Bull. Korean Math. Soc. 52 (2015), No. 1, pp. 323-333
http://dx.doi.org/10.4134/BKMS.2015.52.1.323

FINITE SETS WITH FAKE OBSERVABLE CARDINALITY

ALFONSO ARTIGUE

ABSTRACT. Let X be a compact metric space and let |A| denote the
cardinality of a set A. We prove that if f: X — X is a homeomorphism
and |X| = oo, then for all § > 0 there is A C X such that |A| = 4 and
for all k € Z there are z,y € fF(A), = # y, such that dist(z,y) < §. An
observer that can only distinguish two points if their distance is grater
than §, for sure will say that A has at most 3 points even knowing every
iterate of A and that f is a homeomorphism. We show that for hyper-
expansive homeomorphisms the same J-observer will not fail about the
cardinality of A if we start with |A| = 3 instead of 4. Generalizations of
this problem are considered via what we call (m, n)-expansiveness.

Introduction

Since 1950, when Utz [16] initiated the study of expansive homeomorphism,
several variations of the definition appeared in the literature. Let us recall
that a homeomorphism f: X — X of a compact metric space (X,dist) is
expansive if there is an expansive constant 6 > 0 such that if x # y, then
dist(f*(x), f*(y)) > & for some k € Z. Some variations of this definition are
weaker, as for example continuum-wise expansiveness [6] and N-expansiveness
[9] (see also [3,8,13]). A branch of research in topological dynamics investigates
the possibility of extending known results for expansive homeomorphisms to
these versions. See for example [2,5,10,12,14].

Other related definitions are stronger than expansiveness as for example
positive expansiveness [15] and hyper-ezpansiveness [1]. Both definitions are so
strong that their examples are almost trivial. It is known [15] that if a compact
metric space admits a positive expansive homeomorphism, then the space has
only a finite number of points. Recall that f: X — X is positive expansive if
there is 6 > 0 such that if x # y, then dist(f*(z), f*(y)) > § for some k > 0.
Therefore, we have that if the compact metric space X is not a finite set, then
for every homeomorphism f: X — X and for all 6 > 0 there are x # y such
that dist(f*(z), f¥(y)) < 6 for all k > 0. This is a very general result about
the dynamics of homeomorphisms of compact metric spaces.
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Another example of this phenomenon is given in [1], where it is proved that
no uncountable compact metric space admits a hyper-expansive homeomor-
phism (see Definition 3). Therefore, if X is an uncountable compact metric
space, as for example a compact manifold, then for every homeomorphism
f: X — X and for all § > 0 there are two compact subsets A, B C X, A # B,
such that disty (f*(A), f¥(B)) < ¢ for all k € Z. The distance disty is called
Hausdorff metric and its definition is recalled in equation (3) below.

According to Lewowicz [7] we can explain the meaning of expansiveness
as follows. Let us say that a d-observer is someone that cannot distinguish
two points if their distance is smaller than 6. If dist(z,y) < ¢ a d-observer
will not be able to say that the set A = {z,y} has two points. But if the
homeomorphism is expansive, with expansive constant greater than ¢, and if
the d-observer knows all of the iterates f¥(A) with k¥ € Z, then he will find
that A contains two different points, because if dist(f*(x), f*(y)) > J, then he
will see two points in f¥(A). Let us be more precise.

Definition 1. For § > 0, a set A C X is §-separated if for all x #£ y, z,y € A,
it holds that dist(z,y) > 6. The §-cardinality of a set A is

|Als =sup{|B| : B C A and B is é-separated},
where | B| denotes the cardinality of the set B.

Notice that the J-cardinality is always finite because X is compact. The
d-cardinality of a set represents the maximum number of different points that
a d-observer can identify in the set.

In this paper we introduce a series of definitions, some weaker and other
stronger than expansiveness, extending the notion of N-expansiveness of [9].
Let us recall that given N > 1, a homeomorphism is N-ezpansive if there is
§ > 0 such that if diam(f*(A)) < § for all k € Z, then |A| < N. In terms of
our d-observer we can say that f is N-expansive if there is 6 > 0 such that if
|A] = N + 1, a d-observer will be able to say that A has at least two points
given that he knows all of the iterates f*(A) for k € Z, i.e., |[f*(A)|s > 1 for
some k € Z. Let us introduce our main definition.

Definition 2. Given integer numbers m > n > 1 we say that f: X — X is
(m, n)-expansive if there is § > 0 such that if |A| = m, then there is k € Z such
that | f¥(A)|s > n.

The first problem under study is the classification of these definitions. We
prove that (m,n)-expansiveness implies N-expansiveness if m < (N + 1)n. In
particular, if m < 2n, then (m,n)-expansiveness implies expansiveness. These
results are stated in Corollary 1.7. It is known that even on surfaces, N-
expansiveness does not imply expansiveness for N > 2, see [2]. Here we show
that (m,n)-expansiveness does not imply expansiveness if n > 2. For exam-
ple, Anosov diffeomorphisms are known to be expansive and a consequence of
Theorem 5.1 is that Anosov diffeomorphisms are not (m,n)-expansive for all
n > 2.
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It is a fundamental problem in dynamical systems to determine which spaces
admit expansive homeomorphisms (or Anosov diffecomorphisms). In this pa-
per we prove that no Peano continuum admits a (m,n)-expansive homeo-
morphism if 2m > 3n, see Theorem 3.2. We also show that if X admits
a (n + 1,n)-expansive homeomorphism with n > 3, then X is a finite set.
Examples of (3,2)-expansive homeomorphisms are given on countable spaces
(hyper-expansive homeomorphisms), see Theorem 4.1.

The article is organized as follows. In Section 1 we prove basic properties of
(m, n)-expansive homeomorphisms. In Section 2 we prove the first statement
of the abstract, i.e., no infinite compact metric space admits a (4, 3)-expansive
homeomorphism. In Section 3 we show that no Peano continuum admits a
(m,n)-expansive homeomorphism if 2m > 3n. In Section 4 we show that
hyper-expansive homeomorphisms are (3, 2)-expansive. Such homeomorphisms
are defined on compact metric spaces with a countable number of points. In
Section 5 we prove that a homeomorphism with the shadowing property and
with two points x, y satisfying

0 = liminf dist(f*(z), f*(y)) < limsup dist(f* (), f*(y))
k—o00 k—o00
cannot be (m, 2)-expansive if m > 2.

I would like to thank M. J. Pacifico and J. L. Vieitez for their kind comments

and suggestions on preliminary versions of the article.

1. Separating finite sets

Let (X,dist) be a compact metric space and consider a homeomorphism
f: X — X. Let us recall that for integer numbers m > n > 1 a homeomor-
phism f is (m,n)-expansive if there is § > 0 such that if |A| = m, then there is
k € Z such that |f*(A)|s > n. In this case we say that § is a (m,n)-ezpansive
constant. The idea of (m,n)-expansiveness is that our d-observer will find more
than n points in every set of m points if he knows all of its iterates.

Remark 1.1. From the definitions it follows that a homeomorphisms is (N +
1, 1)-expansive if and only if it is N-expansive in the sense of [9]. In particular,
(2, 1)-expansiveness is equivalent with expansiveness.

Remark 1.2. Notice that if X is a finite set, then every homeomorphism of X
is (m, n)-expansive.

Proposition 1.3. Ifn’ <n and m—n <m’—n’, then (m, n)-expansive implies
(m/,n')-expansive with the same expansive constant.

Proof. The case | X| < oo is trivial, so, let us assume that | X| = co. Consider
§ > 0 as a (m, n)-expansive constant. Given a set A with |A| = m’ we will show
that there is k € Z such that [f*(A)|s > n’, i.c., the same expansive constant
works. We divide the proof in two cases.
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First assume that m’ > m. Let B C A with |B| = m. Since f is (m,n)-
expansive, there is k € Z such that |f*(B)|s > n. Therefore |f*(A)|s > n > n’,
proving that f is (m’,n’)-expansive.

Now suppose that m’ < m. Given that |A] = m’ and |X| = oo there is
C C X such that ANC = § and |[A U C| = m. By (m,n)-expansiveness,
there is k € Z such that |f*(AU C)|s > n. Then, there is a §-separated set
D C f*(AuUC) with |D| > n. Notice that

[f*(A) N D] =D\ f5(CO) 2 |D| = |f*(C)] > n — (m —m')

and since n — (m — m’) > n’ by hypothesis, we have that f¥(4)N D is a J-
separated subset of f¥(A) with more than n’ points, that is |f*(A)|s > n’. This
proves the (m/n’)-expansiveness of f in this case too. O

As a consequence of Proposition 1.3 we have that
(1) (m,n)-expansive implies (m + 1, n)-expansive and
(2) (m,n)-expansive implies (m — 1,n — 1)-expansive.
In Table 1 below we can easily see all these implications. The following propo-
sition allows us to draw more arrows in this table, for example: (4,2) = (2,1).

TABLE 1. Basic hierarchy of (m,n)-expansiveness. Each pair
(m,n) in the table stands for “(m,n)-expansive“. In the first
position, (2,1), we have expansiveness. The first line, of the
form (N + 1,1), we have N-expansive homeomorphisms.

2,1) = 3,1) = 1) =

f f f

3,2) = 42 = (5,2) =
f f f

4,3) = (5,3) = (6,3) =
i i i)

Proposition 1.4. If a,n > 2 and f: X — X is an (an,n)-ezpansive homeo-
morphism, then f is (a,1)-expansive.

In order to prove it, let us introduce two previous results.

Lemma 1.5. If A,B C X are finite sets and 6 > 0 satisfies |A| = |Als and
|Bls = 1, then for all e > 0 it holds that
AU Blsy. < |Al +|Bls — |AN Bl

Proof. If AN B = (), then the proof is easy because
|A U B|6+E < |A|5+5 + |B|5+5 < |A|E + |B|6-
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Assume now that AN B # (). Since |A| = |Als we have that A is d-separated.
Therefore |A N B| = 1 because |Bls = 1. Assume that AN B = {y}. Let us
prove that |A U Bl|s+e < |A|. and notice that it is sufficient to conclude the
proof of the lemma.

Let C C AU B be a (0 + ¢)-separated set such that |C| = |[AU Blsse. If
C C A, then

|[AU Blste = [Als+e < |Ale.

Therefore, let us assume that there is @ € C'\ A. Define the set

D = (CU{y})\{z}.
Notice that |C| =|D| and D C A.

We will show that D is e-separated. Take p,q € D and arguing by contra-
diction assume that p # ¢ and dist(p,q) < e. If p,q € C there is nothing to
prove because C'is (0 + €)-separated. Assume now that p = y. We have that
dist(x, p) < § because z,p € B and |B|s = 1. Thus

dist(z, q) < dist(x,p) + dist(p, q) < &+ 0.
But this is a contradiction because x,q € C' and C'is (e + §)-separated. O

Lemma 1.6. If f is (m + I,n + 1)-expansive, then f is (m,n)-expansive or
(1,1)-expansive.

Proof. Let us argue by contradiction and take an (m + I,n + 1)-expansive
constant o > 0. Since f is not (m,n)-expansive for ¢ € (0, ) there is a set
A C X such that |A] = m and |f*(A4)|. < n for all k € Z. Take § > 0 such
that |A| = |Als and 0 + ¢ < a.

Since f is not (I, 1)-expansive there is B such that |B| =1 and |f*(B)|s = 1
for all k € Z. By Lemma 1.5 we have that

[fSAUB)s+e < (A +[f*(B)ls — AN Bl <n+1-|AN B

for all k € Z. Also, we know that |[AU B| = m + 1 — |AN B|. If we denote
r=|ANB]J, then fis not (m+1—r,n+1—r)-expansive. And by Proposition
1.3 we conclude that f is not (m-+1, n+1)-expansive. This contradiction proves
the lemma. (I

Proof of Proposition 1.4. Assume by contradiction that f is not (a, 1)-expan-
sive. Since f is (an,n)-expansive, by Lemma 1.6 we have that f has to be
(a(n —1),n — 1)-expansive. Arguing inductively we can prove that f is (a(n —
j)ym — j)-expansive for j = 1,2,...,n — 1. In particular, f is (a, 1)-expansive,
which is a contradiction that proves the proposition. (I
Corollary 1.7. If m < an and f is (m,n)-expansive, then f is (a, 1)-expansive
(i.e., (a — 1)-expansive in the sense of [9]). In particular, if m < 2n and f is
(m, n)-expansive, then f is expansive.

Proof. By Proposition 1.3 we have that f is (an,n)-expansive. Therefore, by
Proposition 1.4 we have that f is (a, 1)-expansive. O
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2. Separating 4 points

In this section we prove that (n + 1,n)-expansiveness with n > 3 implies
that X is finite.

Theorem 2.1. If X is a compact metric space admitting a (4,3)-expansive
homeomorphism, then X is a finite set.

Proof. By contradiction assume that f is a (4, 3)-expansive homeomorphism
of X with |X| = co and take an expansive constant 6 > 0. We know that f
cannot be positive expansive (see [4,7] for a proof). Therefore there are x1, z9
such that x7 # z2 and

(1) dist(f*(a1), f*(22)) < 0

for all k > 0. Analogously, f~! is not positive expansive, and we can take y1, y2
such that y; # y» and

(2) dist (f*(y1), f*(y2)) <0

for all £ < 0. Consider the set A = {x1,22,y1,y2}. We have that 2 < |A4] < 4
(we do not know if the 4 points are different). By inequalities (1) and (2) we
have that |f*(A)|s < |A| for all k € Z. If n = |A|, then we have that f is not
(n,n — 1)-expansive. In any case, n = 2,3 or 4, by Proposition 1.3 (see Table
1) we conclude that f is not (4,3)-expansive. This contradiction finishes the
proof. O

Remark 2.2. If X is a compact metric space admitting a (n + 1, n)-expansive
homeomorphism with n > 3, then X is a finite set. It follows by Theorem 2.1
and Proposition 1.3.

Corollary 2.3. If f: X — X is a homeomorphism of a compact metric space
and | X| = oo, then for all 6 > 0 and m > 4 there is A C X with |A| = m such
that |f*(A)|s < |A| for all k € Z.

Proof. Tt is just a restatement of Remark 2.2. O

3. On Peano continua

In this section we study (m, n)-expansiveness on Peano continua. Let us start
recalling that a continuum is a compact connected metric space and a Peano
continuum is a locally connected continuum. A singleton space (| X|=1) is a
trivial Peano continuum. For x € X and § > 0 define the stable and unstable
set of = as

Wi(z) = {y € X : dist(f"(z), f*(y)) < dVk > 0},
Wi(z) = {y € X : dist(f*(2), f*(y)) < dVk < 0}.

Remark 3.1. Notice that (m,n)-expansiveness implies continuum-wise expan-
siveness for all m > n > 1. Recall that f is continuum-wise expansive if there is
§ > 0 such that if diam(f*(A)) < 6 for all k € Z and some continuum A C X,
then |A| = 1.
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Theorem 3.2. If X is a non-trivial Peano continuum, then mo homeomor-
phism of X is (m,n)-expansive if 2m > 3n.

Proof. Let § be a positive real number and assume that f is (m,n)-expansive.
As we remarked above, f is a continuum-wise expansive homeomorphism. It
is known (see [5,6]) that for such homeomorphisms on a Peano continuum,
every point has non-trivial stable and unstable sets. Take n different points
Z1,...,2, € X and let ¢’ € (0,9) be such that dist(z;,z;) > 26" if ¢ # j. For
eachi=1,...,n, we can take y; € W§ (z;) and z; € Wi (x;) with z; # y; and
x; # z;. Consider the set A = {z1,¥1,21,...,%n, Yn, 2n}. Since dist(z;,x;) >
20" if © # j, and y;, z; € By (x;) we have that |A] = 3n. If A; denotes the set
{x:,v:, 21} we have that |f¥(A;)|ss < 2 for all k € Z. This is because if k > 0,
then dist(f*(x:), f*(y:)) < & and if k < 0, then dist(f*(z;), f¥(2z)) < &'
Therefore | f¥(A)|s» < 2n, and then |f*(A)|s < 2n. Since § > 0 and n > 1 are
arbitrary, we have that f is not (3n,2n) expansive for all n > 1. Finally, by
Proposition 1.3, we have that f is not (m,n)-expansive if 2m > 3n. (]

Corollary 3.3. If f: X — X is a homeomorphism and X is a non-trivial
Peano continuum, then for all 6 > 0 there is A C X such that |A| = 3 and
|f¥(A)|s <2 for all k € Z.

Proof. By Theorem 3.2 we know that f is not (3, 2)-expansive. Therefore, the
proof follows by definition. O

4. Hyper-expansive homeomorphisms

Denote by K(X) the set of compact subsets of X. This space is usually called
as the hyper-space of X. We recommend the reader to see [11] for more on the
subject of hyper-spaces and the proofs of the results that we will cite below. In
the set KC(X) we consider the Hausdorff distance disty making (C(X), distz)
a compact metric space. Recall that

(3) distg (A4, B) =inf{e > 0: A C B.(B) and B C B.(A)},

where B.(C) = UzecB:(z) and B.(z) is the usual ball of radius e centered at
x. As usual, we let f to act on K(X) as f(A4) = {f(a) : a € A}.

Definition 3. We say that f is hyper-ezpansive if f: K(X) — K(X) is expan-
sive, i.e., there is § > 0 such that given two compact sets A, B C X, A # B,
there is k € Z such that distz (f*(A), f*(B)) > 6 where disty is the Hausdorff
distance.

In [1] it is shown that f: X — X is hyper-expansive if and only if f has
a finite number of orbits (i.e., there is a finite set A C X such that X =
Urez f¥(A)) and the non-wandering set is a finite union of periodic points which
are attractors or repellers. Recall that a point x is in the non-wandering set
if for every neighborhood U of = there is k > 0 such that f*(U)NU # 0.
A point z is periodic if for some k > 0 it holds that f¥(x) = x. The orbit
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v ={z, f(x),..., fF=1(x)} is a periodic orbit if x is a periodic point. A periodic
orbit v is an attractor (repeller) if there is a compact neighborhood U of 4 such
that f*(U) — v in the Hausdorff distance as k — oo (resp. k — —00).

Theorem 4.1. If f: X — X is a hyper-expansive homeomorphism and | X| =
00, then f is (m,n)-expansive for some m >n > 1 if and only if m < 3.

Proof. Let us start with the direct part of the theorem. Let P, be the set of
periodic attractors, P, the set of periodic repellers and take x1, ..., x; one point
in each wandering orbit. (Recall that, as we said above, hyper-expansiveness
implies that f has just a finite number of orbits.) Define Q = {z1,...,z;}.
Take § > 0 such that

(1) if p,q € P, U P, and p # ¢, then dist(p, q) > 4,

(2) if x; € Q, then Bs(x;) = {z;} (recall that wandering points are isolated

by [1]),

(3) if p € Py, x; € Q and k < 0, then dist(p, f*(x;)) > 6,

(4) if ¢ € P., z; € Q and k > 0, then dist(p, f*(z;)) > § and

(5) if z,y € Q and k > 0 > [, then dist(f*(z), f!(y)) > 4.
Let us prove that such § is a (3, 2)-expansive constant. Take a,b,c € X with
[{a, b, c}| = 3. The proof is divided by cases:

e Ifa,b,ce P= P, U P,, then item 1 above concludes the proof.

e If a,b € P and c ¢ P, then there is k € Z such that f*(c) € Q. In this
case items 1 and 2 conclude the proof.

e Assume now that a € P and b, ¢ ¢ P. Without loss of generality let us
suppose that a is a repeller. Let ky, k. € Z be such that f*(b), f*<(c) €
Q. Define k = min{ky, k.}. In this way: dist(f*(a), f¥(b)), dist(f*(a),
f¥(c)) > & by item 4 and dist(f*(b), f*(c)) > 6 by item 2.

e Ifa,b,c ¢ P, then consider ky, ky, k. € Z such that f*s(a), f*(b), f*<(c)
€ Q. Assume, without loss, that k, < ky < k.. Take k = k. In this
way, items 2 and 5 finishes the direct part of the proof.

To prove the converse, we will show that f is not (m, 3)-expansive for all m >
3. Take § > 0. Notice that since X = oo there is at least one wandering point z.
Without loss of generality assume that limy_ . f*(x) = p, an attractor fixed
point and limy_s o f*(z) = p, a repeller fixed point. Take ki,ks € 7Z such
that dist(f*(z),p,) < & for all k < ki and dist(f*(x),ps) < & for all k > ko.
Let | = ky — k1 and define 1 = f~%1(z), and x;11 = f!(x;) for all i > 1.

Consider the set A = {z1,...,2y}. By construction we have that |A| = m
and |f*(A)|s < 3 for all k € Z. Thus, proving that f is not (m, 3)-expansive if
m > 3. (]

Remark 4.2. In light of the previous proof one may wonder if a smart §-observer
will not be able to say that A has more than 3 points. We mean, we are
assuming that a d-observer will say that A has n’ points with

/ k
= max f Als.
" keZ | ( )|6
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According to the dynamic of the set A in the previous proof, we guess that with
more reasoning a smarter d-observer will find that A has more than 3 points.

Theorem 4.1 gives us examples of (3, 2)-expansive homeomorphisms on in-
finite countable compact metric spaces. A natural question is: does (3,2)-
expansiveness implies hyper-expansiveness? I do not know the answer, but let
us remark some facts that may be of interest. If f is (3,2)-expansive, then:

e For all x € X either the stable or the unstable set must be trivial. It
follows by the arguments of the proof of Theorem 3.2.

e If 2,y are doubly asymptotic, i.e., dist(f*(z), f*(y)) — 0 as k — +o0,
then they are isolated points of the space. Suppose that x were an
accumulation point. Given d > 0 take ko such that if |k| > ko, then
dist(f*(x), f*(y)) < . Take a point z close to = such that dist(f*(x),
f¥(2)) < & if |k| < ko (we are just using the continuity of f). Then
x,y, z contradicts (3, 2)-expansiveness.

Proposition 4.3. There are (4,2)-expansive homeomorphisms that are not
(3, 2)-expansive.

Proof. Let us prove it giving an example. Consider a countable compact metric
space X and a homeomorphism f: X — X with the following properties:

(1) f has 5 orbits,

(2) a,b,c € X are fixed points of f,

(3) there is z € X such that limg_, o, f¥(z) = a and limg_, o f¥(x) = b,
(4) there is y € X such that limy_, _ f*(y) = b and limy_, 4 oo fF(y) = c.

In order to see that f is not (3, 2)-expansive consider ¢ > 0. Take ko € Z such
that for all & > ko it holds that dist(f*(z),b) < ¢ and dist(f~*(y),b) < e.
Define u = f*o(z) and v = f=%o(y). In this way [|[{f*(u),b, f*(v)}||c < 2 for
all k € Z. This proves that f is not (3, 2)-expansive.

Let us now indicate how to prove that f is (4, 2)-expansive. Consider € > 0
such that if i > 0 and j € Z, then dist(f~%(x), f7(y)) > ¢ and dist(f7 (x), f(y))
> . Now, a similar argument as in the proof of Theorem 4.1, shows that f is
(4, 2)-expansive. O

5. With the shadowing property

In this section we prove that an important class of homeomorphisms are not
(m, n)-expansive for all m > n > 2. In order to state this result let us recall
that a d-pseudo orbit is a sequence {xzy }rez such that dist(f(xg), vxy1) < 0 for
all k € Z. We say that a homeomorphism has the shadowing property if for all
g > 0 there is § > 0 such that if {2t }rez is a §-pseudo orbit, then there is x
such that dist(f*(z), zx) < € for all k € Z. In this case we say that x -shadows
the d-pseudo orbit.
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Theorem 5.1. Let f: X — X be a homeomorphism of a compact metric space
X. If f has the shadowing property and there are x,y € X such that

0 = lim inf dist(f* (), f*(y)) < limsup dist(f*(z), f*(y)),
k—o0 k—o0
then f is not (m,n)-expansive if m > n > 2.

Proof. By Proposition 1.3 it is enough to prove that f cannot be (m,2)-
expansive if m > 2. Consider ¢ > 0. We will define a set A with |A] =
such that for all k € Z, f¥(A) C B.(f*(z)) U B-(f*(y)), proving that f is not
(m, 2)-expansive for all m > 2.

Consider two increasing sequences a;,b; € Z, p € (0,¢) and ¢ > 0 such that

a1<b1<a2<b2<(13<b3<"'7
dist(f* (z), f*(y)) <,
dist(f (z), f (y)) > p

for all I > 1 and assume that every d-pseudo orbit can be (p/2)-shadowed. For
each [ > 1 define the é-pseudo orbit z! as
!

) itk <a,
T ) itk > an

Then, for every [ > 1 there is a point w! whose orbit (p/2)-shadows the J-
pseudo orbit {z!}rez. Let us now prove that if 1 <1 < s, then w! # w®. We
have that a; < by < a,. Therefore 2z, = f*(y) and z; = f*(z). Since w' and
w® (p/2)-shadows the pseudo orbits 2! and 2*, respectively, we have that

dist(f" (w'), " (y)), dist(f" (w*), "' () < p/2.
We conclude that w! # w® because dist(f% (z), f® (y)) > p. Therefore, if we
define A = {w! : 1 > 1} we have that |A| = co. Finally, since p < ¢, we have
that f*(A) C Bo(f*(z)) U B-(f*(y)) for all k € Z. Therefore, |f*(A)|. < 2 for
all k € Z. O

Remark 5.2. Examples where Theorem 5.1 can be applied are Anosov diffeo-
morphisms and symbolic shift maps. Also, if f: X — X is a homeomorphism
with an invariant set K C X such that f: K — K is conjugated to a symbolic
shift map, then Theorem 5.1 holds because the (m,n)-expansiveness of f in X
implies the (m,n)-expansiveness of f restricted to any compact invariant set
K C X as can be easily checked.
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