DOI QR코드

DOI QR Code

고투자율 자성기판을 이용한 광대역 안테나 격리도 특성 개선

Isolation Improvement of a Broadband Antenna Using a High-Permeability Substrate

  • 허준 (홍익대학교 전자정보통신공학부) ;
  • 계영철 (홍익대학교 전자정보통신공학부) ;
  • 추호성 (홍익대학교 전자정보통신공학부)
  • Hur, Jun (Department of Electronic and Electrical Engineering, Hongik University) ;
  • Kay, Youngchul (Department of Electronic and Electrical Engineering, Hongik University) ;
  • Choo, Hosung (Department of Electronic and Electrical Engineering, Hongik University)
  • 투고 : 2014.10.10
  • 심사 : 2014.12.22
  • 발행 : 2015.01.30

초록

본 논문에서는 고투자율 자성기판을 이용한 광대역 안테나 격리도 특성 개선방법을 제안하였다. 제안된 안테나는 평판형 모노폴 안테나의 근접 자계 분석을 바탕으로 고투자율 자성기판을 안테나에 삽입한 형상이며, 동작주파수에서의 안테나 성능을 유지하고, 차단 주파수에서의 간섭을 최소화하여 근접한 안테나와의 격리도 특성을 개선한다. 격리도 개선을 확인하기 위해 동작주파수 2 GHz인 기준 모노폴 안테나를 설정하여 제안된 안테나와 기준 안테나의 $S_{21}$을 자성기판 삽입 전후로 측정하였다. 그 결과, 기존 안테나의 동작 성능은 유지하며, 2 GHz 이상의 차단 주파수에서 $S_{21}$이 5~10 dB 이상 개선되었으며, 고투자율 자성기판을 이용하여 안테나의 격리도 특성 개선이 가능함을 확인하였다.

In this paper, we propose a method of isolation improvement for broadband antennas using a high-permeability substrate. The substrate is applied for a planar monopole antenna based on near-field analysis to maintain radiation characteristics at its operating frequency while improving isolation by minimizing mutual coupling with nearby antennas at other frequency bands. To verify isolation improvement, we compare performance variations of $S_{21}$ according to the existence of the substrate using the proposed antenna and a reference antenna whose operating frequency is 2 GHz. As a result, the radiation characteristics are maintained, and $S_{21}$ performance is improved by more than 5~10 dB in the frequency band of greater than 2 GHz, which demonstrates the isolation can be improved by using the high-permeability substrate.

키워드

참고문헌

  1. G. Byun, C. H. Seo, B. J. Jang, and H. S. Choo, "Design of aircraft on-glass antennas using a coupled feed structure", IEEE Trans. Antennas and Propag., vol. 60, no. 4, pp. 2088-2093, Apr. 2008. https://doi.org/10.1109/TAP.2012.2186234
  2. E. Gschwendtner, W. Wiesbeck, "Ultra-broadband car antennas for communications and navigation applications", IEEE Trans. Antennas and Propag., vol. 51, no. 8, pp. 2020-2027, Aug. 2003. https://doi.org/10.1109/TAP.2003.815341
  3. S. H. He, W. S. Shan, C. Fan, and Z. C. Mo, "An improved vivaldi antenna for vehicular wireless communication systems", IEEE Antennas Wireless Propag. Lett., vol. 13, pp. 1505-1508, Jul. 2014. https://doi.org/10.1109/LAWP.2014.2343215
  4. A. C. K. Mak, C. R. Rowell, and R. D. Murch, "Isolation enhancement between two closely packed antennas", IEEE Trans. Antennas and Propag., vol. 56, no. 11, pp. 3411-3419, Nov. 2008. https://doi.org/10.1109/TAP.2008.2005460
  5. C. Liang, X. Dang, N. Wang, and H. Yuan, "Generalized isolation between antennas for EMC problems in complex EM environments", IEEE Trans. Electromag. Compat., vol. 53, no. 3, pp. 645-652, Aug. 2011. https://doi.org/10.1109/TEMC.2011.2140375
  6. L. Qiu, F. Zhao, K. Xiao, S. Chai, and J. Mao, "Transmit- receive isolation improvement of antenna arrays by using EBG structures", IEEE Antennas Wireless Propag. Lett., vol. 11, pp. 93-96, Nov. 2012. https://doi.org/10.1109/LAWP.2012.2183847
  7. M. Koper, D. Wood, and W. Schneider, "Aircraft antenna coupling minimization using genetic algorithms and approximations", IEEE Trans. Aerospace and Electronic Systems, vol. 40, no. 2, pp. 742-751, Apr. 2004. https://doi.org/10.1109/TAES.2004.1310019
  8. T. H. Taminiau, B. Segerink, and N. F. Hulst, "A monople antenna at optical frequencues : single-molecule near-field measurement", IEEE Trans. Antennas and Propag., vol. 55, no. 11, pp. 3010-3017, Nov. 2007. https://doi.org/10.1109/TAP.2007.908561
  9. Y. Shimada, Y. Endo, M. Yamaguchi, S. Okamoto, and O. Kitakami, "Amorphous submicron particle chains with high-permeability", IEEE Trans. Magnetics, vol. 47, no. 10, pp. 2831-2834, Oct. 2011. https://doi.org/10.1109/TMAG.2011.2151181
  10. http://www.feko.info, EM Software & Systems, "FEKO Suite 7.0".