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FINITE SETS WITH FAKE OBSERVABLE CARDINALITY

Alfonso Artigue

Abstract. Let X be a compact metric space and let |A| denote the
cardinality of a set A. We prove that if f : X → X is a homeomorphism
and |X| = ∞, then for all δ > 0 there is A ⊂ X such that |A| = 4 and
for all k ∈ Z there are x, y ∈ fk(A), x 6= y, such that dist(x, y) < δ. An
observer that can only distinguish two points if their distance is grater
than δ, for sure will say that A has at most 3 points even knowing every
iterate of A and that f is a homeomorphism. We show that for hyper-
expansive homeomorphisms the same δ-observer will not fail about the
cardinality of A if we start with |A| = 3 instead of 4. Generalizations of
this problem are considered via what we call (m, n)-expansiveness.

Introduction

Since 1950, when Utz [16] initiated the study of expansive homeomorphism,
several variations of the definition appeared in the literature. Let us recall
that a homeomorphism f : X → X of a compact metric space (X, dist) is
expansive if there is an expansive constant δ > 0 such that if x 6= y, then
dist(fk(x), fk(y)) > δ for some k ∈ Z. Some variations of this definition are
weaker, as for example continuum-wise expansiveness [6] and N -expansiveness
[9] (see also [3,8,13]). A branch of research in topological dynamics investigates
the possibility of extending known results for expansive homeomorphisms to
these versions. See for example [2, 5, 10, 12, 14].

Other related definitions are stronger than expansiveness as for example
positive expansiveness [15] and hyper-expansiveness [1]. Both definitions are so
strong that their examples are almost trivial. It is known [15] that if a compact
metric space admits a positive expansive homeomorphism, then the space has
only a finite number of points. Recall that f : X → X is positive expansive if
there is δ > 0 such that if x 6= y, then dist(fk(x), fk(y)) > δ for some k ≥ 0.
Therefore, we have that if the compact metric space X is not a finite set, then
for every homeomorphism f : X → X and for all δ > 0 there are x 6= y such
that dist(fk(x), fk(y)) < δ for all k ≥ 0. This is a very general result about
the dynamics of homeomorphisms of compact metric spaces.
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Another example of this phenomenon is given in [1], where it is proved that
no uncountable compact metric space admits a hyper-expansive homeomor-
phism (see Definition 3). Therefore, if X is an uncountable compact metric
space, as for example a compact manifold, then for every homeomorphism
f : X → X and for all δ > 0 there are two compact subsets A,B ⊂ X , A 6= B,
such that distH(fk(A), fk(B)) < δ for all k ∈ Z. The distance distH is called
Hausdorff metric and its definition is recalled in equation (3) below.

According to Lewowicz [7] we can explain the meaning of expansiveness
as follows. Let us say that a δ-observer is someone that cannot distinguish
two points if their distance is smaller than δ. If dist(x, y) < δ a δ-observer
will not be able to say that the set A = {x, y} has two points. But if the
homeomorphism is expansive, with expansive constant greater than δ, and if
the δ-observer knows all of the iterates fk(A) with k ∈ Z, then he will find
that A contains two different points, because if dist(fk(x), fk(y)) > δ, then he
will see two points in fk(A). Let us be more precise.

Definition 1. For δ ≥ 0, a set A ⊂ X is δ-separated if for all x 6= y, x, y ∈ A,
it holds that dist(x, y) > δ. The δ-cardinality of a set A is

|A|δ = sup{|B| : B ⊂ A and B is δ-separated},

where |B| denotes the cardinality of the set B.

Notice that the δ-cardinality is always finite because X is compact. The
δ-cardinality of a set represents the maximum number of different points that
a δ-observer can identify in the set.

In this paper we introduce a series of definitions, some weaker and other
stronger than expansiveness, extending the notion of N -expansiveness of [9].
Let us recall that given N ≥ 1, a homeomorphism is N -expansive if there is
δ > 0 such that if diam(fk(A)) < δ for all k ∈ Z, then |A| ≤ N . In terms of
our δ-observer we can say that f is N -expansive if there is δ > 0 such that if
|A| = N + 1, a δ-observer will be able to say that A has at least two points
given that he knows all of the iterates fk(A) for k ∈ Z, i.e., |fk(A)|δ > 1 for
some k ∈ Z. Let us introduce our main definition.

Definition 2. Given integer numbers m > n ≥ 1 we say that f : X → X is
(m,n)-expansive if there is δ > 0 such that if |A| = m, then there is k ∈ Z such
that |fk(A)|δ > n.

The first problem under study is the classification of these definitions. We
prove that (m,n)-expansiveness implies N -expansiveness if m ≤ (N + 1)n. In
particular, if m ≤ 2n, then (m,n)-expansiveness implies expansiveness. These
results are stated in Corollary 1.7. It is known that even on surfaces, N -
expansiveness does not imply expansiveness for N ≥ 2, see [2]. Here we show
that (m,n)-expansiveness does not imply expansiveness if n ≥ 2. For exam-
ple, Anosov diffeomorphisms are known to be expansive and a consequence of
Theorem 5.1 is that Anosov diffeomorphisms are not (m,n)-expansive for all
n ≥ 2.
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It is a fundamental problem in dynamical systems to determine which spaces
admit expansive homeomorphisms (or Anosov diffeomorphisms). In this pa-
per we prove that no Peano continuum admits a (m,n)-expansive homeo-
morphism if 2m ≥ 3n, see Theorem 3.2. We also show that if X admits
a (n + 1, n)-expansive homeomorphism with n ≥ 3, then X is a finite set.
Examples of (3, 2)-expansive homeomorphisms are given on countable spaces
(hyper-expansive homeomorphisms), see Theorem 4.1.

The article is organized as follows. In Section 1 we prove basic properties of
(m,n)-expansive homeomorphisms. In Section 2 we prove the first statement
of the abstract, i.e., no infinite compact metric space admits a (4, 3)-expansive
homeomorphism. In Section 3 we show that no Peano continuum admits a
(m,n)-expansive homeomorphism if 2m ≥ 3n. In Section 4 we show that
hyper-expansive homeomorphisms are (3, 2)-expansive. Such homeomorphisms
are defined on compact metric spaces with a countable number of points. In
Section 5 we prove that a homeomorphism with the shadowing property and
with two points x, y satisfying

0 = lim inf
k→∞

dist(fk(x), fk(y)) < lim sup
k→∞

dist(fk(x), fk(y))

cannot be (m, 2)-expansive if m > 2.
I would like to thank M. J. Pacifico and J. L. Vieitez for their kind comments

and suggestions on preliminary versions of the article.

1. Separating finite sets

Let (X, dist) be a compact metric space and consider a homeomorphism
f : X → X . Let us recall that for integer numbers m > n ≥ 1 a homeomor-
phism f is (m,n)-expansive if there is δ > 0 such that if |A| = m, then there is
k ∈ Z such that |fk(A)|δ > n. In this case we say that δ is a (m,n)-expansive
constant. The idea of (m,n)-expansiveness is that our δ-observer will find more
than n points in every set of m points if he knows all of its iterates.

Remark 1.1. From the definitions it follows that a homeomorphisms is (N +
1, 1)-expansive if and only if it is N -expansive in the sense of [9]. In particular,
(2, 1)-expansiveness is equivalent with expansiveness.

Remark 1.2. Notice that if X is a finite set, then every homeomorphism of X
is (m,n)-expansive.

Proposition 1.3. If n′ ≤ n and m−n ≤ m′−n′, then (m,n)-expansive implies

(m′, n′)-expansive with the same expansive constant.

Proof. The case |X | < ∞ is trivial, so, let us assume that |X | = ∞. Consider
δ > 0 as a (m,n)-expansive constant. Given a set A with |A| = m′ we will show
that there is k ∈ Z such that |fk(A)|δ > n′, i.e., the same expansive constant
works. We divide the proof in two cases.
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First assume that m′ ≥ m. Let B ⊂ A with |B| = m. Since f is (m,n)-
expansive, there is k ∈ Z such that |fk(B)|δ > n. Therefore |fk(A)|δ > n ≥ n′,
proving that f is (m′, n′)-expansive.

Now suppose that m′ < m. Given that |A| = m′ and |X | = ∞ there is
C ⊂ X such that A ∩ C = ∅ and |A ∪ C| = m. By (m,n)-expansiveness,
there is k ∈ Z such that |fk(A ∪ C)|δ > n. Then, there is a δ-separated set
D ⊂ fk(A ∪ C) with |D| > n. Notice that

|fk(A) ∩D| = |D \ fk(C)| ≥ |D| − |fk(C)| > n− (m−m′)

and since n − (m − m′) ≥ n′ by hypothesis, we have that fk(A) ∩ D is a δ-
separated subset of fk(A) with more than n′ points, that is |fk(A)|δ > n′. This
proves the (m′n′)-expansiveness of f in this case too. �

As a consequence of Proposition 1.3 we have that

(1) (m,n)-expansive implies (m+ 1, n)-expansive and
(2) (m,n)-expansive implies (m− 1, n− 1)-expansive.

In Table 1 below we can easily see all these implications. The following propo-
sition allows us to draw more arrows in this table, for example: (4, 2) ⇒ (2, 1).

Table 1. Basic hierarchy of (m,n)-expansiveness. Each pair
(m,n) in the table stands for “(m,n)-expansive“. In the first
position, (2,1), we have expansiveness. The first line, of the
form (N + 1, 1), we have N -expansive homeomorphisms.

(2, 1) ⇒ (3, 1) ⇒ (4, 1) ⇒ . . .
⇑ ⇑ ⇑

(3, 2) ⇒ (4, 2) ⇒ (5, 2) ⇒ . . .
⇑ ⇑ ⇑

(4, 3) ⇒ (5, 3) ⇒ (6, 3) ⇒ . . .
⇑ ⇑ ⇑
. . . . . . . . .

Proposition 1.4. If a, n ≥ 2 and f : X → X is an (an, n)-expansive homeo-

morphism, then f is (a, 1)-expansive.

In order to prove it, let us introduce two previous results.

Lemma 1.5. If A,B ⊂ X are finite sets and δ > 0 satisfies |A| = |A|δ and

|B|δ = 1, then for all ε > 0 it holds that

|A ∪B|δ+ε ≤ |A|ε + |B|δ − |A ∩B|.

Proof. If A ∩B = ∅, then the proof is easy because

|A ∪B|δ+ε ≤ |A|δ+ε + |B|δ+ε ≤ |A|ε + |B|δ.
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Assume now that A ∩ B 6= ∅. Since |A| = |A|δ we have that A is δ-separated.
Therefore |A ∩ B| = 1 because |B|δ = 1. Assume that A ∩ B = {y}. Let us
prove that |A ∪ B|δ+ε ≤ |A|ε and notice that it is sufficient to conclude the
proof of the lemma.

Let C ⊂ A ∪ B be a (δ + ε)-separated set such that |C| = |A ∪ B|δ+ε. If
C ⊂ A, then

|A ∪B|δ+ε = |A|δ+ε ≤ |A|ε.

Therefore, let us assume that there is x ∈ C \A. Define the set

D = (C ∪ {y}) \ {x}.

Notice that |C| = |D| and D ⊂ A.
We will show that D is ε-separated. Take p, q ∈ D and arguing by contra-

diction assume that p 6= q and dist(p, q) ≤ ε. If p, q ∈ C there is nothing to
prove because C is (δ + ε)-separated. Assume now that p = y. We have that
dist(x, p) ≤ δ because x, p ∈ B and |B|δ = 1. Thus

dist(x, q) ≤ dist(x, p) + dist(p, q) ≤ ε+ δ.

But this is a contradiction because x, q ∈ C and C is (ε+ δ)-separated. �

Lemma 1.6. If f is (m + l, n + 1)-expansive, then f is (m,n)-expansive or

(l, 1)-expansive.

Proof. Let us argue by contradiction and take an (m + l, n + 1)-expansive
constant α > 0. Since f is not (m,n)-expansive for ε ∈ (0, α) there is a set
A ⊂ X such that |A| = m and |fk(A)|ε ≤ n for all k ∈ Z. Take δ > 0 such
that |A| = |A|δ and δ + ε < α.

Since f is not (l, 1)-expansive there is B such that |B| = l and |fk(B)|δ = 1
for all k ∈ Z. By Lemma 1.5 we have that

|fk(A ∪B)|δ+ε ≤ |fk(A)|ε + |fk(B)|δ − |A ∩B| ≤ n+ 1− |A ∩B|

for all k ∈ Z. Also, we know that |A ∪ B| = m + l − |A ∩ B|. If we denote
r = |A∩B|, then f is not (m+ l− r, n+1− r)-expansive. And by Proposition
1.3 we conclude that f is not (m+l, n+1)-expansive. This contradiction proves
the lemma. �

Proof of Proposition 1.4. Assume by contradiction that f is not (a, 1)-expan-
sive. Since f is (an, n)-expansive, by Lemma 1.6 we have that f has to be
(a(n− 1), n− 1)-expansive. Arguing inductively we can prove that f is (a(n−
j), n− j)-expansive for j = 1, 2, . . . , n− 1. In particular, f is (a, 1)-expansive,
which is a contradiction that proves the proposition. �

Corollary 1.7. If m ≤ an and f is (m,n)-expansive, then f is (a, 1)-expansive
(i.e., (a − 1)-expansive in the sense of [9]). In particular, if m ≤ 2n and f is

(m,n)-expansive, then f is expansive.

Proof. By Proposition 1.3 we have that f is (an, n)-expansive. Therefore, by
Proposition 1.4 we have that f is (a, 1)-expansive. �
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2. Separating 4 points

In this section we prove that (n + 1, n)-expansiveness with n ≥ 3 implies
that X is finite.

Theorem 2.1. If X is a compact metric space admitting a (4, 3)-expansive
homeomorphism, then X is a finite set.

Proof. By contradiction assume that f is a (4, 3)-expansive homeomorphism
of X with |X | = ∞ and take an expansive constant δ > 0. We know that f
cannot be positive expansive (see [4,7] for a proof). Therefore there are x1, x2

such that x1 6= x2 and

(1) dist(fk(x1), f
k(x2)) < δ

for all k ≥ 0. Analogously, f−1 is not positive expansive, and we can take y1, y2
such that y1 6= y2 and

(2) dist(fk(y1), f
k(y2)) < δ

for all k ≤ 0. Consider the set A = {x1, x2, y1, y2}. We have that 2 ≤ |A| ≤ 4
(we do not know if the 4 points are different). By inequalities (1) and (2) we
have that |fk(A)|δ < |A| for all k ∈ Z. If n = |A|, then we have that f is not
(n, n− 1)-expansive. In any case, n = 2, 3 or 4, by Proposition 1.3 (see Table
1) we conclude that f is not (4, 3)-expansive. This contradiction finishes the
proof. �

Remark 2.2. If X is a compact metric space admitting a (n+ 1, n)-expansive
homeomorphism with n ≥ 3, then X is a finite set. It follows by Theorem 2.1
and Proposition 1.3.

Corollary 2.3. If f : X → X is a homeomorphism of a compact metric space

and |X | = ∞, then for all δ > 0 and m ≥ 4 there is A ⊂ X with |A| = m such

that |fk(A)|δ < |A| for all k ∈ Z.

Proof. It is just a restatement of Remark 2.2. �

3. On Peano continua

In this section we study (m,n)-expansiveness on Peano continua. Let us start
recalling that a continuum is a compact connected metric space and a Peano

continuum is a locally connected continuum. A singleton space (|X | = 1) is a
trivial Peano continuum. For x ∈ X and δ > 0 define the stable and unstable

set of x as

W s
δ (x) = {y ∈ X : dist(fk(x), fk(y)) ≤ δ ∀ k ≥ 0},

Wu
δ (x) = {y ∈ X : dist(fk(x), fk(y)) ≤ δ ∀ k ≤ 0}.

Remark 3.1. Notice that (m,n)-expansiveness implies continuum-wise expan-
siveness for all m > n ≥ 1. Recall that f is continuum-wise expansive if there is
δ > 0 such that if diam(fk(A)) < δ for all k ∈ Z and some continuum A ⊂ X ,
then |A| = 1.
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Theorem 3.2. If X is a non-trivial Peano continuum, then no homeomor-

phism of X is (m,n)-expansive if 2m ≥ 3n.

Proof. Let δ be a positive real number and assume that f is (m,n)-expansive.
As we remarked above, f is a continuum-wise expansive homeomorphism. It
is known (see [5, 6]) that for such homeomorphisms on a Peano continuum,
every point has non-trivial stable and unstable sets. Take n different points
x1, . . . , xn ∈ X and let δ′ ∈ (0, δ) be such that dist(xi, xj) > 2δ′ if i 6= j. For
each i = 1, . . . , n, we can take yi ∈ W s

δ′(xi) and zi ∈ Wu
δ′ (xi) with xi 6= yi and

xi 6= zi. Consider the set A = {x1, y1, z1, . . . , xn, yn, zn}. Since dist(xi, xj) >
2δ′ if i 6= j, and yi, zi ∈ Bδ′(xi) we have that |A| = 3n. If Ai denotes the set
{xi, yi, zi} we have that |fk(Ai)|δ′ ≤ 2 for all k ∈ Z. This is because if k ≥ 0,
then dist(fk(xi), f

k(yi)) ≤ δ′ and if k ≤ 0, then dist(fk(xi), f
k(zi)) ≤ δ′.

Therefore |fk(A)|δ′ ≤ 2n, and then |fk(A)|δ ≤ 2n. Since δ > 0 and n ≥ 1 are
arbitrary, we have that f is not (3n, 2n) expansive for all n ≥ 1. Finally, by
Proposition 1.3, we have that f is not (m,n)-expansive if 2m ≥ 3n. �

Corollary 3.3. If f : X → X is a homeomorphism and X is a non-trivial

Peano continuum, then for all δ > 0 there is A ⊂ X such that |A| = 3 and

|fk(A)|δ ≤ 2 for all k ∈ Z.

Proof. By Theorem 3.2 we know that f is not (3, 2)-expansive. Therefore, the
proof follows by definition. �

4. Hyper-expansive homeomorphisms

Denote by K(X) the set of compact subsets ofX . This space is usually called
as the hyper-space of X . We recommend the reader to see [11] for more on the
subject of hyper-spaces and the proofs of the results that we will cite below. In
the set K(X) we consider the Hausdorff distance distH making (K(X), distH)
a compact metric space. Recall that

(3) distH(A,B) = inf{ε > 0 : A ⊂ Bε(B) and B ⊂ Bε(A)},

where Bε(C) = ∪x∈CBε(x) and Bε(x) is the usual ball of radius ε centered at
x. As usual, we let f to act on K(X) as f(A) = {f(a) : a ∈ A}.

Definition 3. We say that f is hyper-expansive if f : K(X) → K(X) is expan-
sive, i.e., there is δ > 0 such that given two compact sets A,B ⊂ X , A 6= B,
there is k ∈ Z such that distH(fk(A), fk(B)) > δ where distH is the Hausdorff
distance.

In [1] it is shown that f : X → X is hyper-expansive if and only if f has
a finite number of orbits (i.e., there is a finite set A ⊂ X such that X =
∪k∈Zf

k(A)) and the non-wandering set is a finite union of periodic points which
are attractors or repellers. Recall that a point x is in the non-wandering set

if for every neighborhood U of x there is k > 0 such that fk(U) ∩ U 6= ∅.
A point x is periodic if for some k ≥ 0 it holds that fk(x) = x. The orbit
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γ = {x, f(x), . . . , fk−1(x)} is a periodic orbit if x is a periodic point. A periodic
orbit γ is an attractor (repeller) if there is a compact neighborhood U of γ such
that fk(U) → γ in the Hausdorff distance as k → ∞ (resp. k → −∞).

Theorem 4.1. If f : X → X is a hyper-expansive homeomorphism and |X | =
∞, then f is (m,n)-expansive for some m > n ≥ 1 if and only if m ≤ 3.

Proof. Let us start with the direct part of the theorem. Let Pa be the set of
periodic attractors, Pr the set of periodic repellers and take x1, . . . , xj one point
in each wandering orbit. (Recall that, as we said above, hyper-expansiveness
implies that f has just a finite number of orbits.) Define Q = {x1, . . . , xj}.
Take δ > 0 such that

(1) if p, q ∈ Pa ∪ Pr and p 6= q, then dist(p, q) > δ,
(2) if xi ∈ Q, then Bδ(xi) = {xi} (recall that wandering points are isolated

by [1]),
(3) if p ∈ Pa, xi ∈ Q and k ≤ 0, then dist(p, fk(xi)) > δ,
(4) if q ∈ Pr, xi ∈ Q and k ≥ 0, then dist(p, fk(xi)) > δ and
(5) if x, y ∈ Q and k > 0 > l, then dist(fk(x), f l(y)) > δ.

Let us prove that such δ is a (3, 2)-expansive constant. Take a, b, c ∈ X with
|{a, b, c}| = 3. The proof is divided by cases:

• If a, b, c ∈ P = Pa ∪ Pr, then item 1 above concludes the proof.
• If a, b ∈ P and c /∈ P , then there is k ∈ Z such that fk(c) ∈ Q. In this
case items 1 and 2 conclude the proof.

• Assume now that a ∈ P and b, c /∈ P . Without loss of generality let us
suppose that a is a repeller. Let kb, kc ∈ Z be such that fkb(b), fkc(c) ∈
Q. Define k = min{kb, kc}. In this way: dist(fk(a), fk(b)), dist(fk(a),
fk(c)) ≥ δ by item 4 and dist(fk(b), fk(c)) ≥ δ by item 2.

• If a, b, c /∈ P , then consider ka, kb, kc ∈ Z such that fka(a), fkb(b), fkc(c)
∈ Q. Assume, without loss, that ka ≤ kb ≤ kc. Take k = kb. In this
way, items 2 and 5 finishes the direct part of the proof.

To prove the converse, we will show that f is not (m, 3)-expansive for allm >
3. Take δ > 0. Notice that sinceX = ∞ there is at least one wandering point x.
Without loss of generality assume that limk→∞ fk(x) = pa an attractor fixed
point and limk→−∞ fk(x) = pr a repeller fixed point. Take k1, k2 ∈ Z such
that dist(fk(x), pr) < δ for all k ≤ k1 and dist(fk(x), pa) < δ for all k ≥ k2.
Let l = k2 − k1 and define x1 = f−k1(x), and xi+1 = f l(xi) for all i ≥ 1.
Consider the set A = {x1, . . . , xm}. By construction we have that |A| = m
and |fk(A)|δ ≤ 3 for all k ∈ Z. Thus, proving that f is not (m, 3)-expansive if
m > 3. �

Remark 4.2. In light of the previous proof one may wonder if a smart δ-observer
will not be able to say that A has more than 3 points. We mean, we are
assuming that a δ-observer will say that A has n′ points with

n′ = max
k∈Z

|fk(A)|δ .
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According to the dynamic of the set A in the previous proof, we guess that with
more reasoning a smarter δ-observer will find that A has more than 3 points.

Theorem 4.1 gives us examples of (3, 2)-expansive homeomorphisms on in-
finite countable compact metric spaces. A natural question is: does (3, 2)-
expansiveness implies hyper-expansiveness? I do not know the answer, but let
us remark some facts that may be of interest. If f is (3, 2)-expansive, then:

• For all x ∈ X either the stable or the unstable set must be trivial. It
follows by the arguments of the proof of Theorem 3.2.

• If x, y are doubly asymptotic, i.e., dist(fk(x), fk(y)) → 0 as k → ±∞,
then they are isolated points of the space. Suppose that x were an
accumulation point. Given δ > 0 take k0 such that if |k| > k0, then
dist(fk(x), fk(y)) < δ. Take a point z close to x such that dist(fk(x),
fk(z)) < δ if |k| ≤ k0 (we are just using the continuity of f). Then
x, y, z contradicts (3, 2)-expansiveness.

Proposition 4.3. There are (4, 2)-expansive homeomorphisms that are not

(3, 2)-expansive.

Proof. Let us prove it giving an example. Consider a countable compact metric
space X and a homeomorphism f : X → X with the following properties:

(1) f has 5 orbits,
(2) a, b, c ∈ X are fixed points of f ,
(3) there is x ∈ X such that limk→−∞ fk(x) = a and limk→+∞ fk(x) = b,
(4) there is y ∈ X such that limk→−∞ fk(y) = b and limk→+∞ fk(y) = c.

In order to see that f is not (3, 2)-expansive consider ε > 0. Take k0 ∈ Z such
that for all k ≥ k0 it holds that dist(fk(x), b) < ε and dist(f−k(y), b) < ε.
Define u = fk0(x) and v = f−k0(y). In this way ‖{fk(u), b, fk(v)}‖ε ≤ 2 for
all k ∈ Z. This proves that f is not (3, 2)-expansive.

Let us now indicate how to prove that f is (4, 2)-expansive. Consider ε > 0
such that if i ≥ 0 and j ∈ Z, then dist(f−i(x), f j(y)) > ε and dist(f j(x), f i(y))
> ε. Now, a similar argument as in the proof of Theorem 4.1, shows that f is
(4, 2)-expansive. �

5. With the shadowing property

In this section we prove that an important class of homeomorphisms are not
(m,n)-expansive for all m > n ≥ 2. In order to state this result let us recall
that a δ-pseudo orbit is a sequence {xk}k∈Z such that dist(f(xk), xk+1) ≤ δ for
all k ∈ Z. We say that a homeomorphism has the shadowing property if for all
ε > 0 there is δ > 0 such that if {xk}k∈Z is a δ-pseudo orbit, then there is x
such that dist(fk(x), xk) < ε for all k ∈ Z. In this case we say that x ε-shadows
the δ-pseudo orbit.
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Theorem 5.1. Let f : X → X be a homeomorphism of a compact metric space

X. If f has the shadowing property and there are x, y ∈ X such that

0 = lim inf
k→∞

dist(fk(x), fk(y)) < lim sup
k→∞

dist(fk(x), fk(y)),

then f is not (m,n)-expansive if m > n ≥ 2.

Proof. By Proposition 1.3 it is enough to prove that f cannot be (m, 2)-
expansive if m > 2. Consider ε > 0. We will define a set A with |A| = ∞
such that for all k ∈ Z, fk(A) ⊂ Bε(f

k(x)) ∪Bε(f
k(y)), proving that f is not

(m, 2)-expansive for all m > 2.
Consider two increasing sequences al, bl ∈ Z, ρ ∈ (0, ε) and δ > 0 such that

a1 < b1 < a2 < b2 < a3 < b3 < · · · ,
dist(fal(x), fal(y)) < δ,
dist(f bl(x), f bl(y)) > ρ

for all l ≥ 1 and assume that every δ-pseudo orbit can be (ρ/2)-shadowed. For
each l ≥ 1 define the δ-pseudo orbit zlk as

zlk =

{

fk(x) if k < al,
fk(y) if k ≥ al.

Then, for every l ≥ 1 there is a point wl whose orbit (ρ/2)-shadows the δ-
pseudo orbit {zlk}k∈Z. Let us now prove that if 1 ≤ l < s, then wl 6= ws. We
have that al < bl < as. Therefore zlbl = f bl(y) and zsbl = f bl(x). Since wl and

ws (ρ/2)-shadows the pseudo orbits zl and zs, respectively, we have that

dist(f bl(wl), f bl(y)), dist(f bl(ws), f bl(x)) < ρ/2.

We conclude that wl 6= ws because dist(f bl(x), f bl(y)) > ρ. Therefore, if we
define A = {wl : l ≥ 1} we have that |A| = ∞. Finally, since ρ < ε, we have
that fk(A) ⊂ Bε(f

k(x)) ∪Bε(f
k(y)) for all k ∈ Z. Therefore, |fk(A)|ε ≤ 2 for

all k ∈ Z. �

Remark 5.2. Examples where Theorem 5.1 can be applied are Anosov diffeo-
morphisms and symbolic shift maps. Also, if f : X → X is a homeomorphism
with an invariant set K ⊂ X such that f : K → K is conjugated to a symbolic
shift map, then Theorem 5.1 holds because the (m,n)-expansiveness of f in X
implies the (m,n)-expansiveness of f restricted to any compact invariant set
K ⊂ X as can be easily checked.
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