DOI QR코드

DOI QR Code

Experimental and Analytical Study on the Fracture Strength of RC Beams Strengthened for Flexure with GFRP Involving the Debonding of FRP Reinforcement

보강재 박리에 의한 GFRP 휨 보강 RC보의 파괴강도에 관한 실험 및 해석적 연구

  • Received : 2014.09.15
  • Accepted : 2014.12.23
  • Published : 2015.02.01

Abstract

Reinforced concrete (RC) structures strengthened with FRP materials would cause the loss of the reinforcing effect and the sudden failure of the structure due to the debonding of FRP. The debonding fracture strength of the FRP-strengthened concrete structures has been evaluated using the same strength method as applied in RC structures based on the debonding strain of FRP. However, the values of the FRP debonding strain are different according to design guidelines. Thus, this study carried out an experimental study on RC beams reinforced with GFRP and evaluated the debonding fracture strength of the strengthened beams from each design guideline. Since the debonding failure occurs prior to reaching the ultimate value of concrete compressive strain, this study accounts for the nonlinear stress distribution of concrete. This study also proposed equations that can evaluate the debonding strength of GFRP-strengthened RC beams with similar safety to the ultimate flexural strength of non-strengthened RC beams.

섬유강화폴리머(FRP) 보강 철근콘크리트(RC) 구조물은 보강효과가 충분히 발휘되기 전에 보강재의 탈락으로 보강효과의 상실 및 구조부재의 갑작스러운 파괴를 야기할 수 있다. 현재 FRP 보강보의 박리파괴강도는 설계지침에서 제시된 보강재의 탈락변형률에 근거하여 무보강 RC보와 동일한 강도해석법을 적용하고 있다. 그러나, 각 설계지침에 따라 FRP 보강재의 탈락변형률이 달리 제시되고 있다. 따라서, 본 연구에서는 유리섬유강화폴리머(GFRP)로 보강된 RC보의 박리파괴 휨 강도 실험을 통해 각 설계기준에서 제시된 보강재 탈락변형률에 의한 박리파괴강도를 비교 평가하였다. 또한, 보강재 탈락에 의한 파괴는 콘크리트의 압축변형률이 극한변형률에 도달하기 전에 발생하므로, 본 연구에서는 재료의 비선형 응력분포를 고려한 해석을 수행하였다. 그리고, GFRP 보강 RC보의 설계 박리파괴강도 산정 시 강도설계법에 의해 산정된 무보강 RC보의 극한휨강도와 유사한 안전율을 나타낼 수 있는 강도식을 제시하였다.

Keywords

References

  1. Al-Zaid, R. Z., Shuraim, A. B., El-Sayed A. K., Al-Negheimish A. I. and Al-Huzaimy, A. M. (2010). "Flexural strengthening of shallow reinforced concrete beams using CFRP plates." 2nd International Structural Specialty Conference, CSCE, Winnipeq, Canada.
  2. American Concrete Institute (ACI) Committee 318 (2008). Building code requirements for structural concrete and commentary, ACI 318-08, Farmington Hills, MI.
  3. American Concrete Institute (ACI) Committee 440 (2008). Guide for the design and construction of externally bonded FRP systems for strengthening concrete structures, ACI 440.2R-08, Farmington Hills, MI.
  4. Canadian Standards Association (CSA) (2002). Design of buildings with fibre reinforced polymers, CSA-S806-02, Canada.
  5. Cheung, J. H., Kim, S. D., Cho, B. S. and Lee, W. C. (2003). "Nominal moment of RC beams strengthened with carbon fiber sheets - I. Experimental Investigation." Journal of the Korean Society of Civil Engineers, Vol. 23, No. 5A, pp. 921-929 (in Korean).
  6. Cheung, J. H., Kim, S. D., Cho, B. S. and Lee, W. C. (2003). "Nominal moment of RC beams strengthened with carbon fiber sheets - II. Analytical Investigation." Journal of the Korean Society of Civil Engineers, Vol. 23, No. 5A, pp. 931-938 (in Korean).
  7. Desayi, P. and Krishnan, S. (1964). "Equation for the stress-strain curve of concrete." ACI Journal Proceedings, Vol. 61, No. 3, pp. 345-350.
  8. El-Mihilmy, M. T. and Redesco, J. W. (2000). "Analysis of reinforced concrete beams strengthened with FRP laminates." Journal of Structural Engineering, Vol. 126, No. 6, pp. 684-691. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:6(684)
  9. European Committee for Standardization (CEB) (2004). Eurocode 2: Design of concrete structures - Part 1-1: General rules and rules for buildings, EN 1992-1-1:2004, Brussels, Belgium.
  10. Hong, G. H. and Shin, Y. S. (2003). "Structural performance evaluation of reinforced concrete beams with externally bonded FRP sheets." Journal of the Korea Concrete Institute, Vol. 15, No. 1, pp. 78-86 (in Korean). https://doi.org/10.4334/JKCI.2003.15.1.078
  11. International Federation for Structural Concrete (FIB) (2001). Externally bonded FRP reinforcement for RC structures, fib Bulletin 14, Lausanne, Switzerland.
  12. International Federation for Structural Concrete (FIB) (2006). Retrofitting of concrete structures by externally bonded FRPs, fib Bulletin 35, Lausanne, Switzerland.
  13. Korea Concrete Institute (KCI) (2012). Concrete design code and commentary (in Korean).
  14. Meier, U. l. and Kaiser, H. (1991). "Strengthening of structures with CFRP laminates." Advanced Composite Materials in Civil Engineering Structures, ASCE Specialty Conference, pp. 224-232.
  15. Park, T. and Bu, J. (2002). "Flexural analysis of RC beams strengthened with soffit and web fiber sheets." Journal of the Korean Society of Civil Engineers, Vol. 22, No. 5A, pp. 1045-1057 (in Korean).
  16. Ritchie, P., Thomas, D., Lu, L. and Conneley, G. (1991). "External reinforcement of concrete beams using fiber reinforced plastics." ACI Structural Journal, Vol. 88, No. 4, pp. 490-500.
  17. Rosenboom, O. and Rizkalla, S. (2008). "Experimental study of intermediate crack debonding in fiber-reinforced polymer strengthened beams." ACI Structural Journal, Vol. 105, No. 1, pp. 41-50.
  18. Sharif, A., Al-Sulaimni, G., Basunbul, I., Baluch, M. and Ghaleb, B. (1994). "Strengthening of initially loaded reinforced concrete beams using FRP plates." ACI Structural Journal, Vol. 91, No. 2, pp. 160-168.
  19. Teng, J. G. and Yao, J. (2005). "Plate end debonding failures of FRPor steel- plated RC beams: A new strength model." Proceedings of the International Symposium on Bond Behavior of FRP in Structures(BBFS 2005), Hong Kong, pp. 283-290.
  20. Ziraba, Y. N., Bsluch, M. H., Sharif, A. M., Azad, A. K. and Al-Sulaimani, G. J. (1994). "Guidelines toward the design of concrete beams with external plates." ACI Structural Journal, Vol. 91, No. 6. pp. 639-646.