DOI QR코드

DOI QR Code

Methacrylate Polymers Having Pendant Chalcone Moieties: Monomer Reactivity Ratios, Thermal and Optical Properties

캘콘기를 가지는 메타크릴레이트 고분자: 모노머 반응성비와 열적 광학적 성질

  • Barim, Gamze (Department of Chemistry, Faculty of Science and Arts, University of Adiyaman) ;
  • Altun, Ozgul (Department of Chemistry, Faculty of Science and Arts, University of Adiyaman) ;
  • Yayla, Mustafa Gokhun (Physics Engineering Department, Faculty of Science and Letters, Istanbul Technical University)
  • Received : 2014.02.21
  • Accepted : 2014.07.01
  • Published : 2015.01.25

Abstract

A new methacrylate copolymer that includes chalcone as a side group, poly(4-methacryloyloxyphenyl-4'-methoxystyryl ketone-co-styrene) was synthesized by free radical copolymerization. FTIR and $^1H$ NMR spectroscopic techniques were used to characterize the homopolymers and copolymers. The copolymerizations were carried out to high conversions. Copolymer compositions were established by $^1H$ NMR spectra analysis. The monomer reactivity ratios for copolymer system were determined by the linearized Kelen $T{\ddot{u}}d{\ddot{o}}s$, and Extended Kelen $T{\ddot{u}}d{\ddot{o}}s$ methods and a non-linear least squares method. The molecular weights and polydispersity index of copolymers were measured by using the gel permeation chromatography (GPC). The effect of copolymer compositions on their thermal behavior were studied by differential scanning calorimetry and thermogravimetric analysis methods. The optical properties of the resulting copolymer were also investigated.

Keywords

Acknowledgement

Supported by : Adiyaman University

References

  1. I. Erol, J. Macromol. Sci. Part A: Pure Appl. Chem., 45, 555 (2008). https://doi.org/10.1080/10601320802100663
  2. K. Kwon and J-H. Chang, Polymer(Korea), 38, 232 (2014).
  3. T. T. Do, Y. E. Ha, and J. H. Kim, Polymer(Korea), 37, 694 (2013).
  4. C. Soykan, F. Yakuphanoglu, and M. Sahin, J. Macromol. Sci. Part A: Pure Appl. Chem., 50, 953 (2013). https://doi.org/10.1080/10601325.2013.813812
  5. P. Selvam, K. V. Babu, A. Penlidis, and S. Nanjundan, Eur. Polym. J., 41, 831 (2005). https://doi.org/10.1016/j.eurpolymj.2004.10.049
  6. E. C. Buruiana, F. Jitaru, N. Olaru, and T. Buruiana, Des. Monomers Polym., 16, 1 (2013). https://doi.org/10.1080/15685551.2012.705484
  7. R. Santhi, K. V. Babu, A. Penlidis, and S. Nanjundan, Reac. Func. Polym., 66, 1215 (2006). https://doi.org/10.1016/j.reactfunctpolym.2006.03.004
  8. R, Ohta, S. Ohkawa, and H. Goto, Int. J. Polym. Mater., 61, 395 (2012). https://doi.org/10.1080/00914037.2011.593057
  9. S. Tazuke, Developments in Polymer Photochemistry. Applied Science Publishers, London, UK., Vol 3 (1982).
  10. H. Chen and J. Yin, J. Polym. Sci.; Part A: Polym. Chem., 42, 1735 (2004). https://doi.org/10.1002/pola.11087
  11. E. D. D'silva, G. K. Podagatlapalli, S. V. Rao, and S. M. Dharmaprakash, Mater. Res. Bull., 47, 3552 (2012). https://doi.org/10.1016/j.materresbull.2012.06.063
  12. Y. Ohe, H. Ito, N. Watanabe, and K. Ichimura J. Appl. Polym. Sci., 77, 2189 (2000). https://doi.org/10.1002/1097-4628(20000906)77:10<2189::AID-APP12>3.0.CO;2-U
  13. G. Kumar and K. Subramanian, J. Appl. Polym. Sci., 552, 158 (2012).
  14. G. Eisele, J. P. Fouassier, and R. Reeb, Die Angewandte Makromolekulare Chemie, 264, 10 (1999). https://doi.org/10.1002/(SICI)1522-9505(19990201)264:1<10::AID-APMC10>3.0.CO;2-C
  15. G. Mapili, Y. Lu, S. Chen, and K. Roy, J. Biomed. Mater. Res. Part B: Appl. Biomater., 75, 414 (2005).
  16. V. C. Tsafack, C. A. Marquette, F. Pizzolato, and L. J. Blum, Biosens. Bioelectron., 15, 125 (2000). https://doi.org/10.1016/S0956-5663(00)00066-X
  17. D. H. Choi, S. J. Oh, S.Y. Ban, and K. Y. Oh, Bull. Korean Chem. Soc., 22, 1207 (2001).
  18. J.-S. Koo, N.-S. Kwak, and T.-S. Hwang, Polymer(Korea), 36, 564 (2012).
  19. S. Mageswari and K. Subramanian, Polym. Plast. Technol. Eng., 51, 1296 (2012). https://doi.org/10.1080/03602559.2012.698687
  20. E.-H. Kim, B.-S. Kim, K.-S. Jung, J.-G. Kim, and H.-J. Paik, Polymer(Korea), 36, 104 (2012).
  21. Y. Jo and W. Hyung, Polymer(Korea), 37, 148 (2013).
  22. S. Nanjundan, R. Jayakumar, and C. S. J. Selvamalar, J. Appl. Polym. Sci., 99, 2913 (2006). https://doi.org/10.1002/app.22789
  23. R. Balaji and S. Nanjundan, J. Appl. Polym. Sci., 86, 1023 (2002). https://doi.org/10.1002/app.11107
  24. T. Kelen and F. Tudos, J. Macromol. Sci.; Part A: Pure. Appl. Chem., 9, 1 (1975). https://doi.org/10.1080/00222337508068644
  25. T. Kelen, F. Tudos, B. Turcsanyi, and J. P. Kennedy, J. Polym. Sci. Part A: Polym. Chem., 15, 3047 (1977). https://doi.org/10.1002/pol.1977.170151219
  26. D. Sunbul, H. Catalgil-Giz, W. F. Reed, and A. Giz, Macromol. Theo. Simu., 13, 162 (2004). https://doi.org/10.1002/mats.200300008
  27. K. Subramanian, V. Krishnasamy, S. Nanjundan, and A. V. R. Reddy, Eur. Polym. J., 36, 2343 (2000). https://doi.org/10.1016/S0014-3057(00)00008-2
  28. S. Teramachi, A. Hasegawa, M. Akatsuka, A. Yamashita, and N. Takemoto, Macromolecules, 11, 1206 (1978). https://doi.org/10.1021/ma60066a026
  29. G. Barim, K. Demirelli, and M. Coskun, Express Polym. Lett., 1, 535 (2007). https://doi.org/10.3144/expresspolymlett.2007.76
  30. F. R. Mayo and F. M. Lewis, J. Am. Chem. Soc., 66, 1594 (1944). https://doi.org/10.1021/ja01237a052
  31. G. Barim and M. G. Yayla, Int. J. Polym. Sci., 2014, Article ID 643789 (2014).
  32. G. Barim, O. Altun, and M. G. Yayla, Des. Monomers Polym., 17, 610 (2014). https://doi.org/10.1080/15685551.2014.907613
  33. Z. Ilter, B. F. Senkal, F. Yakuphanoglu, and M. Ahmedzade, J. Polym. Eng., 28, 535 (2008).
  34. M. Fox, Optical Properties of Solids, Oxford Master Series in Condensed Matter Physics, Oxford University Press, Oxford, p 76 (2001).