DOI QR코드

DOI QR Code

Preparation and Physical Properties of Polypropylene/Cellulose Composites

폴리프로필렌/셀룰로오스 복합재의 제조 및 물성

  • Jang, Song Yi (Department of Chemical Engineering, Chungbuk National University) ;
  • Kim, Dae Su (Department of Chemical Engineering, Chungbuk National University)
  • 장송이 (충북대학교 공과대학 화학공학과) ;
  • 김대수 (충북대학교 공과대학 화학공학과)
  • Received : 2014.06.24
  • Accepted : 2014.08.06
  • Published : 2015.01.25

Abstract

Cellulose has attracted much attention as potential reinforcements in green composites. In this study, polypropylene (PP)/cellulose composites were prepared by melt-blending followed by compression molding. To improve interfacial bonding between PP and cellulose, maleic anhydride-grafted polypropylene (MAPP) was used. Mechanical properties of the PP/cellulose composites were investigated by UTM and izod impact tester. Thermal properties of the PP/cellulose composites were investigated by TGA and DSC. SEM images for the fracture surfaces of the composites showed that the MAPP was effective in improving PP/cellulose interfacial bonding. Tensile strength and modulus of the composite were maxima when MAPP content, based on cellulose content, was 3 wt%. With increasing cellulose content, the impact strength of the composites decreased but the tensile strength and modulus increased.

셀룰로오스는 그린 복합재의 보강재로서 많은 관심을 받고 있다. 본 연구에서는 용융혼합 및 압축성형에 의해 폴리프로필렌/셀룰로오스 복합재를 제조하였다. 폴리프로필렌과 셀룰로오스의 계면결합을 향상시키기 위해 말레산 무수물로 개질된 폴리프로필렌(MAPP)을 사용하였다. 폴리프로필렌/셀룰로오스 복합재의 기계적 특성을 알아보기 위해 만능재료시험기와 아이조드 충격시험기를 사용하였고 열적 특성을 조사하기 위해 TGA와 DSC를 사용하였다. 전자현미경(SEM)을 이용한 복합재의 파단면 관찰 결과 MAPP가 폴리프로필렌/셀룰로오스 계면결합 향상에 효과적인 것으로 나타났다. 셀룰로오스 함량 대비 MAPP의 함량이 3 wt%일 때 복합재의 인장강도와 인장탄성률이 최고치를 나타냈다. 셀룰로오스의 함량이 증가할수록 복합재의 충격강도는 감소하는 반면 인장강도와 인장탄성률은 증가하였다.

Keywords

References

  1. S. H. An and D. S. Kim, Polymer(Korea), 38, 129 (2013).
  2. D. Bondeson, I. Kvien, and K. Oksman, ACS Symposium Series, 938, 10 (2006).
  3. L. Petersson, I. Kvien, and K. Oksman, Comp. Sci. Technol., 67, 2535 (2007). https://doi.org/10.1016/j.compscitech.2006.12.012
  4. D. M. Panaitescu, P. V. Notingher, M. Ghiurea, F. Ciuprina, H. Paven, M. Iorga, and D. Florea, J. Optoelectron. Adv. Mater., 9, 2526 (2007).
  5. S. H. An and D. S. Kim, Polymer(Korea), 37, 204 (2012).
  6. D. M. Panaitescu, D. Donescu, C. Bercu, D. M. Vuluga, M. Iorga, and M. Ghiurea, Polym. Eng. Sci., 47, 1228 (2007). https://doi.org/10.1002/pen.20803
  7. J. M. Felix and G. Paul, J. Appl. Polym. Sci., 42, 609 (1991). https://doi.org/10.1002/app.1991.070420307
  8. W. Qiu, F. Zhang, T. Endo, and T. Hirotsu, J. Appl. Polym. Sci., 87, 337 (2003). https://doi.org/10.1002/app.11446
  9. W. Qiu, T. Endo, and T. Hirotsu, J. Appl. Polym. Sci., 94, 1326 (2004). https://doi.org/10.1002/app.21123
  10. V. N. Hristov, St. Vasileva, M. Krumova, R. Lach, and G. H. Michler, Polym. Compos., 25, 521 (2004). https://doi.org/10.1002/pc.20045
  11. Y. W. Seo and D. S. Kim, Polymer(Korea), 38, 327 (2014).
  12. K. Joseph, S. Thomas, and C. Pavithran, Polymer, 37, 5139 (1996). https://doi.org/10.1016/0032-3861(96)00144-9
  13. S. M. B. Nachtigall, G. S. Cerveira, and S. M. L Rosa, Polym. Test., 26, 619 (2007). https://doi.org/10.1016/j.polymertesting.2007.03.007
  14. M. Pracella, M. M. Haque, and V. Alvarez, Macromol. Mater. Eng., 295, 949 (2010). https://doi.org/10.1002/mame.201000175
  15. T. Y. Wang, R. C. C. Tsiang, J. S. Liou, J. Wu, and H. C. Sheu, J. Appl. Polym. Sci., 79, 1838 (2001). https://doi.org/10.1002/1097-4628(20010307)79:10<1838::AID-APP120>3.0.CO;2-H
  16. S. Morgan, Z. Ye, R. Subramanian, and S. Zhu, Polym. Eng. Sci., 50, 911 (2010). https://doi.org/10.1002/pen.21609
  17. H. Nakatani, K. Hashimoto, K. Miyazaki, and M. Terano, J. Appl. Polym. Sci., 113, 2022 (2009). https://doi.org/10.1002/app.30298
  18. W. Zhang, X. He, C. Li, X. Zhang, C. Lu, and Y. Deng, Cellulose, 21, 485 (2014). https://doi.org/10.1007/s10570-013-0141-y
  19. S. Spoljaric, A. Genovese, and R. A. Shanks, Compos. Part AAppl. Sci. Manuf., 40, 791 (2009). https://doi.org/10.1016/j.compositesa.2009.03.011
  20. S. V. Eynde, V. Mathot, M. H. J. Koch, and H. Reynaers, Polymer, 41, 3437 (2000). https://doi.org/10.1016/S0032-3861(99)00501-7
  21. A. Kiziltas, D. J. Gardner, Y. Han, and H. S. Yang, Thermochim. Acta, 519, 38 (2011). https://doi.org/10.1016/j.tca.2011.02.026

Cited by

  1. Physical properties of polypropylene composites with hydrophobized cellulose powder by soybean oil vol.133, pp.6, 2015, https://doi.org/10.1002/app.42929
  2. Recent development in thermoplastic/wood composites and nanocomposites: A review vol.33, pp.11, 2016, https://doi.org/10.1007/s11814-016-0183-6
  3. Preparation and physical properties of polypropylene nanocomposites with dodecylated graphene nanoplatelets vol.24, pp.4, 2017, https://doi.org/10.1080/09276440.2016.1204137
  4. Effect of alkyl chain length grafted to graphene nanoplatelets on the characteristics of polypropylene nanocomposites pp.00323888, 2018, https://doi.org/10.1002/pen.24995
  5. Dynamically Cross-Linked Tannin as a Reinforcement of Polypropylene and UV Protection Properties vol.11, pp.1, 2019, https://doi.org/10.3390/polym11010102
  6. 바이오매스 기반 종이 플라스틱의 제조 및 응용에 대한 고찰 vol.26, pp.1, 2015, https://doi.org/10.20909/kopast.2020.26.1.25