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ON SPACELIKE ROTATIONAL SURFACES WITH

POINTWISE 1-TYPE GAUSS MAP

Uǧur Dursun

Abstract. In this paper, we study a class of spacelike rotational surfaces
in the Minkowski 4-space E4

1 with meridian curves lying in 2-dimensional
spacelike planes and having pointwise 1-type Gauss map. We obtain all
such surfaces with pointwise 1-type Gauss map of the first kind. Then
we prove that the spacelike rotational surface with flat normal bundle
and pointwise 1-type Gauss map of the second kind is an open part of a
spacelike 2-plane in E4

1.

1. Introduction

The notion of finite type submanifolds of Euclidean spaces was introduced
by B.-Y. Chen in late 1970’s [2]. Since then many works have been done to
characterize or classify submanifolds of Euclidean space or pseudo-Euclidean
space in terms of finite type. Also, B.-Y. Chen and P. Piccinni extended the
notion of finite type to differentiable maps, in particular, to Gauss map of
submanifolds in [4]. A smooth map φ on a submanifold M of a Euclidean space
or a pseudo-Euclidean space is said to be of finite type if φ can be expressed as a

finite sum of eigenfunctions of the Laplacian ∆ of M , that is, φ = φ0+
∑k

i=1 φi,
where φ0 is a constant map, φ1, . . . , φk non-constant maps such that ∆φi =
λiφi, λi ∈ R, i = 1, . . . , k.

If a submanifold M of a Euclidean space or a pseudo-Euclidean space has
1-type Gauss map ν, then ν satisfies ∆ν = λ(ν +C) for some λ ∈ R and some
constant vector C. In [4], B.-Y. Chen and P. Piccinni studied compact subman-
ifolds of Euclidean spaces with finite type Gauss map. However, the Laplacian
of the Gauss map of several surfaces and hypersurfaces such as helicoids of the
1st, 2nd, and 3rd kind, conjugate Enneper’s surface of the second kind and B-
scrolls in a 3-dimensional Minkowski space E3

1, generalized catenoids, spherical
n-cones, hyperbolical n-cones and Enneper’s hypersurfaces in E

n+1
1 take the
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form

(1) ∆ν = f(ν + C)

for some smooth function f on M and some constant vector C ([11, 18]). A
submanifold of a pseudo-Euclidean space is said to have pointwise 1-type Gauss

map if its Gauss map satisfies (1) for some smooth function f on M and some
constant vector C. In particular, if C is zero, it is said to be of the first kind.
Otherwise, it is said to be of the second kind (cf. [1, 3, 5, 6, 7, 10, 12, 14, 17, 19]).

The complete classification of ruled surfaces in E
3
1 with pointwise 1-type

Gauss map of the first kind was obtained in [18]. Recently, ruled surfaces
in E

3
1 with pointwise 1-type Gauss map of the second kind were studied in

[8, 13]. Also, a complete classification of rational surfaces of revolution in
E
3
1 satisfying (1) was given in [17], and it was proved that a right circular

cone and a hyperbolic cone in E
3
1 are the only rational surfaces of revolution

in E
3
1 with pointwise 1-type Gauss map of the second kind. The rotational

hypersurfaces in Lorentz-Minkowski space with pointwise 1-type Gauss map
was studied in [11]. Moreover, in [20] a complete classification of cylindrical
and non-cylindrical surfaces in E

m
1 with pointwise 1-type Gauss map of the first

kind was obtained.
Recently, the author and Turgay have studied some characterization and

classifications on spacelike surfaces in the Minkowski space E
4
1 with pointwise

1-type Gauss map [15, 16].
In this work, we study a class of spacelike rotational surfaces in the Minkow-

ski 4-space E
4
1 defined by (11) with meridian curves lying in 2-dimensional

spacelike planes and having pointwise 1-type Gauss map. We obtain all such
surfaces with pointwise 1-type Gauss map of the first kind. We conclude that
there exists no non-planar maximal spacelike rotational surface in E

4
1 with

pointwise 1-type Gauss map of the first kind. We also prove that the spacelike
rotational surface with flat normal bundle and pointwise 1-type Gauss map of
the second kind is an open part of a spacelike 2-plane in E

4
1.

2. Preliminaries

Let E
m
1 denote m-dimensional Minkowski space with the canonical metric

tensor given by

g = dx2
1 + dx2

2 + · · ·+ dx2
m−1 − dx2

m,

where (x1, x2, . . . , xm) is a rectangular coordinate system in E
m
1 .

A vector ζ ∈ E
m
1 is called spacelike (resp., time-like or light-like) if 〈ζ, ζ〉 > 0

or ζ = 0 (resp., 〈ζ, ζ〉 < 0 or 〈ζ, ζ〉 = 0 with ζ 6= 0). A submanifold M of Em
1

is said to be spacelike if every non-zero tangent vector on M is spacelike.
Let M be an oriented n-dimensional submanifold in an (n+ 2)-dimensional

Minkowski space En+2
1 . We choose an oriented local orthonormal frame {e1, . . . ,

en+2} on M with εA = 〈eA, eA〉 = ±1 such that e1, . . . , en are tangent to M
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and en+1, en+2 are normal to M . We use the following convention on the range
of indices: 1 ≤ i, j, k, . . . ≤ n, n+ 1 ≤ r, s, t, . . . ≤ n+ 2.

Let ∇̃ be the Levi-Civita connection of En+2
1 and ∇ the induced connection

on M . Denote by {ω1, . . . , ωn+2} the dual frame and by {ωAB}, A,B =
1, . . . , n+ 2, the connection forms associated to {e1, . . . , en+2}. Then we have

∇̃ekei =

n∑

j=1

εjωij(ek)ej +

n+2∑

r=n+1

εrh
r
iker,

∇̃ekes = −Ar(ek) +
n+2∑

r=n+1

εrωsr(ek)er,

Dekes =
n+2∑

r=n+1

εrωsr(ek)er,

whereD is the normal connection, hr
ij the coefficients of the second fundamental

form h, and Ar the Weingarten map in the direction er.
The mean curvature vector H and the squared length ‖h‖2 of the second

fundamental form h are defined, respectively, by

(2) H =
1

n

∑

r,i

εiεrh
r
iier

and

(3) ‖h‖2 =
∑

r,i,j

εiεjεrh
r
ijh

r
ji.

A submanifold M is said to have parallel mean curvature vector H if the mean
curvature vector satisfies DH = 0 identically.

The gradient of a smooth function f onM is defined by∇f =
∑n

i=1 εiei(f)ei,
and the Laplace operator acting on M is ∆ =

∑n

i=1 εi(∇eiei − eiei).

The Codazzi equation of M in En+2
1 is given by

hr
ij,k = hr

jk,i,

hr
jk,i = ei(h

r
jk) +

n+2∑

s=n+1

εsh
s
jkωsr(ei)−

n∑

ℓ=1

εℓ
(
ωjℓ(ei)h

r
ℓk + ωkℓ(ei)h

r
ℓj

)
.

(4)

Also, from the Ricci equation of M in En+2
1 , we have

(5) RD(ej , ek; er, es) = 〈[Aer , Aes ](ej), ek〉 =
n∑

i=1

εi
(
hr
ikh

s
ij − hr

ijh
s
ik

)
,

where RD is the normal curvature tensor.
A spacelike submanifold M in E

m
1 is said to have flat normal bundle if its

normal curvature tensor RD vanishes identically.
Let G(m − n,m) be the Grassmannian manifold consisting of all oriented

(m−n)-planes through the origin of an m-dimensional pseudo-Euclidean space
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E
m
t with index t and

∧m−n
E
m
t the vector space obtained by the exterior prod-

uct of m − n vectors in E
m
t . Let fi1 ∧ · · · ∧ fim−n

and gi1 ∧ · · · ∧ gim−n
be

two vectors in
∧m−n

E
m
t , where {f1, f2, . . . , fm} and {g1, g2, . . . , gm} are two

orthonormal bases of Em
t . Define an indefinite inner product 〈, 〉 on ∧m−n

E
m
t

by

(6)
〈
fi1 ∧ · · · ∧ fim−n

, gi1 ∧ · · · ∧ gim−n

〉
= det(〈fiℓ , gjk〉).

Therefore, for some positive integer s, we may identify
∧m−n

E
m
t with some

pseudo-Euclidean space EN
s , where N =

(
m

m−n

)
. Let e1, . . . , en, en+1, . . . , em be

an oriented local orthonormal frame on an n-dimensional pseudo-Riemannian
submanifoldM in E

m
t with εB = 〈eB, eB〉 = ±1 such that e1, . . . , en are tangent

to M and en+1, . . . , em are normal to M . The map ν : M → G(m−n,m) ⊂ E
N
s

from an oriented pseudo-Riemannian submanifold M into G(m−n,m) defined
by

(7) ν(p) = (en+1 ∧ en+2 ∧ · · · ∧ em)(p)

is called the Gauss map of M that is a smooth map which assigns to a point p
in M the oriented (m− n)-plane through the origin of Em

t and parallel to the
normal space of M at p [19].

We put ε = 〈ν, ν〉 = εn+1εn+2 · · · εm = ±1 and

M̃N−1
s (ε) =

{
S
N−1
s (1) in E

N
s if ε = 1,

H
N−1
s−1 (−1) in E

N
s if ε = −1.

Then the Gauss image ν(M) can be viewed as ν(M) ⊂ M̃N−1
s (ε).

2.1. Rotational surfaces in E
4

1

In [21], Moore introduced general rotational surfaces in the Euclidean space
E4. A rotational surface in E4 is a surface left invariant by a rotation in E4

which is defined as a linear transformation of positive determinant preserving
distance and leaving one point fixed. Let β(s) = (x(s), y(s), z(s), w(s)) be a
regular smooth curve on an open interval I in R, and let a and b be some real
numbers. Then, a general rotational surface M in E4 with the meridian curve
β and the rates of rotation a and b is given by

X(s, t) =
(
x(s) cos at− y(s) sinat, x(s) sin at+ y(s) cos at,(8)

z(s) cos bt− w(s) sin bt, z(s) sin bt+ w(s) cos bt
)
.

If a or b is zero, then a surface M defined by (8) is called a simple rotational
surface as the rotation subgroup which produces M to be a simple rotation [9].

Using the idea of Moore we consider a class of rotational surfaces in E4
1 which

is invariant under the following subgroup of linear isometries of the Minkowski



ROTATIONAL SURFACES WITH POINTWISE 1-TYPE GAUSS MAP 305

space E4
1 ,

(9) G(a,b) =
{
Bt(a, b) =




cos at sin at 0 0
− sinat cos at 0 0

0 0 cosh bt sinh bt
0 0 sinh bt cosh bt


 : t ∈ R

}
.

Let β(s) = (x(s), y(s), z(s), w(s)), s ∈ I be a spacelike or timelike curve in E4
1 .

Then we consider a Moore type rotational surface M with the meridian curve
β given by

X(s, t) = β(s)Bt(a, b)

=
(
x(s) cos at− y(s) sin at, x(s) sin at+ y(s) cos at,(10)

z(s) cosh bt+ w(s) sinh bt, z(s) sinh bt+ w(s) cosh bt
)

which is invariant under the given above subgroup, where a and b are constants.
It is also called a double rotational surface.

In this work, we study double spacelike rotational surfaces defined by (10) in
E4

1 whose meridians lie in spacelike 2-planes. By choosing β(s) = (x(s), 0, z(s),
0) in the x1x3-plane, we have from (10) a rotational surface E4

1 given by

(11) F (s, t) = (x(s) cos at, x(s) sin at, z(s) cosh bt, z(s) sinh bt),

where s ∈ I ⊂ R, t ∈ (0, 2π). This surface is spacelike if a2x2(s)− b2z2(s) > 0
on I.

Suppose that s is the arc length parameter of β. Then, x′2(s) + z′
2
(s) = 1,

and the curvature function κ of β is given by κ(s) = x′(s)z′′(s) − x′′(s)z′(s),
s ∈ I.

Let M be a rotational surface E4
1 defined by (11). We consider the following

orthonormal moving frame field {e1, e2, e3, e4} onM such that e1, e2 are tangent
to M , and e3, e4 are normal to M :

e1 =
∂

∂s
, e2 =

1

q

∂

∂t
,(12)

e3 = (−z′ cos at,−z′ sin at, x′ cosh bt, x′ sinh bt),(13)

e4 =
1

q
(−bz sin at, bz cos at, ax sinh bt, ax cosh bt),(14)

where ε = sgn(a2x2(s) − b2z2(s)) = ±1 and q =
√
ε(a2x2(s)− b2z2(s)) 6= 0.

Then ε1 = 1, ε2 = ε, ε3 = 1 and ε4 = −ε.
By a direct computation we have the components of the second fundamental

form and the connection forms as follows

h3
11 = κ, h3

22 =
a2xz′ + b2zx′

a2x2 − b2z2
, h3

12 = 0,(15)

h4
12 =

ab(zx′ − xz′)

a2x2 − b2z2
, h4

11 = 0, h4
22 = 0,(16)
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ω12(e1) = 0, ω12(e2) =
a2xx′ − b2zz′

a2x2 − b2z2
,(17)

ω34(e1) = 0, ω34(e2) = −ab(xx′ + zz′)

a2x2 − b2z2
.(18)

Thus, the shape operators of M are of the form

A3 =

(
h3
11 0
0 h3

22

)
and A4 =

(
0 h4

12

h4
12 0

)
(19)

from which we obtain the mean curvature vector and the normal curvature of
M as

H =
1

2
(h3

11 + εh3
22)e3,(20)

RD(e1, e2; e3, e4) = h4
12(εh

3
22 − h3

11).(21)

On the other hand, from the Codazzi equation (4) we have

e1(h
3
22) = ω12(e2)

(
h3
11 − εh3

22

)
+ εh4

12ω34(e2),(22)

e1(h
4
12) = −2εω12(e2)h

4
12 + h3

11ω34(e2).(23)

3. Double spacelike rotational surfaces with pointwise 1-type Gauss

map of the first kind

In this section, we obtain spacelike rotational surfaces defined by (11) with
pointwise 1-type Gauss map of the first kind.

The Laplacian of the Gauss map ν for an n-dimensional submanifold M in
a pseudo-Euclidean space E

n+2
t was given:

Lemma 3.1 ([16]). Let M be an n-dimensional submanifold of a pseudo-

Euclidean space En+2
t . Then, the Laplacian of the Gauss map ν = en+1 ∧ en+2

is given by

∆ν = ||h||2ν + 2
∑

j<k

εjεkR
D(ej, ek; en+1, en+2)ej ∧ ek

+∇(trAn+1) ∧ en+2 + en+1 ∧∇(trAn+2)

+ n

n∑

j=1

εjω(n+1)(n+2)(ej)H ∧ ej,

(24)

where ||h||2 is the squared length of the second fundamental form, RD the nor-

mal curvature tensor, and ∇(trAr) the gradient of trAr.

In [16], the following results were given for the characterization of spacelike
surfaces in E4

1 with pointwise 1-type Gauss map of the first kind.

Theorem 3.2 ([16]). Let M be an oriented maximal surface in the Minkowski

space E
4
1. Then M has pointwise 1-type Gauss map ν of the first kind if and

only if M has flat normal bundle. Hence the Gauss map ν satisfies (1) for

f = ‖h‖2 and C = 0.
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Theorem 3.3 ([16]). Let M be an oriented non-maximal spacelike surface in

E
4
1. Then M has pointwise 1-type Gauss map of the first kind if and only if M

has parallel mean curvature vector.

We will classify spacelike rotational surfaces in E4
1 defined by (11) with

pointwise 1-type Gauss map of the first kind by using the above theorems.
From now on we take ε = 1, that is, a2x2(s)− b2z2(s) > 0.

Theorem 3.4. Let M be a spacelike rotational surface in E4
1 defined by (11).

Then, M is maximal, and its normal bundle is flat if and only if M is an open

part of a spacelike plane in E
4
1.

Proof. Let M be a spacelike rotational surface given by (11). Then, we have
an orthonormal moving frame {e1, e2, e3, e4} on M in E4 given by (12)-(14),
and the shape operators A3 and A4 are given by (19). If M is maximal, and
its normal bundle is flat, then (20) and (21) imply, respectively,

κ+ h3
22 = 0,(25)

h4
12(h

3
22 − κ) = 0(26)

as h3
11 = κ, where κ is the curvature of the meridian curve of M . By using

these equations we get h4
12κ = 0. Let O = {p ∈ M |h4

12 6= 0}. Suppose that
O 6= ∅. Then, from h4

12κ = 0 we have κ(s) = x′(s)z′′(s)− x′′(s)z′(s) = 0 which
implies that

z(s) = c0x(s) + c1,(27)

where c0 and c1 are constants. That is, the meridian curve of M is a line.
Now, from (25) we also have h3

22 = 0. By using the second equation in (15)
and (27) we obtain that

h3
22 =

x′[(a2 + b2)c0x+ b2c1]

a2x2 − b2z2
= 0

which gives c0 = c1 = 0 as x′ 6= 0. If x′ = 0, then x and z would be constants,
hence the surface M would be degenerate. Therefore, z = 0 which implies that
M is an open part of the spacelike x1x2-plane, that is, M and hence O are
totally geodesic. This is a contradiction, and thus h4

12 = 0.
So, from the first equation in (16) we have xz′−x′z = 0, i.e., z = c0x, where

c0 is a constant. Hence, β is an open part of a line passing through the origin.
Since the curvature κ is zero we have the above case. By a similar argument it
is seen that M is an open part of the spacelike x1x2-plane.

The converse of the proof of the theorem is trivial. �

By Theorem 3.2 and Theorem 3.4 we state:

Theorem 3.5. There exists no non-planar maximal spacelike rotational surface

in E4
1 defined by (11) with pointwise 1-type Gauss map of the first kind.
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Now we investigate non-maximal spacelike rotational surfaces in E4
1 with

parallel mean curvature vector to obtain surfaces in E4
1 with pointwise 1-type

Gauss map of the first kind.

Theorem 3.6. A non-maximal spacelike rotational surface M in E4
1 defined

by (11) has parallel mean curvature vector if and only if it is an open part of

the spacelike surface defined by

F (s, t) = (r0 cos(
s

r0
) cos at, r0 cos(

s

r0
) sin at, r0 sin(

s

r0
) cosh bt,

r0 sin(
s

r0
) sinh bt)

(28)

which is maximal in the de Sitter space S3
1(r0) ⊂ E4

1 , where tan2(s/r0) <
(a/b)2.

Proof. Let M be a non-maximal spacelike rotational surface in E4
1 defined by

(11). Let {e1, e2, e3, e4} be an orthonormal moving frame on M in E4
1 given

by (12)-(14). From (19) we have H = 1
2 (h

3
11 + h3

22)e3. Suppose that the mean

curvature vector H is parallel. Then, ∇⊥
ei
H = 0 for i = 1, 2, and by considering

(18) we obtain that

∇⊥
e2
H = −ab(h3

11 + h3
22)(xx

′ + zz′)

2(a2x2 − b2z2)
e4 = 0.

Since M is non-maximal, this equation yields xx′ + zz′ = 0, i.e., x2 + z2 = r20 ,
where r0 is a positive real number. Hence, the meridian curve β is an open
part of a circle which is parametrized by

x(s) = r0 cos
s

r0
, z(s) = r0 sin

s

r0
.

The surface is spacelike if tan2(s/r0) < (a/b)2. Therefore, M is an open part
of the spacelike surface given by (28).

The converse of the proof follows from a direct calculation. �

By Theorem 3.3 and Theorem 3.6 we have:

Corollary 3.7. A non-maximal spacelike rotational surface M in E4
1 defined

by (11) has pointwise 1-type Gauss map of the first kind if and only if it is an

open part of the surface given by (28).

By combining the results obtained in this section we state a classification
theorem:

Theorem 3.8. Let M be a spacelike rotational surface in E4
1 defined by (11).

Then M has pointwise 1-type Gauss map of the first kind if and only if M is

an open part of a spacelike plane or the surface given by (28). Moreover, the

Gauss map ν = e3 ∧ e4 of the rotational surface (28) satisfies (1) for C = 0
and the function

f = ‖h‖2 = 2

r20

(
1 +

a2b2

(a2 cos2( s
r0
)− b2 sin2( s

r0
))2

)
,
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where tan2(s/r0) < (a/b)2.

Note that there is no non-planar spacelike rotational surface in E4
1 defined

by (11) with global 1-type Gauss map of the first kind.

4. Double spacelike rotational surfaces with pointwise 1-type Gauss

map of the second kind

In this section, we study spacelike rotational surfaces in the Minkowski space
E
4
1 with pointwise 1-type Gauss map of the second kind.
LetM be a spacelike surface in E

4
1. We choose a local orthonormal frame field

{e1, e2, e3, e4} on M such that e1, e2 are tangent to M , and e3, e4 are normal
to M . Let C be a vector field in Λ2

E
4
1 ≡ E

6
3. Since the set {eA ∧ eB | 1 ≤ A <

B ≤ 4} is an orthonormal basis for E6
3, C can be expressed as

(29) C =
∑

1≤A<B≤4

εAεBCAB eA ∧ eB,

where CAB = 〈C, eA ∧ eB〉. As e1, e2 are spacelike, we have ε1 = ε2 = 1 and
ε4 = −ε3.

For the constancy of C, the following lemma was given in [15]:

Lemma 4.1. A vector C in Λ2
E
4
1 ≡ E

6
3 written by (29) is constant if and only

if the following equations are satisfied for i = 1, 2

ei (C12) =ε3h
3
i2C13 − ε3h

4
i2C14 − ε3h

3
i1C23 + ε3h

4
i1C24,(30)

ei (C13) =− h3
i2C12 − ε3ω34(ei)C14 + ω12(ei)C23 + ε3h

4
i1C34,(31)

ei (C14) =− h4
i2C12 − ε3ω34(ei)C13 + ω12(ei)C24 + ε3h

3
i1C34,(32)

ei (C23) =h3
i1C12 − ω12(ei)C13 − ε3ω34(ei)C24 + ε3h

4
i2C34,(33)

ei (C24) =h4
i1C12 − ω12(ei)C14 − ε3ω34(ei)C23 + ε3h

3
i2C34,(34)

ei (C34) =h4
i1C13 − h3

i1C14 + h4
i2C23 − h3

i2C24.(35)

Theorem 4.2. A spacelike rotational surface M in E4
1 defined by (11) with

flat normal bundle has pointwise 1-type Gauss map of the second kind if and

only if M is an open part of a spacelike plane in E4
1 .

Proof. Let M be a spacelike rotational surface in E4
1 defined by (11). Let

{e1, e2, e3, e4} be an orthonormal moving frame on M in E4
1 given by (12)-

(14). Then the shape operators A3 and A4 are given by (19). Since M has flat
normal bundle we have RD = h4

12(h
3
22 − h3

11) = 0 which implies that h4
12 = 0

or h3
22 = h3

11.
Let O = {p ∈ M |h4

12 6= 0}. Suppose that O 6= ∅. Then, h3
22 = h3

11 on O.
Considering (24) and using the Codazzi equation (22) we obtain that

∆ν =||h||2ν + 2h4
12ω34(e2)e1 ∧ e4 − 2h3

11ω34(e2)e2 ∧ e3.(36)
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We assume that the Gauss map on O is of pointwise 1-type of the second
kind. According to the assumption, (1) is satisfied for some function f 6= 0 and
non-zero constant vector C ∈ E

6
3. From (1), (29) and (36) we have

f(1− C34) =‖h‖2,(37)

fC14 =− 2h4
12ω34(e2),(38)

fC23 =− 2h3
11ω34(e2),(39)

C12 =C13 = C24 = 0.(40)

From (38) and (39) it is seen that C14 6= 0 and C23 6= 0. Now (38) and (39)
imply that

h3
11C14 − h4

12C23 = 0.(41)

Since C is a nonzero constant vector, its components satisfy (30)-(35) for
i = 1, 2. From (30) for i = 1, we also obtain that

h4
12C14 + h3

11C23 = 0.(42)

So, (41) and (42) give that h4
12 = h3

11 = 0 which is a contradiction. Therefore,
h4
12 = 0.
Now, from the first equation in (16) we get z = cx. Then, for x > 0 and

|c| < |a/b| M is a spacelike regular cone in E4
1 . For c = 0, M is a part of

the spacelike x1x2-plane. We suppose that c 6= 0. If we parametrize the line
z = cx with respect to arc length parameter s, we then have x = 1√

1+c2
s+ x0,

z = c√
1+c2

s + cx0, s > −x0

√
1 + c2, x0 ∈ R. Thus, from (15)-(18) we obtain

that

h3
11 = 0, h3

22 =
c(a2 + b2)√

1 + c2(a2 − b2c2)x
,

h3
12 = 0, h4

ij = 0, i, j = 1, 2,

ω12(e1) = 0, ω12(e2) =
1

x
√
1 + c2

,

ω34(e1) = 0, ω34(e2) = − ab
√
1 + c2

(a2 − b2c2)x
.

(43)

Hence the Laplacian of the Gauss map ν = e3 ∧ e4 from (24) is given by

∆ν =||h||2ν + e1(h
3
22)e1 ∧ e4 − h3

22ω34(e2)e2 ∧ e3.(44)

We assume the cone has pointwise 1-type Gauss map of the second kind.
Therefore, from (1), (29), (44) and the Codazzi equation (22) we have

f(1− C34) =‖h‖2 = (h3
22)

2,(45)

fC14 =− e1(h
3
22) = h3

22ω12(e2),(46)

fC23 =− h3
22ω34(e2),(47)

C12 =C13 = C24 = 0.(48)
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It follows form (43), (46), and (47) that C14 6= 0 and C23 6= 0. Now, from (46)
and (47) we have

(49) ω34(e2)C14 + ω12(e2)C23 = 0.

On the other hand, by considering (48), equation (31) for i = 2 implies

(50) ω34(e2)C14 − ω12(e2)C23 = 0.

Thus, considering (43) the solution of equations (49) and (50) gives C14 =
C23 = 0 which is a contradiction. That is, c = 0, and thus z = 0. Therefore M
is an open part of a spacelike x1x2-plane. �

Let z = cx, x > 0 and |c| < |a/b|. Then, the rotational surface M in E4
1

defined by

(51) F (x, t) = (x cos at, x sinat, cx cosh bt, cx sinh bt)

is a spacelike regular cone in E4
1 with vertex at the origin.

Following the proof of Theorem 4.2 we conclude:

Corollary 4.3. The spacelike rotational cone M in E4
1 defined by (51) has no

pointwise 1-type Gauss map of the second kind.

Corollary 4.4. There exists no a non-planar spacelike rotational surface M
in E4

1 defined by (11) with flat normal bundle and pointwise 1-type Gauss map

of the second kind.
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