DOI QR코드

DOI QR Code

Mechanical Properties of Cellulose-filled Epoxy Hybrid Composites Reinforced with Alkali-treated Hemp Fiber

염기 처리 대마 섬유로 강화된 셀룰로오스 충전 에폭시 하이브리드 복합재의 기계적 물성

  • Anand, P. (Mechanical Engineering, Vickram College of Engineering) ;
  • Anbumalar, V. (Mechanical Engineering, Velammal College of Engineering & Technology)
  • Received : 2014.05.16
  • Accepted : 2014.07.09
  • Published : 2015.01.25

Abstract

There is a limit for deforestation in order to keep the environmental cycle undisturbed. The heart of the paper is to replace the wood to a maximum extent to obtain a sustainable environment. This research aims at new natural composites in which treated hemp fiber used as reinforcement, synthetic cellulose used as particulate to improve the adhesion between matrix - fiber interface and Epoxy LY556 acted as matrix fabricated by hand layup technique. The density, water absorption, tensile properties, impact strength, hardness, flexural properties and compressive properties have been evaluated under ASTM standards and compare the results with existing materials such as wood, aluminium, etc., The composite hemp fiber reinforced polymer (HFRP) could be exploited as an effective replacement for wood and it would be suitable for automotive applications by comparing results.

Keywords

References

  1. H. Ku, H. Wang, N. Pattarachaiyakoop, and M. Trada, Compos. Part B-Eng., 42, 856 (2011). https://doi.org/10.1016/j.compositesb.2011.01.010
  2. MP Groover, Fundamental of Modern Manufacturing, 2nd Ed., 111 River Street, Hoboken (NJ), John Wiley & Sons, Inc, 2004.
  3. R. Malkapuram, V. Kumar, and S. N. Yuvraj, J. Reinf. Plast. Compos., 28, 1169 (2008).
  4. D. Nabi Saheb and J. P. Jog, Adv. Polym. Technol., 18, 351 (1999). https://doi.org/10.1002/(SICI)1098-2329(199924)18:4<351::AID-ADV6>3.0.CO;2-X
  5. X. Li, L. G. Tabil, S. Panigrahi, and W. J. Crerar, Technical Meeting AGM Edmonton, CSBE06161, Canadian Society of Biosystems Engineering, 2006.
  6. P. Wambua, J. Ivens, and I. Verpoest, Compos. Sci. Tech., 63, 1259 (2003). https://doi.org/10.1016/S0266-3538(03)00096-4
  7. I. Ahmad, A. Baharum, and I. Abdullah, J. Reinf. Plast. Compos., 25, 957 (2006). https://doi.org/10.1177/0731684406065082
  8. N. Venkateshwaran, A. Elayaperumal, and G. K. Sathiya, Compos. Part B-Eng., 43, 793 (2012).
  9. U. C. Jindal, J. Compos. Mater., 20, 19 (1986). https://doi.org/10.1177/002199838602000102
  10. A. Vardarajulu, L. G. Devi, G. B. Rao, and R. L. N. Reddy, J. Reinf. Plast. Compos., 22, 1029 (2003). https://doi.org/10.1177/0731684403024571
  11. Y. Cao and Y. Q. Wu, J. Central South University of Technology, 15, 564 (2008).
  12. D. S. Varma, M. Varma, and I. K. Varma, J. Reinf. Plast. Compos., 4, 419 (1985) https://doi.org/10.1177/073168448500400406
  13. J. Rout, M. Misra, A. K. Mohanty, S. K. Nayak, and S. S. Tripathy, J. Reinf. Plast. Compos., 22, 1083 (2003). https://doi.org/10.1177/0731684403027377
  14. T. Paramasivam and A. P. J. Abdul Kalam, Fiber Sci. Technol., 7, 85 (1974). https://doi.org/10.1016/0015-0568(74)90020-7
  15. G. K. Kalaprasad, K. Joseph, S. Thomas, and C. Pavithran, J. Mater. Sci., 32, 4261 (1997). https://doi.org/10.1023/A:1018651218515
  16. S. L. Bai, R. K. Y. Li, L. C. M. Wu, H. M. Zeng, and Y. W. Mai, J. Mater. Sci. Lett., 17, 1805 (1998). https://doi.org/10.1023/A:1006661704908
  17. J. Kuruvilla, T. F. R. Dias, J. Beena, T. Sabu, and de C. L. Hecker, Revista Brasileira de Engenharia Agricola Ambiental, 3, 367 (1999). https://doi.org/10.1590/1807-1929/agriambi.v3n3p367-379
  18. A. P. Laly, G. Jayamol, and T. Sabu, Compos. Interf., 9, 335 (2002). https://doi.org/10.1163/156855402760194692
  19. S. M. Sapuan, A. Leenie, M. Harimi, and Y. K. Beng, Mater. Design, 27, 689 (2006). https://doi.org/10.1016/j.matdes.2004.12.016
  20. N. Venkateshwaran and A. Elayaperumal, J. Reinf. Plast. Compos., 29, 2387 (2010). https://doi.org/10.1177/0731684409360578
  21. N. Venkateshwaran, A. Elayaperumal, and M. S. Jagadesshwaran, "Effect of Fiber Length and Volume Fraction on Mechanical Properties of Natural Fiber Composites", in Proceeding of APM-2010 Conference, CIPET, Bhubaneswar, India, p. 323, February (2010).
  22. M. S. Sreekalaa, J. George, M. G. Kumaran, and S. Thomas, Compos. Sci. Technol., 62, 339 (2002). https://doi.org/10.1016/S0266-3538(01)00219-6
  23. S. Mishra, A. K. Mohanty, L. T. Drzal, M. Misra, S. Parijac, and S. K. Nayak, Compos. Sci. Technol., 63, 1377 (2003). https://doi.org/10.1016/S0266-3538(03)00084-8
  24. J. Maya, T. Sabu, and K. T. Varghese, Compos. Sci. Technol., 64, 955 (2004). https://doi.org/10.1016/S0266-3538(03)00261-6
  25. E. Amirhossein, J. Appl. Sci., 7, 3943 (2007). https://doi.org/10.3923/jas.2007.3943.3950
  26. R. Velmurugan and V. Manikandan, Compos. Part A-Appl. Sci. Manuf., 38, 2216 (2007). https://doi.org/10.1016/j.compositesa.2007.06.006
  27. M. Thiruchitrambalam, A. Alavudeen, A. Athijayamani, N. Venkateshwaran, and A. Elayaperumal, Mater. Phys. Mech., 8, 165 (2009).
  28. K. Jarukumjorn and S. Nitinnat, Compos. Part B-Eng., 40, 623 (2009). https://doi.org/10.1016/j.compositesb.2009.04.007
  29. K. John and S. V. Naidu, J. Reinf. Plast. Compos., 23, 1601 (2004). https://doi.org/10.1177/0731684404039799
  30. G. N. Karam, J. Compos. Sci. Technol. Res., 16, 154 (1994). https://doi.org/10.1520/CTR10405J
  31. E. Corradini, L. C. Morais, M. F. Rosa, S. E. Mazzetto, L. H. Mattoso, and J. A. M. Agnelli, Macromol. Symp., 245-246, 558 (2006).
  32. A. K. Mohanty, M. Mishra, and Dr LT Zal, Compos. Interf., 8, 313 (2001). https://doi.org/10.1163/156855401753255422
  33. R. Agarwal, N. S. Saxena, K. B. Sharma, S. Thomas, and M. S. Sreekala, Mater. Sci. Eng. A Struct. Mater., 277, 77 (2000). https://doi.org/10.1016/S0921-5093(99)00556-0
  34. J. Katz, U.S. Patent 4,060,386 (1977).
  35. J. Rout, S. S. Tripathy, S. K. Nayak, M. Misra, and A. K. Mohanty, J. Appl. Polym. Sci., 79, 1169 (2000).
  36. J. Rout, M. Misra, S. S. Tripathy, S. K. Nayak, and A. K. Mohanty, Compos. Sci. Technol., 61, 1303 (2001). https://doi.org/10.1016/S0266-3538(01)00021-5
  37. S. R. Shukla and R. S. Pai, Bioresource Technol., 96, 1430 (2005). https://doi.org/10.1016/j.biortech.2004.12.010
  38. B. V. Ramnath, S. J. Kohan, and R. N. Raja, Mater. Design, 51, 357 (2013). https://doi.org/10.1016/j.matdes.2013.03.102
  39. ASTM standards: D 638 "Test Method for Tensile Properties of Plastics. ASTM book of standards, vol. 08.01.
  40. ASTM standards: D 695 "Test Method for Compressive Properties of Rigid Plastics. ASTM book of standards, vol 08.01.
  41. ASTM standards: D 790 "Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials. ASTM book of standards, vol. 08.01.
  42. ASTM standards: D 256 "Test Methods for Determining the Izod Pendulum Impact Resistance of Plastics. ASTM book of standards, vol. 08.01.
  43. ASTM standards: D 2240 "Test Method for Hardness of Rigid Plastics. ASTM book of standards, vol. 08.01.
  44. ASTM standards: D 570-98 "Test Methods for Water Absorption of Plastics. ASTM book of standards, vol. 08.01.
  45. F. Febrianto, D. Setyawati, M. Karina, B. S. Bakar, and Y. S. Hadi, J. Biol. Sci., 6, 337 (2006). https://doi.org/10.3923/jbs.2006.337.343
  46. K. S. Ahmed and S. Vijayarangan, J. Mater. Process. Technol., 207, 330 (2008). https://doi.org/10.1016/j.jmatprotec.2008.06.038
  47. G. Alexandre, M. Takanori, G. Koichi, and O. Junji, Compos. Part A-Appl. Sci. Manuf., 38, 1811 (2007). https://doi.org/10.1016/j.compositesa.2007.04.010
  48. P. Herrera Franco, A. Valadez Gonzalez, and U. M. Cervantes, Compos. Part B-Eng., 28B, 331 (1997).
  49. Y. Cao, S. Shibata, and I. Fukumoto, Compos. Part A-Appl. Sci. Manuf., 37, 423 (2006). https://doi.org/10.1016/j.compositesa.2005.05.045
  50. P. J. H. Franco and A. V. Gonalez, Compos. Part B-Eng., 36, 597 (2005). https://doi.org/10.1016/j.compositesb.2005.04.001
  51. Y. Xue, D. R. Veazie, C. Glinsey, M. F. Horstmeyer, and R. M. Rowell, Compos. Part B-Eng., 38, 152 (2007). https://doi.org/10.1016/j.compositesb.2006.07.005
  52. V. K. Singh, P. C. Gope, C. Sakshi, and B. D. Singh, J. Mater. Environ. Sci., 3, 185 (2012).
  53. D. N. Saheb and J. P. Jog, Adv. Polym. Technol., 18, 351 (1999). https://doi.org/10.1002/(SICI)1098-2329(199924)18:4<351::AID-ADV6>3.0.CO;2-X
  54. M. A. Maleque, F. Y. Belal, and S. M. Sapuan, Arabian J. Sci. Eng., 32, 359 (2007).
  55. P. J. Roe and M. P. Ansell, J. Mater. Sci., 20, 4015 (1985). https://doi.org/10.1007/BF00552393
  56. K. Mylsamy and I. Rajendran, Mater. Design, 32, 3076 (2011). https://doi.org/10.1016/j.matdes.2010.12.051

Cited by

  1. Investigations on the performances of treated jute/Kenaf hybrid natural fiber reinforced epoxy composite vol.25, pp.4, 2018, https://doi.org/10.1007/s10965-018-1494-6
  2. Recent studies on modified cellulose/nanocellulose epoxy composites: A systematic review vol.255, pp.None, 2021, https://doi.org/10.1016/j.carbpol.2020.117366