DOI QR코드

DOI QR Code

Regeneration of Intervertebral Disc Using Gellan Sponge Loading PLGA Microspheres

PLGA 미립구가 함유된 젤란검 스폰지를 이용한 추간판 조직 재생

  • Park, Hyunwoo (Department of Orthopedic Surgery, Dankook University Hospital) ;
  • Kim, Hye Yun (Department of BIN Fusion Technology, Department of Polymer-Nano Science & Technology and Polymer BIN Research Center, Chonbuk National University) ;
  • Kwon, Soon Yong (Department of Orthopedic Surgery, Yeouido St.Mary's Hospital, Catholic University of Korea) ;
  • Khang, Gilson (Department of BIN Fusion Technology, Department of Polymer-Nano Science & Technology and Polymer BIN Research Center, Chonbuk National University) ;
  • Kim, Yong-Sik (Department of Orthopedic Surgery, Seoul St.Mary's Hospital, Catholic University of Korea)
  • 박현우 (단국대학교 의과대학 정형외과) ;
  • 김혜윤 (전북대학교 BIN융합공학과.고분자나노공학과) ;
  • 권순용 (가톨릭의과대학교 여의도성모병원 정형외과) ;
  • 강길선 (전북대학교 BIN융합공학과.고분자나노공학과) ;
  • 김용식 (가톨릭의과대학교 서울성모병원 정형외과)
  • Received : 2014.07.01
  • Accepted : 2014.07.31
  • Published : 2015.01.25

Abstract

Gellan gum as a natural polysaccharide has good heat resistance, acid resistance and enzymes resistance. However, one of the drawbacks of gellan gum might be the lower mechanical strength. In this work, gellan gum scaffolds were mixed with poly(lactic-co-glycolic acid) (PLGA) microsphere in order to improve mechanical properties. The gellan gum scaffolds with various contents of PLGA microsphere were prepared for the regeneration of disc tissues. To evaluate the mechanical strength of hybrid structure of gellan gum and PLGA microsphere, compression strength of the fabricated scaffolds was measured. MTT analysis, SEM observation, histological evaluation and RT-PCR were performed to confirm the effect on the cell growth and extracellular matrix secretion. As a result, it showed the best cell proliferation and extracellular matrix secretion in gellan gum sponge containing 50% PLGA microspheres. In conclusion, this study confirmed that the hybrid structure of gellan gum and PLGA microspheres was found suitable in regeneration of the intervertebral disc.

젤란검은 천연재료로써 내열성, 내산성, 내효소성 등이 우수하여 용도가 광범위하나 기계적 강도가 약하다는 단점이 있다. 따라서 본 연구에서는 기계적 성질을 개선하고자 젤란검 스폰지에 PLGA 미립구를 혼합하였다. PLGA 미립구의 다양한 함량의 젤란검 스폰지는 기계적 강도를 알아보고자 압축강도를 측정하였고, MTT 분석, SEM, 생체활성조직학적 평가 및 RT-PCR을 통해 세포의 증식 및 ECM 분비 효과를 확인하였다. 그 결과, PLGA 미립구가 50% 함유된 젤란검 지지체에서 섬유륜세포의 꾸준한 증식과 세포외기질 분비가 우수한 것을 확인할 수 있었다. 이 연구를 통하여 PLGA 미립구가 함유된 젤란검이 디스크조직 재건을 위한 지지체로서 적합함을 알 수 있었으며, 젤란검의 다양한 응용가능성을 제시하였다.

Keywords

References

  1. J. Wollbold, R. Huber, D. Pohlers, D. Koczan, R. Guthke, and R. W. Kinne, and U. Gausmann, Bmc. Syst. Biol., 3, 77 (2009). https://doi.org/10.1186/1752-0509-3-77
  2. A. T. Reza and S. B. Nicoll, Acta Biomater., 6, 179 (2010). https://doi.org/10.1016/j.actbio.2009.06.004
  3. A. K. Williamson, A. C. Chen, and R. L. Sah, J. Orthopaed. Res., 19, 1113 (2001). https://doi.org/10.1016/S0736-0266(01)00052-3
  4. A. J. Hayes, M. D. Isaacs, C. Hughes, B. Caterson, and J. R. Ralphs, Eur. Cells Mater., 22, 226 (2011).
  5. N. T. Jacobs, L. J. Smith, W. M. Han, J. Morelli, J. H. Yoder, and D. M. Elliott, J. Mech. Behav. Biomed., 4, 1611 (2011). https://doi.org/10.1016/j.jmbbm.2011.03.016
  6. D. Wang, N. V. Vo, G. A. Sowa, R. A. Hartman, K. Ngo, S. R. Choe, W. T. Witt, Q. Dong, J. Y. Lee, L. J. Niedernhofer, and J. D. Kang, Spine J., 11, 139 (2011). https://doi.org/10.1016/j.spinee.2010.11.017
  7. A. C. Borges, C. Eyholzer, F. Duc, P. E. Bourban, P. Tingaut, T. Zimmermann, D. P. Pioletti, and J. A. Manson, Acta Biomater., 7, 3412 (2011). https://doi.org/10.1016/j.actbio.2011.05.029
  8. Y. H. Cheng, S. H. Yang, W. Y. Su, Y. C. Chen, K. C. Yang, W. T. Cheng, S. C. Wu, and F. H. Lin, Tissue Eng., Part A, 16, 695 (2010). https://doi.org/10.1089/ten.tea.2009.0229
  9. H. E. Gruber, K. Leslie, J. Ingram, H. J. Norton, and E. N. Hanley, Spine J., 4, 44 (2004). https://doi.org/10.1016/S1529-9430(03)00425-X
  10. M. Yeganegi, R. A. Kandel, and J. P. Santerre, Acta Biomater., 6, 3847 (2010). https://doi.org/10.1016/j.actbio.2010.05.003
  11. D. R. Pereira, J. Silva-Correia, S. G. Caridade, J. T. Oliveira, R. A. Sousa, A. J. Salgado, J. M. Oliveira, J. F. Mano, N. Sousa, and R. L. Reis, Tissue Eng., Part C, 17, 961 (2011). https://doi.org/10.1089/ten.tec.2011.0115
  12. G. Khang, S. Lee, H. Kim, J. Silva-Correia, M. Gomes, C. Viegas, I. Dias, J. Oliveira, and R. Reis, J. Tissue Eng. Regen. Med., DOI: 10.1002/term.1625 (2012).
  13. J. Silva-Correia, V. Miranda-Goncalves, A. J. Salgado, N. Sousa, J. M. Oliveira, R. M. Reis, and R. L. Reis, Tissue Eng., Part A, 18, 1203 (2012). https://doi.org/10.1089/ten.tea.2011.0632
  14. P. Matricardi, C. Cencetti, R. Ria, F. Alhaique, and T. Coviello, Molecules, 14, 3376 (2009). https://doi.org/10.3390/molecules14093376
  15. J. T. Oliveira, T. C. Santos, L. Martins, M. A. Silva, A. P. Marques, A. G. Castro, N. M. Neves, and R. L. Reis, J. Tissue Eng. Regen. Med., 3, 493 (2009). https://doi.org/10.1002/term.184
  16. J. T. Oliveira, T. C. Santos, L. Martins, R. Picciochi, A. P. Marques, A. G. Castro, N. M. Neves, J. F. Mano, and R. L. Reis, Tissue Eng., Part A, 16, 343 (2010). https://doi.org/10.1089/ten.tea.2009.0117
  17. M. Ahuja, S. Singh, and A. Kumar, Inter. J. Biol. Macromol., 53, 114 (2013). https://doi.org/10.1016/j.ijbiomac.2012.10.033
  18. Q. Chen, Y. Zheng, Y. Li, Y. Zeng, J. Kuang, S. Hou, and X. Li, Drug Deliv., 19, 194 (2012). https://doi.org/10.3109/10717544.2012.690003
  19. J. Silva-Correia, J. M. Oliveira, S. G. Caridade, J. T. Oliveira, R. A. Sousa, J. F. Mano, and R. L. Reis, J. Tissue Eng. Regen. Med., 5, e97 (2011). https://doi.org/10.1002/term.363
  20. A. C. Jones, C. H. Arns, D. W. Hutmacher, B. K. Milthorpe, A. P. Sheppard, and M. A. Knackstedt, Biomaterials, 30, 1440 (2009). https://doi.org/10.1016/j.biomaterials.2008.10.056
  21. F. R. Rose and R. O. Oreffo, Biochem. Biophys. Res. Comm., 292, 1 (2002). https://doi.org/10.1006/bbrc.2002.6519
  22. H. Kim, H. Kim, H. Yoo, J. Song, S. Jeong, Y. Kim, D. Lee, and G. Khang, Macromol. Res., 20, 1044 (2012). https://doi.org/10.1007/s13233-012-0148-5
  23. B. K. Gu, M. S. Kim, S. J. Park, and C. H. Kim, Inter. J. Tissue Regen., 2, 83 (2011).
  24. Y. Woo and K. Na, Inter. J. Tissue Regen., 3, 63 (2012).
  25. J. N. Guanzon, J. R. Berg, M. Mizuno, S. Lee, Y. Jo, J. Yeo, B. Nam, B. Kim, Y. Koh, T. Takebe, and J. Lee, Inter. J. Tissue Regen., 4, 7 (2013).
  26. H. L. Kim, M. Hong, S. J. Kim, H. Jo, I. S. Yoo, D. Lee, and G. Khang, Polymer(Korea), 35, 378 (2011).
  27. K. E. Kuettner, Clin. Biochem., 25, 155 (1992). https://doi.org/10.1016/0009-9120(92)90224-G
  28. M. Sha'ban, S. J. Yoon, Y. K. Ko, H. J. Ha, S. H. Kim, J. W. So, R. B. Idrus, and G. Khang, J. Biomater. Sci., Polym. Ed., 19, 1219 (2008). https://doi.org/10.1163/156856208785540163
  29. Y. X. Huang, J. Ren, C. Chen, T. B. Ren, and X. Y. Zhou, J. Biomater. Appl., 22, 409 (2008).
  30. H. Lu, T. Hoshiba, N. Kawazoe, and G. Chen, Biomaterials, 32, 2489 (2011). https://doi.org/10.1016/j.biomaterials.2010.12.016
  31. H. Liu, F. Yao, Y. Zhou, K. Yao, D. Mei, L. Cui, and Y. Cao, J. Biomater. Appl., 19, 303 (2005). https://doi.org/10.1177/0885328205048590