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KNOTS ADMITTING SEIFERT-FIBERED SURGERIES OVER

S2 WITH FOUR EXCEPTIONAL FIBERS

Sungmo Kang

Abstract. In this paper, we construct infinite families of knots in S3

which admit Dehn surgery producing a Seifert-fibered space over S2 with
four exceptional fibers. Also we show that these knots are turned out to
be satellite knots, which supports the conjecture that no hyperbolic knot
in S3 admits a Seifert-fibered space over S2 with four exceptional fibers
as Dehn surgery.

1. Introduction

Knots in S3 which admit Dehn surgery of a Seifert-fibered space have been
studied by many people. Infinite families of knots with lens space Dehn surg-
eries were constructed by Berge in [1]. He introduced a primitive curve in
the boundary of a genus two handlebody and constructed 12 types of prim-
itive/primitive or double-primitive knots which lie in a genus two Heegaard
surface of S3. These knots are called Berge knots . He showed in [1] that these
knots admit lens space surgeries with an integral slope. There is a conjecture
about the Berge knots.

Berge Conjecture (Berge [1]). A hyperbolic knot K in S3 has a lens space
surgery if and only if K is a Berge knot, and the surgery is the corresponding
integral surgery.

Later, by introducing a Seifert curve in the boundary of a genus two han-
dlebody, Dean described a generalization, called primitive/Seifert knots, in his
thesis [3], and its published version [4]. The knots that he constructed admit
Dehn surgery of a Seifert-fibered space over S2 with three exceptional fibers.
Two infinite families of hyperbolic knots which have a Seifert-fibered space over
RP2 with two exceptional fibers as Dehn surgery are given by Eudave-Muñoz
in [6]. These knots turned out to be primitive/Seifert knots. Berge and the
author give complete classification of hyperbolic primitive/primitive knots and
primitive/Seifert knots in [2].
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Now we focus on knots which admit Dehn surgery producing a Seifert-fibered
space over S2 with four exceptional fibers. Let K be a knot in S3 and K(γ)
the manifold obtained by a γ-Dehn surgery of S3. Kalliongis and Tsau in [7]
showed that the connected sum of two torus knots admits a Seifert-fibered space
over S2 with four exceptional fibers. In other words, if K = T (p, q)#T (m,n),
where T (p, q) is a (p, q)-torus knot, then K(pq+mn) is a Seifert-fibered space
over S2 with four exceptional fibers of indices p, q,m, and n. Miyazaki and
Motegi in [8] gave a new family of satellite knots producing a Seifert-fibered
space over S2 with four exceptional fibers as Dehn surgery. The connected sum
of two torus knots is contained in this family as a special case.

The following is a conjecture related to a Seifert-fibered surgery over S2 with
four exceptional fibers.

Conjecture. If K(γ) is a Seifert-fibered space for some slope γ, then K(γ) is
a Seifert-fibered space over S2 with at most four exceptional fibers or a Seifert-
fibered space over RP2 with no more than two exceptional fibers. Furthermore,
if K is hyperbolic, then the surgery slope γ is integral, and K(γ) cannot be a
Seifert-fibered space over S3 with four exceptional fibers.

In this paper, we use the method of Berge and Dean to construct infinite
families of knots which admit Dehn surgery of a Seifert-fibered space over
S2 with four exceptional fibers. Moreover we show that these knots are all
satellite knots, which supports the above conjecture. In other words, we have
the following as the main result of this paper.

Theorem 1.1. There are infinite families of knots lying in a genus two Hee-
gaard surface of S3 which admit Dehn surgery producing a Seifert-fibered space
over S2 with four exceptional fibers. In particular, these families of knots are
all satellite knots.

This theorem follows immediately from Theorem 3.6 which provides six fam-
ilies of such knots. One of these families is the connected sum of two torus
knots. Also we can guess by comparing slopes that the family of satellite knots
constructed by Miyazaki and Motegi in [8] belongs to one of these families.

Throughout this paper, we denote by S(a1, . . . , an) the Seifert-fibered space
over a surface S with n exceptional fibers of indices a1, . . . , an.

2. Knots lying in a genus two Heegaard surface of S3

Let H be a genus two handlebody, k an essential simple closed curve in ∂H ,
and H [k] the 3-manifold obtained by adding a 2-handle to H along k. We say
k is primitive in H if H [k] is a solid torus. Equivalently k is conjugate to a
free generator of π1(H).

Similarly, we say k is Seifert in H if H [k] is a Seifert-fibered space and not
a solid torus. Note that, since H is a genus two handlebody, that k is Seifert
in H implies that H [k] is an orientable Seifert-fibered space over D2 with two
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exceptional fibers, or an orientable Seifert-fibered space over the Möbius band
with at most one exceptional fiber.

Suppose K is a simple closed curve in a genus two Heegaard surface Σ of
S3 bounding handlebodies H and H ′. K in Σ is primitive/primitive or double-
primitive if it is primitive with respect to both H and H ′. Similarly, K is
primitive/Seifert if it is primitive with respect to one of H or H ′, and Seifert
with respect to the other. Also K is Seifert/Seifert or double-Seifert if it is
Seifert with respect to both H and H ′.

Suppose N(K) is a tubular neighborhood of K in S3. Let γ be a component
of ∂N ∩ Σ which is an essential simple closed curve in ∂N . Then the isotopy
class of γ in ∂N defines the surface slope in ∂N . (The surface slope depends
on the embedding of K in Σ, so a knot in S3 may have more than one surface
slope.)

The following lemma shows the relationship between Dehn surgery at a
surface slope and adding a 2-handle to a genus two handlebody.

Lemma 2.1. Let K be a knot lying in a genus two Heegaard surface Σ of S3

bounding handlebodies H and H ′, and γ be a surface slope with respect to this
embedding of K. Then K(γ) ∼= H [K] ∪∂ H ′[K].

Proof. It follows from Lemma 2.1 in [4]. �

Lemma 2.1 implies that if K is primitive/primitive, then K(γ) has a genus
one Heegaard splitting, and so K(γ) is a lens space. If K is primitive/Seifert,
then K(γ) is either S2(a, b, c), RP2(a, b), or a connected sum of lens spaces.
However, Eudave-Muñoz [5] proved that if a primitive/Seifert curve K is hy-
perbolic in S3, then a connected sum of lens spaces cannot arise as a Dehn
surgery on K. As mentioned in the introduction of this paper, hyperbolic
primitive/primitive knots and primitive/Seifert knots are completely classified
in [2].

If K is Seifert/Seifert, then K(γ) is either S2(a, b, c, d),RP2(a, b, c),K2(a, b),
or a graph manifold. However, for homological reasons Dehn surgery on a knot
in S3 producing K2(a, b) cannot happen. Since we are interested in construct-
ing knots admitting Dehn surgery of S2(a, b, c, d), we focus on a Seifert curve
k in a genus two handlebody H such that H [k] is D2(a, b).

3. Twisted torus knots admitting Dehn surgery of S2(a, b, c, d)

In this section, we give the main result of this paper. In other words, by
using twisted torus knots we construct infinite families of knots which admit
Dehn surgery of S2(a, b, c, d), and we show that all of these knots are satellite
knots. The precise definitions of the twisted torus knots can be found in [4].
For readers, we give brief explanation on how to construct the twisted torus
knots.

Let V and V ′ be two standardly embedded disjoint unlinked solid tori in
S3. Let T (p, q) be the (p, q)-torus knot which lies in the boundary of V . Let
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Figure 1. The (7, 3)-torus knot T (7, 3) and 3 parallel copies
3T (2, 1) of the (2, 1)-torus knot.

rT (m,n) be the r parallel copies of T (m,n) which lies in the boundary of V ′.
Here we may assume that 0 < q < p and m > 0. Let D be the disk in ∂V so
that T (p, q) intersects D in r disjoint parallel arcs, where 0 < r ≤ p+q, and D′

the disk in ∂V ′ so that rT (m,n) intersects D′ in r disjoint parallel arcs, one
for each component of rT (m,n). Figure 1 shows the (7, 3)-torus knot T (7, 3),
3 parallel copies 3T (2, 1) of the (2, 1)-torus knot, and the disks D and D′. We
excise the disks D and D′ from their respective tori and glue the punctured
tori together along their boundaries so that the orientations of T (p, q) and
rT (m,n) align correctly. The resulting one must yield a knot and is called a
twisted torus knot, which is denoted by K(p, q, r,m, n). Figure 2 shows the
twisted torus knot K(7, 3, 3, 2, 1).

Figure 2. The twisted torus knot K(7, 3, 3, 2, 1).

Let H be the genus two handlebody obtained from the two solid tori V and
V ′ by identifying the two disks D and D′. Also we let H ′ = S3 −H, and
Σ = ∂H = ∂H ′. Then (H,H ′; Σ) forms a genus 2 Heegaard splitting of S3.
Thus we can consider all of the twisted torus knots as lying on this genus 2
Heegaard surface Σ bounding the two handlebodies H and H ′ of S3.

The following proposition shows the surface slope of a twisted torus knot.

Proposition 3.1. Let K be a twisted torus knot K(p, q, r,m, n) described
above. The surface slope of K with respect to the Heegaard surface Σ is
pq + r2mn.
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Figure 3. The generators of π1(H) and π1(H
′).

Proof. This is Proposition 3.1 in [4]. �

Suppose K = K(p, q, r,m, n) is a twisted torus knot lying in a genus two
Heegaard splitting (H,H ′; Σ) of S3 as described above. Let wp,q,r,m,n and
w′

p,q,r,m,n be the conjugacy class of K in π1(H) = 〈x, y〉 and π1(H
′) = 〈x′, y′〉

respectively, where x and y are generators in H and x′ and y′ are generators
in H ′, which are dual to the cutting disks as shown in Figure 3. Then we have
the following remark.

Remark 3.2. (1) w′

p,q,r,m,n is equal to wq,p,r,n,m with x replaced by x′ and y

replaced by y′.
(2) By the construction of a twisted torus knot, wp,q,r,m,n (w′

p,q,r,m,n, resp.)
does not depend on the parameter n (m, resp.).

The following two lemmas show which values of the parameters p, q, r,m,

and n produce a primitive or a Seifert curve of K(p, q, r,m, n) with respect to
H and H ′.

Lemma 3.3. K(p, q, r,m, n) is a primitive curve in H if and only if

(1) p = 1; or
(2) m = 1 and r ≡ ±1 or ±q mod p.

Similarly, K(p, q, r,m, n) is a primitive curve in H ′ if and only if

(1) q = 1; or
(2) n = 1 and r ≡ ±1 or ±p mod q.

Proof. This is Theorem 3.4 in [4]. �

Lemma 3.4. If K(p, q, r, 1, n) is a primitive curve in H, then K = K(p, q, r,m,
n) is a Seifert curve in H with H [K] = D2(p,m). Similarly, if K(p, q, r,m, 1)
is a primitive curve in H ′, then K = K(p, q, r,m, n) is a Seifert curve in H ′

with H ′[K] = D2(q, n).

Proof. This is Proposition 3.6 in [4]. �

Lemmas 3.3 and 3.4 allow one to produce knots in S3 admitting Dehn surgery
of S2(a, b, c, d). If K(p, q, r, 1, n) is a primitive curve in H and K(p, q, r,m, 1)
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is a primitive curve in H ′, then by Lemma 3.4 K = K(p, q, r,m, n) is Seifert
in both H and H ′ such that H [K] = D2(p,m) and H ′[K] = D2(q, n), and
by Lemma 3.3 we can find all possible values of the parameters p, q, and r for
K(p, q, r, 1, n) and K(p, q, r,m, 1) being primitive curves in H and H ′, respec-
tively. It follows from Lemma 2.1 that Dehn surgery on K at a surface slope
is either an S2(p, q,m, n) or a graph manifold. However, the following theorem
shows that Dehn surgery on K at a surface slope is an S2(p, q,m, n).

Theorem 3.5. Suppose K = K(p, q, r,m, n) is a twisted torus knot lying in
a genus two Heegaard splitting (H,H ′; Σ) of S3 such that K(p, q, r, 1, n) is a
primitive curve in H and K(p, q, r,m, 1) is a primitive curve in H ′. Then K(γ)
is a Seifert-fibered space over S2 with four exceptional fibers of indices p, q,m,

and n, where γ is a surface slope which is equal to pq + r2mn. Furthermore,
K is a satellite knot whose companion is a torus knot T (m,n).

Figure 4. The essential annulus A in H which can be ob-
tained by bandsumming the disk D with the band τ .

Proof. First we consider the genus two handlebody H which is constructed
from two solid tori V and V ′ by gluing along disks D and D′. ∂D(= ∂D′)
decomposes ∂H into two once-punctured tori F and F ′ which come from ∂V

and ∂V ′, respectively. Then K ∩ F ′ consists of r parallel arcs. As shown in
Figure 4 considering a band τ in F ′ which contains the r parallel arcs, and the
disk D, we can construct a properly embedded separating essential annulus A
in H . In other words, the annulus A can be obtained by bandsumming the
disk D with the band τ .

Cutting H apart along A yields a genus two handlebody W and a solid
torus Z. Note that Z is homeomorphic to the solid torus V ′, and that K

lies in the boundary of the genus two handlebody W as a twisted torus knot
K(p, q, r, 1, n′) for some integer n′. Since K(p, q, r, 1, n) is primitive in H and
the primitivity does not depend on the parameter n, by Lemma 3.3, K(p, q, r, 1,
n′) is also primitive in W . Since K is a primitive curve in W and thus W [K]
is a solid torus, it follows that H [K] is obtained by gluing the two solid tori
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W [K] and Z together along A. So H [K] is Seifert-fibered over D2 with ∂A as
regular fibers and the cores of W [K] and Z as exceptional fibers.

We need to compute the indices of the two exceptional fibers of H [K]. It is
clear that the annulus A wraps around the solid torus Z m times longitudinally,
so the core of Z is an exceptional fiber of index m. The other index can be
obtained by computing π1(W [K][β]), where β is one boundary component of
A. We can observe that W [K][β] is homeomorphic to W [β][K], W [β] is a
solid torus, and K lies in the boundary of W [β] as a torus knot T (p, q). Thus
π1(W [K][β]) = π1(W [β][K]) = Zp and then the core of W [K] is an exceptional
fiber of index p.

We have shown that H [K] is a D2(p,m) with ∂A as regular fibers. We can
apply the similar argument to H ′. We can construct a properly embedded
essential annulus A′ with ∂A′ = ∂A, which separates the handlebody H ′ into
a genus two handlebody W ′ and a solid torus Z ′. Then H ′[K] is a D2(q, n)
with ∂A′ as regular fibers. Since for the surface slope γ K(γ) = H [K] ∪∂

H ′[K] = D2(p,m) ∪∂ D2(q, n) and the two regular fibers coincide, K(γ) is an
S2(p, q,m, n). This completes the proof of the first part of the theorem.

Now we will show that K is a satellite knot whose companion is a torus
knot T (m,n). Using the separating annuli A and A′, we can decompose S3 as
follows;

S3 = H ∪∂ H ′ ∼= (W ∪A Z) ∪∂ (W ′ ∪A′ Z ′) ∼= (W ∪∂ W ′) ∪T (Z ∪A′′ Z ′),

where T = A ∪∂ A′ and A′′ = ∂Z −A = ∂Z ′ −A′. Since ∂A′′ = ∂A and
one boundary component of ∂A′′ lies on the boundary of Z(Z ′, resp.) as a
torus knot T (m,n)(T (n,m), resp.), Z ∪A′′ Z ′ is homeomorphic to D2(m,n).
Therefore (W ∪∂ W ′) is a solid torus whose core is a torus knot T (m,n). This
proves that K is a satellite knot whose companion is a torus knot T (m,n). �

In the following theorem, which is the main theorem of this paper, we give
infinite families of knots in S3 which admit Dehn surgery of S2(a, b, c, d).
Basically, using Lemma 3.3 we will find all possible values of the parame-
ters of K(p, q, r,m, n) such that K(p, q, r, 1, n) is a primitive curve in H and
K(p, q, r,m, 1) is a primitive curve in H ′. Recall that we may assume that
0 < q < p with gcd(p, q) = 1, 0 < r ≤ p+ q, and m > 0.

Theorem 3.6. Let K = K(p, q, r,m, n) be a twisted torus knot whose parame-
ters p, q, and r, with 1 < q < p, gcd(p, q) = 1, and 0 < r ≤ p+ q, satisfy one of
the following values in the table, and m > 1, |n| > 1 with gcd(m,n) = 1. Then
K admits a Dehn surgery producing a Seifert-fibered space over S2 with four
exceptional fibers of indices p, q,m, and n at slope pq+ r2mn. Furthermore, K
is a satellite knot whose companion is a torus knot T (m,n).
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(p, q, r) satisfying

1 (p, q, 1) 1 < q < p

2 (p, q, p− q) 1 < q < p

3 (p, q, p+ q) 1 < q < p

4 (αq + 2ǫ, q, αq + ǫ) q > 1, α > 0, ǫ = ±1 with αq + 2ǫ > 2
5 (3J + ǫ, 2J + ǫ, 4J + ǫ) J > 0, ǫ = ±1 with 2J + ǫ > 1
6 ((2J + ǫ)J ′ + J, 2J + ǫ, (2J + ǫ)J ′ + J + ǫ) J, J ′ > 0, ǫ = ±1 with 2J + ǫ > 1

Proof. By Theorem 3.5, it suffices to show that K(p, q, r, 1, n) is a primitive
curve in H and K(p, q, r,m, 1) is a primitive curve in H ′ for the values of the
parameters p, q, r in the table. However here using Lemma 3.3, we find all
possible values of the parameters p, q, r such that K(p, q, r, 1, n) is a primitive
curve in H and K(p, q, r,m, 1) is a primitive curve in H ′. By Lemma 3.3,
K(p, q, r, 1, n) is a primitive curve in H if and only if r ≡ ±1 or ±q mod p. All
possible values for r satisfying the condition that r ≡ ±1 or ±q mod p are as
follows:

r = 1, q, p− 1, p− q, p+ 1, 2p− q, p+ q, or 2p− 1.

Similarly, K(p, q, r,m, 1) is a primitive curve in H ′ if and only if r ≡ ±1 or ±p

mod q. All possible values for r satisfying the condition that r ≡ ±1 or ±p

mod q are as follows:

r = 1, p, αq − 1, αq + 1, αq − p, p− αq, or p+ q,

where α > 0. (if r = αq − p, then α > 1.)
Now we figure out which values of r satisfy both conditions. Since 1, p −

q, p + q are contained in both conditions, these cases give (1), (2), and (3) in
the table.

If r = 2p−1, then since r ≤ p+ q, p ≤ q+1 and thus p = q+1. This implies
that r = p+ q and this case belongs to (3).

If r = p, then r 6≡ ±1 or ±q mod p, which implies that K(p, q, r, 1, n) is not
a primitive curve in H . Similarly we can rule out the case r = q.

If r = p − αq in the second condition, then it cannot be p − 1, p + 1, or
2p− q, otherwise it contradicts αq > 1 or gcd(p, q) = 1. Therefore in the first
condition r must be equal to p− q and thus α = 1 and r = p− q, which belongs
to (2).

The remaining values for r in the both conditions are as follows.

• the first condition: r = p− 1, p+ 1, or 2p− q

• the second condition: r = αq − 1, αq + 1, or αq − p.

We handle each values of r in the second condition. First suppose that
r = αq − 1. Since p and q are coprime, αq − 1 6= p − 1. If αq − 1 = p + 1,
then p = αq − 2 and r = αq − 1, which belongs to the case (4) in the table. If
αq − 1 = 2p− q, then 2p = (α + 1)q − 1. Since r = αq − 1 = 2p− q ≤ p + q,
p ≤ 2q. Therefore 2p = (α + 1)q − 1 ≤ 4q, which implies that α = 1, 2, or
3. But if α = 1, then 2p = 2q − 1, a contradiction to q < p. If α = 3, then
2p = 4q−1 and thus 2(p−2q) = −1, a contradiction. If α = 2, then 2p = 3q−1
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i.e., 3q − 2p = 1. Therefore p = 3J + 1 and q = 2J + 1 for J > 0. Therefore
r = 4J + 1, which belongs to (5) in the table.

Second, suppose r = αq+1. Then since p and q are coprime, αq+1 6= p+1.
If αq + 1 = p− 1, then p = αq + 2 and r = αq + 1, which belongs to (4) in the
table. If αq + 1 = 2p − q, then 2p = (α + 1)q + 1. Since r ≤ p + q and thus
p ≤ 2q, (α + 1)q + 1 ≤ 4q. This implies that α = 1 or 2. But if α = 1, then
2p = 2q+1, contradiction. If α = 2, then 3q− 2p = −1. Hence p = 3J − 1 and
q = 2J − 1 for J > 1. Therefore r = 4J − 1, which belongs to (5) in the table.

Third, suppose r = αq − p. Note that in this case, α > 1. Since p and q

are coprime, αq − p 6= 2p− q. If αq − p = p− 1, then 2p = αq + 1 and thus α
must be an odd number. Put α = 2J ′ + 1, where J ′ > 0. Since 2p− αq = 1,
q = 2J − 1 and p = (2J − 1)J ′ + J , where J > 1. This belongs to the case (6).

If αq−p = p+1, then 2p = αq− 1 and thus α must be an odd number. Put
α = 2J ′+1, where J ′ > 0. Since 2p−αq = −1, q = 2J+1 and p = (2J+1)J ′+J ,
where J > 0. This belongs to the case (6). �

Remark 3.7. (1) If K(p, q, r,m, n) is in the case (1) in the table, i.e., r = 1, then
K(p, q, r,m, n) is the connected sum of two torus knots T (p, q) and T (m,n).

(2) If K(p, q, r,m, n) is in the case (3) in the table, i.e., r = p+ q, then the
surface slope is pq + (p + q)2mn. This enables us to conjecture by comparing
slopes that the family of satellite knots constructed by Miyazaki and Motegi in
[8] belongs to the case (3) in the table.
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