 124, No. 5, pp. 1375-1417. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:12(1375)
  4. Cervenka, V. (2000). ATENA program documentation, Cervenka Consulting, pp. 10-120.
  5. Comite Euro International Du Beton (CEB/FIP) (2010). "CEB-FIP model code for concrete structures." Bulletin d'Information, No. 124/125, pp. 437.
  6. Commission of the European Communities (1991). Eurocode No. 2: Design of Concrete Structures, Part 1: General rules and Rules for Buildings, ENV 1992-1-1, pp. 253.
  7. Gupta, P. R., and Collins, M. P. (2001). "Evaluation of shear design procedures for reinforced concrete members under axial compression." ACI Structural Journal, Vol. 98, No. 4, pp. 537-547.
  8. Hsu, T. T. C. (1993). Unified theory of reinforced concrete, CRC Press, Boca Raton, Fla, pp. 193-256.
  9. Jeong, J.-P. and Kim, W. (2014). "Shear resistant mechanism into base components : Beam Action and Arch Action in Shear-Critical RC Members." International Journal of Concrete Structures and Materials, Vol. 8, No. 1, pp. 1-14. https://doi.org/10.1007/s40069-013-0064-x
  10. Kim, W. and Jeong, J.-P. (2011a). "Decoupling of arch action in shear-critical reinforced concrete beam." ACI Structural Journal, Vol. 108, No. 4, pp. 395-404.
  11. Kim, W. and Jeong, J.-P. (2011b). "Non-bernoulli-compatibility truss model for RC member subjected to combined action of flexure and shear, Part I-Its derivation of theoretical concept." KSCE Journal of Civil Engineering, Vol. 15, No. 1, pp. 101-108. https://doi.org/10.1007/s12205-011-0662-6
  12. Kim, W. and Jeong, J.-P. (2011c). "Non-bernoulli-compatibility truss model for RC member subjected to combined action of flexure and shear, Part II-Its practical solution." KSCE Journal of Civil Engineering, Vol. 15, No. 1, pp. 109-117. https://doi.org/10.1007/s12205-011-0663-5
  13. Kotsovos, G. M. and Kotsovos, M. D. (2013). "Effect of axial compression on shear capacity of linear RC members without transverse reinforcement." Magagine of Concrete Research, Vol. 65, No. 21, pp. 1360-1375. https://doi.org/10.1680/macr.13.00192
  14. Lorentsen, M. (1965). "Theory for the combined action of bending moment and shear in reinforced concrete and prestressed concrete beams." ACI Journal, Vol. 62, No. 4, pp. 403-419.
  15. Marti, P. (1985). "Basic tools of reinforced concrete beam design." ACI Journal, Vol. 82, No. 1, pp. 46-56.
  16. Niwa, J. (1997). "Lattice model with concrete tension members for shear resisting mechanism of concrete beams." CEB Bulletin d'Information, No. 237, pp. 159-170.
  17. Park, R. and Paulay, T. (1975). Reinforced concrete structures, Wiley, N. Y., pp. 201-256.
  18. Ramirez, J. A. and Breen, J. A. (1991). "Evaluation of a modified truss model approach for beams in shear." ACI Structural Journal, Vol. 88, No. 5, pp. 562-571.
  19. Vecchio, F. J. and Collins, M. P. (1986). "The modified compression field theory for reinforced concrete elements subjected to shear." ACI Structural Journal, Vol. 83, No. 2, pp. 219-231.
  20. Xie, L., Bentz, E. C. and Collins, M. P. (2011). "Influence of axial stress on shear response of reinforced concrete elements." ACI Structural Journal, Vol. 108, No. 6, pp. 745-754.