DOI QR코드

DOI QR Code

Estimation of the Chitinolytic and Antifungal Activity of Streptomyces sp. CA-23 and AA-65 isolates Isolated from Waste Mushroom Media

버섯 폐배지로부터 분리한 방선균 균주 CA-23과 AA-65균주의 키틴 분해능력과 항균력 검정

  • Shim, Chang-Ki (Organic Agriculture Division, National Institute of Agricultural Science, RDA) ;
  • Kim, Min-Jeong (Organic Agriculture Division, National Institute of Agricultural Science, RDA) ;
  • Kim, Yong-Ki (Organic Agriculture Division, National Institute of Agricultural Science, RDA) ;
  • Jee, Hyeong-Jin (Organic Agriculture Division, National Institute of Agricultural Science, RDA) ;
  • Hong, Sung-Jun (Organic Agriculture Division, National Institute of Agricultural Science, RDA) ;
  • Park, Jong-Ho (Organic Agriculture Division, National Institute of Agricultural Science, RDA) ;
  • Han, Eun-Jung (Organic Agriculture Division, National Institute of Agricultural Science, RDA) ;
  • Kim, Seuk-Chul (Organic Agriculture Division, National Institute of Agricultural Science, RDA)
  • 심창기 (국립농업과학원 유기농업과) ;
  • 김민정 (국립농업과학원 유기농업과) ;
  • 김용기 (국립농업과학원 유기농업과) ;
  • 지형진 (국립농업과학원 유기농업과) ;
  • 홍성준 (국립농업과학원 유기농업과) ;
  • 박종호 (국립농업과학원 유기농업과) ;
  • 한은정 (국립농업과학원 유기농업과) ;
  • 김석철 (국립농업과학원 유기농업과)
  • Received : 2015.10.28
  • Accepted : 2015.11.14
  • Published : 2015.12.31

Abstract

The purpose of this study was to estimate the chitinolytic and antifungal activity of Actinomycetes sp.isolated from waste mushroom media. In five kinds of waste mushroom media, Sinyeong mushroom and Yangsongi were the order of the population density of actinomycetes. Totally 91 chitinolytic isolates of Actinomycetes sp. were obtained from waste mushroom media. The isolates were categorized into 3 groups based on chitinolytic activity and antagonisms against Phytophthora capsici, Rhizoctonia solani, Sclerotinia sclerotiorum, Collectotrichum gloeosporioides, and Cladosporium cucumerinum in vitro. CA-23 was selected as a representative isolate of a group showing strong chitinolytic and antagonistic activities to all of the plant pathogens, while AA-65 was selected as a representative isolate showing no chitinolytic activities but strong antagonistic activities to the pathogens. CA-23 and AA-65 were highly effective on control of Phytophthora blight of hot-pepper, powdery mildew and scab of cucumber in a greenhouse tests. Among the isolates tested, CA-23 showed highest control efficacy, while AA-65 not only effectively controlled the diseases but also consistently increased plant growth and yield. Although the isolates are similarly affected on suppression of plant pathogens, the isolates could be differ from each other in modes of action. Further studies on mechanisms and practical applications are being progressed.

본 연구의 목적은 버섯폐배지로부터 분리한 방선균의 키틴 분해 능력과 항균활성능력을 검정하고 선발하기 위함이다. 5종류의 버섯폐배지(팽이버섯, 잎새버섯, 느타리버섯, 신령버섯, 양송이버섯) 중 신령버섯 > 양송이버섯 순으로 방선균이 분리되었다. 버섯 폐배지로부터 전체 91개의 키틴분해 방선균을 분리하였다. 분리한 91개의 균주는 키틴분해 능력과 Phytophthora capsici, Rhizoctonia solani, Sclerotinia sclerotiorum, Collectotrichum gloeosporioides, Cladosporium cucumerinum 에 대한 항균력에 따라 크게 3개의 그룹으로 분류하였다. CA-23균주는 강한 키틴 분해능력과 모든 식물병원균에 대해 항균력을 보이는 대표적인 균주로 선발하였고 반면에 AA-65 균주는 키틴 분해능력은 없지만 모든 식물 병원균에 대한 강한 항균력을 보이는 대표적인 균주로 선발하였다. 실내시험에서 CA-23 균주와 AA-65 균주는 오이 역병, 흰가루병, 검은별무늬병을 효과적으로 방제하였다. CA-23 균주는 높은 방제가를 보인 반면 AA-65 균주는 병 방제효과뿐만 아니라 식물생육과 수량을 지속적으로 증가시켰다. 비록 두 균주의 식물병 방제효과 유사하지만 두 균주 사이의 작용기작은 서로 다를 것으로 사료된다. 향후 작용기작과 적용방법에 대한 추가적인 연구가 필요할 것으로 사료된다.

Keywords

References

  1. Adamovic, M., G. Grubi, L. Milenkovic, R. Jovanoi, R. Proti, L. Sretenovi and L. Stoievi (1998) The biodegradation of wheat straw by Pleurotus ostreatus mushroom and its use in cattle feeding. Ani. Feed Sci. Tech. 71 357-362. https://doi.org/10.1016/S0377-8401(97)00150-8
  2. Ahn, S. J. and B. K. Hwang (1992) Isolation of antibioticproducing Actinomycetes antagonistic to Phytophthora capsici from pepper-growing soils. Korean Mycol. 20:259-268.
  3. Aldesuquy, H. S., F. S. Mansour and S. A. Abo-Hamed (1998) Effect of the culture filtrates of Streptomyces on growth and productivity of wheat plants. Folia Microbiologica. 43:465-470. https://doi.org/10.1007/BF02820792
  4. Bakkiyaraj, D. and Pandian, S. K. (2010) In vitro and in vivo antibiofilm activity of a coral associated actinomycetes against drug resistant Staphylococcus aureus biofilms. Biofuling 26:711-717. https://doi.org/10.1080/08927014.2010.511200
  5. Cheong, J. C., C. S. Jhume, C. J. Lee and J. A. Oh (2010) physicochemical characteristics and utilization of raw materials for mushroom substrates. Korean J. of Mycology 38:136-141. https://doi.org/10.4489/KJM.2010.38.2.136
  6. Chi, T. T. P., O. H. Choi, Y. S. Kwak, D. Y. Son, J. J. Lee and J. W. Park (2012) Evaluation of Streptomyces padanus IA70-5 strain to control hot pepper anthracnose (Colletotrichum acutatum). J. Agriculture & Life Science 46:37-45.
  7. Cho, J. I., J. Y. Cho, Y. S. Park, D. M. Son, B. G. Heo and C. S. Kim (2007) Screening and isolation of antagonistic Actinomyces #120 against the Kiwi Fruit Rot for the Environment-Friendly Culture of Kiwifruits. J. Bio-Environment Control. 16:252-257.
  8. Cho, M. K. (2005) Biocontrol of powdery mildew using Actinomyces of Streptomyces SH-09 and identification of antifungal substances from the isolate. The thesis of Master degree of Chungnam National University, Daejeon, Korea.
  9. Chun, J. and M. Goodfellow (1995) A phylogenetic analysis of the genus Norcadia with 16s rDNA gene sequence. Int. J. Syst. Bacteriol. 45:240245. https://doi.org/10.1099/00207713-45-2-240
  10. Edwards, C. A., I. Burrows, K. E. Fletcher, B. A. Jones (1985) The use of earthworms for composting farm wastes. In: Composting of agricultural and other wastes. Gasser J. K. R. Eds; Elsevier Applied Science Publishers, London, pp. 229-242.
  11. Ethaliotis, C., I. Z. Georgios and P. Karavitis (2005) Residues and by-products of olive-oil mills for root-zone heating and plant nutrition in organic vegetable production. Scientia Horticulturae 106:293-308. https://doi.org/10.1016/j.scienta.2005.04.006
  12. Goodfellow, M. and E. Williams (1983) Ecology of actinomycetes. Ann. Review of Microbiology 37:189-216. https://doi.org/10.1146/annurev.mi.37.100183.001201
  13. Hwang, J. Y., C. K. Shim, K. Y. Ryu, S. H. Choi and H. J. Jee (2006) Selection of Brevibacillus brevis B23 and Bacillus stearothermophilus B42 as biological control agents against sclerotinia rot of Lettuce. Res. Plant Dis. 12:254-259. https://doi.org/10.5423/RPD.2006.12.3.254
  14. Ju, Y. C., S. M. Yoon and H. W. Kang (2007) Effects of different substrate on the growth and microstructure of fruit body in the Basidiomycetes, Pleurotus ostreatus. J. Life Science 17:1271-1277.
  15. Kim, J. N., C. S. Suh and D. C. Park (2002) Studies on the comparative analysis of immunofunction of Agricus blazei Murill cultivated with fermented media containing Pueraria thunbergiana. Korean J. Food Preservation 9:114-119.
  16. Kim, T. J. (2013) Screening inhibitory compounds for the biofilm formation of Xanthomonas oryzae from Streptomycetes. The thesis of Master degree of Kookmin University, Seoul, Korea.
  17. Kim, Y. I., S. H. Jung, J. S. Seok, S. Y. Yang, J. W. Huh and W. S. Kwak (2007) Isolation and identification of high cellulolytic bacteria from spent mushroom substrate and determination of optimal medium conditions for the growth. Kor. J. Microbiol. Biotechnol. 35: 255-260.
  18. Kim. Y. I., J. S. Bae, S. H. Jung, M. H. Ahn and W. S. Kwak (2014) Yield and physicochemical characteristics of spent mushroom (Pleurotus ryngii, Pleurotus osteratus and Ammulina velutipes) substrates according to mushroom species and cultivation types. J. Anim. Sci. & Technol. 49:79-88.
  19. Kishore, G. K., S. Pande and A. R. Podile (2005) Chitinsupplemented foliar application of Serratia marcescens GPS 5 improves control of late leaf spot disease of groundnut by activating defense-related enzymes. J. Phytopathol. 153: 169-173. https://doi.org/10.1111/j.1439-0434.2005.00951.x
  20. Kwon, J. H., J. R. Hong, B. H. Cho, U. K. Ki and K. C. Kim (1999) A scab disease caused by Cladosporium cucumerinum on water melon seedlings. Plant Pathol. J. 15:72-75.
  21. Lebeda, D. P., M. P. Lechevalier and R. T. Testa (1997) Streptomyces stramineus sp. nov., a new species of verticillate streptomycetes. Int. J. Syst. Bacteriol. 47:747-753. https://doi.org/10.1099/00207713-47-3-747
  22. Lechevalier, M. P. and H. Lechevalier (1970) Chemical composition as a criterion in the classification of aerobic Actinomycetes. J. Syst. Bacteriol. 20:435-443. https://doi.org/10.1099/00207713-20-4-435
  23. Lee, C. J., Y. M. Yoo, C. S. Jhune, J. C. Cheong, J. W. Moon, W. S. Kong, J. S. Suh, Y. G. Kim, B. E. Lee and M. H. Yoon (2014) Effects of microorganism density and mushroom yields according to the sterilization of casing soils at the cultivation of button mushrooms. J. Mushroos 12:220-225. https://doi.org/10.14480/JM.2014.12.3.220
  24. Lee, E. J., K. D. Kang, K. Y. Hwang, D. H. Kim, S. G. Kim and S. I. Seong (1998) Isolation and identification of Actinomycetes for the control of agricultural pests and fungal pathogen. Korean J. Seric. Sci. 40:63-69.
  25. Lee, H. R. (2012) Screening and characterization of microbial resources for the development of environmental friendly organic agricultural materials. The thesis of Master degree in Mokwon University, Daejeon, Korea.
  26. Lim, T. H., S. Y. Kwon and J. H. Kim (2006) Effects of Streptomyces griseofuscus on growth of pepper plants and Phytophthora blight by Phytophthora capsici. Res. Plant Dis. 12:46-50. https://doi.org/10.5423/RPD.2006.12.1.046
  27. McNeil, N. M. and Brown J. M. 1994. The medically important aerobic actinomycetes: epidemiology and microbiology. Clin. Microbiol. Rev. 7:357-417. https://doi.org/10.1128/CMR.7.3.357
  28. Michael, A. P., J. S. Michael and T. Loretta (1992) Bioactivity of chitinolytic actinomycetes of marine origin. Applied Microbiology and Biotechnology 36:553-555.
  29. Nassar, A. H., K. A. El-Tarabily and K. Sivasithamparam (2003) Growth promotion of bean (Phaseolus valgaris L.) by a polyamine-producing isolate of Streptomyces griseoluteus. Plant Growth Regulation. 40:97-106. https://doi.org/10.1023/A:1024233303526
  30. Oh, T. S., C. H. Kim, D. G. Shim, Y. K. Cho and Y. W. Kim (2013) Study on usefulness of used Flammulina velutipesmedia for horticultural crops. Korean J. Int. Agric. 25:448-453. https://doi.org/10.12719/KSIA.2013.25.4.448
  31. Park, S. W., T. O. Bae and S. B. Kim (2012) Isolation and characterization of Streptomyces spp. from soil showing broad spectrum antibiotic activity. Korean J. Microbiology 48:270-274. https://doi.org/10.7845/kjm.2012.053
  32. Semple, K. T. and T. R. Fermor (1995) Impact of composting strategies on the treatment of soils contaminated with organic pollutants. Environmental Pollution 112:269-283.
  33. Song, J. K., H. Y. Weon, S. H. Yoon, D. S. Park, S. J. Go, and J. W. Suh (2014) Phylogenetic diversity of the thermophilic actionomycetes and Thermoactionomycetes spp. isolated from mushroom composts in Korea based on 16S rRNA gene sequence analysis. FEMS Microbiology Letters 202: 97-102.
  34. Staments, P. (2001) Mycova: Helping he ecosystem through mushroom cultivation. http://www.fungi.com/bioremediation/index.html.
  35. Tanaka, Y. and Omura, S. (1990) Metabolism and products of Actinomycetes-an introduction. Actinomycetol. 4:13-14. https://doi.org/10.3209/saj.4_13
  36. Thomashow, L. S. and D. M. Weller (1996) Current concepts in the use of introduced bacteria for biological control: mechanisms and antifungal metabolites. Chapman and Hall, New York.
  37. Tokala, R. K., J. L. Strap, M. J. Carina, D. L. Crawford, M. H. Salove, L. A. Deobald, J. F. Bailey and M. J. Morra (2002) Novel plant-microbe rhizosphere interaction involving Streptomyces lydicus WYEC108 and Pea Plant (Pisum savivum). Applied and Environmental Microbology. 68:2161-2171. https://doi.org/10.1128/AEM.68.5.2161-2171.2002
  38. Vasconcellos, R. L. F. and E. J. B. N. Cardoso (2009) Rhizosperic Strptomycetes as potential biocontrol agents of Fusarium and Armillaria pine rot and as PGPR for Pinus taeda. Biocontrol. 54:807-816. https://doi.org/10.1007/s10526-009-9226-9
  39. Yandigeri, M. S., N. Malviya, M. K. Solanki, P. Shrivastava and G. Sivakumar (2015) Chitinolytic Streptomyces vinaceusdrappus S5MW2 isolated from Chilika Lake, India enhance plant growth and biocontrol efficacy through chitin supplementation against Rhizoctonia solani. World J. Microbiology and Biotechnology 31:1217-1225. https://doi.org/10.1007/s11274-015-1870-x
  40. Yeo, S. H., Y. M. Yook and H. S. Kim (2009) Isolation and characterization of plant growth promoting rhizobacterium Bacillus subtillus YK-5 from soil. KSBB J. 24:334-340.

Cited by

  1. Control Efficacy of Bacillus velezensis AFB2-2 against Potato Late Blight Caused by Phytophthora infestans in Organic Potato Cultivation vol.37, pp.6, 2015, https://doi.org/10.5423/ppj.ft.09.2021.0138