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ON SPACELIKE ROTATIONAL SURFACES WITH
POINTWISE 1-TYPE GAUSS MAP

UGUR DURSUN

ABSTRACT. In this paper, we study a class of spacelike rotational surfaces
in the Minkowski 4-space E‘ll with meridian curves lying in 2-dimensional
spacelike planes and having pointwise 1-type Gauss map. We obtain all
such surfaces with pointwise 1-type Gauss map of the first kind. Then
we prove that the spacelike rotational surface with flat normal bundle
and pointwise 1-type Gauss map of the second kind is an open part of a
spacelike 2-plane in E‘ll.

1. Introduction

The notion of finite type submanifolds of Euclidean spaces was introduced
by B.-Y. Chen in late 1970’s [2]. Since then many works have been done to
characterize or classify submanifolds of Euclidean space or pseudo-Euclidean
space in terms of finite type. Also, B.-Y. Chen and P. Piccinni extended the
notion of finite type to differentiable maps, in particular, to Gauss map of
submanifolds in [4]. A smooth map ¢ on a submanifold M of a Euclidean space
or a pseudo-Euclidean space is said to be of finite type if ¢ can be expressed as a
finite sum of eigenfunctions of the Laplacian A of M, that is, ¢ = g+ Zle i,
where ¢q is a constant map, ¢1,..., ¢, non-constant maps such that A¢; =
Aidi, i €eRi=1,... k.

If a submanifold M of a Euclidean space or a pseudo-Euclidean space has
1-type Gauss map v, then v satisfies Av = A(v 4+ C) for some A € R and some
constant vector C. In [4], B.-Y. Chen and P. Piccinni studied compact subman-
ifolds of Euclidean spaces with finite type Gauss map. However, the Laplacian
of the Gauss map of several surfaces and hypersurfaces such as helicoids of the
1st, 2nd, and 3rd kind, conjugate Enneper’s surface of the second kind and B-
scrolls in a 3-dimensional Minkowski space E$, generalized catenoids, spherical
n-cones, hyperbolical n-cones and Enneper’s hypersurfaces in E;‘H take the
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form
(1) Av=f(v+C)

for some smooth function f on M and some constant vector C' ([11, 18]). A
submanifold of a pseudo-Euclidean space is said to have pointwise 1-type Gauss
map if its Gauss map satisfies (1) for some smooth function f on M and some
constant vector C. In particular, if C is zero, it is said to be of the first kind.
Otherwise, it is said to be of the second kind (cf. [1, 3,5, 6, 7,10, 12, 14, 17, 19]).

The complete classification of ruled surfaces in E} with pointwise 1-type
Gauss map of the first kind was obtained in [18]. Recently, ruled surfaces
in E} with pointwise 1-type Gauss map of the second kind were studied in
[8, 13]. Also, a complete classification of rational surfaces of revolution in
E3 satisfying (1) was given in [17], and it was proved that a right circular
cone and a hyperbolic cone in E$ are the only rational surfaces of revolution
in E? with pointwise 1-type Gauss map of the second kind. The rotational
hypersurfaces in Lorentz-Minkowski space with pointwise 1-type Gauss map
was studied in [11]. Moreover, in [20] a complete classification of cylindrical
and non-cylindrical surfaces in ET* with pointwise 1-type Gauss map of the first
kind was obtained.

Recently, the author and Turgay have studied some characterization and
classifications on spacelike surfaces in the Minkowski space Ef with pointwise
1-type Gauss map [15, 16].

In this work, we study a class of spacelike rotational surfaces in the Minkow-
ski 4-space E{ defined by (11) with meridian curves lying in 2-dimensional
spacelike planes and having pointwise 1-type Gauss map. We obtain all such
surfaces with pointwise 1-type Gauss map of the first kind. We conclude that
there exists no non-planar maximal spacelike rotational surface in E} with
pointwise 1-type Gauss map of the first kind. We also prove that the spacelike
rotational surface with flat normal bundle and pointwise 1-type Gauss map of
the second kind is an open part of a spacelike 2-plane in Ef.

2. Preliminaries

Let ET* denote m-dimensional Minkowski space with the canonical metric
tensor given by

g =da? +das + - +da?, | —da?,,

where (z1,22,...,Tm) is a rectangular coordinate system in EJ.

A vector ¢ € EV" is called spacelike (resp., time-like or light-like) if (¢,{) > 0
or ¢ =0 (resp., (¢,{) <0 or ((,¢) =0 with ¢ # 0). A submanifold M of EJ
is said to be spacelike if every non-zero tangent vector on M is spacelike.

Let M be an oriented n-dimensional submanifold in an (n + 2)-dimensional
Minkowski space Ef*2. We choose an oriented local orthonormal frame {e, . . .,
ent2} on M with e4 = (ea,eq) = £1 such that eq,..., e, are tangent to M
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and en41, eny2 are normal to M. We use the following convention on the range
of indices: 1 <i,5,k,...<n,n+1<rst,...<n+2.

Let V be the Levi-Civita connection of E"*? and V the induced connection
on M. Denote by {w!,...,w"™2} the dual frame and by {wap}, A, B =

1,...,n+ 2, the connection forms associated to {e1,...,e,1+2}. Then we have
n+2
Vekez E sjww e ej + g erhiier,
r=n+1
n+2

Vekes = - Ar(ek) + g Erwsr(ek)era

r=n+1

n+2
Dekes = E Erwsr(ek)era
r=n+1

where D is the normal connection, h;; the coefficients of the second fundamental
form h, and A, the Weingarten map in the direction e,..

The mean curvature vector H and the squared length ||A|? of the second
fundamental form h are defined, respectively, by

1
2 H=2>) ciehjer
®) F et
and
(3> ‘h’HQ ZEiEJEThz]h;Z
i,

A submanifold M is said to have parallel mean curvature vector H if the mean
curvature vector satisfies DH = 0 identically.

The gradient of a smooth function f on M is defined by Vf = " | e;e:(f)es,
and the Laplace operator acting on M is A = Z?:l ei(Ve, €5 — eie;).

The Codazzi equation of M in E{”Q is given by

T _ T
ij,k — Y5k,

4) r n+2 r T
( Gkyi — Z esh kaT (ei) — Z €r (le(ez')hek +Wké(€i)hej) .

s=n+1 /=1

Also, from the Ricci equation of M in E?*2, we have
(5> RD(ejv €k; €Er, 65) = <[A€r5 Aes](ej>5 ek> = Z (h’ h’s - hzy zk)
i=1

where R is the normal curvature tensor.

A spacelike submanifold M in EJ" is said to have flat normal bundle if its
normal curvature tensor R? vanishes identically.

Let G(m — n,m) be the Grassmannian manifold consisting of all oriented
(m —n)-planes through the origin of an m-dimensional pseudo-Euclidean space
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E™ with index t and A" ™" EI" the vector space obtained by the exterior prod-
uct of m — n vectors in E}*. Let fi, A--- A fi,, ., and ¢;, A--- A gi,, ., be
two vectors in A" " E/, where {f1, fo,..., fm} and {g1,92,...,9m} are two
orthonormal bases of E". Define an indefinite inner product (,) on A" " E"

by

(6> <f11 JARERNAN f’b.mfnﬂgil ARER /\gimfn> = det(<fizvgjk>)'

Therefore, for some positive integer s, we may identify A" " E/™ with some
pseudo-Euclidean space EY | where N = (m”_ln) Letey,...,en,€nt1,--.,6m be
an oriented local orthonormal frame on an n-dimensional pseudo-Riemannian
submanifold M in E* withep = (ep,ep) = £1 such that ey, ..., e, are tangent
to M and €11, ..., en are normal to M. Themap v : M — G(m—n,m) C EY
from an oriented pseudo-Riemannian submanifold M into G(m —n, m) defined

by
(7) v(p) = (en+1 Aenya A Aem)(p)

is called the Gauss map of M that is a smooth map which assigns to a point p
in M the oriented (m — n)-plane through the origin of E* and parallel to the
normal space of M at p [19].

We put € = (1, V) = ept18nt2- - Em = =1 and

~N_ SM=1(1) in EN if e=1
N—-1 _ s s )
M) { HYSH(=1)  in EN if e=—1.

Then the Gauss image v/(M) can be viewed as v(M) C MN=1(z).

2.1. Rotational surfaces in E;‘

In [21], Moore introduced general rotational surfaces in the Euclidean space
E*. A rotational surface in E* is a surface left invariant by a rotation in E*
which is defined as a linear transformation of positive determinant preserving
distance and leaving one point fixed. Let 8(s) = (z(s),y(s), z(s),w(s)) be a
regular smooth curve on an open interval / in R, and let a and b be some real
numbers. Then, a general rotational surface M in E* with the meridian curve
B and the rates of rotation a and b is given by

(8) X(s,t) = (:c(s) cosat — y(s) sinat, x(s)sin at + y(s) cos at,
z(s) cosbt — w(s) sinbt, z(s)sinbt + w(s) cos bt).

If a or b is zero, then a surface M defined by (8) is called a simple rotational
surface as the rotation subgroup which produces M to be a simple rotation [9].

Using the idea of Moore we consider a class of rotational surfaces in F{ which
is invariant under the following subgroup of linear isometries of the Minkowski
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space Ef,
cosat sinat 0 0
—sinat cosat 0 0
9 G = {Bt(“’b) - 0 0 coshbt sinhbt | 'S R}'
0 0 sinh bt cosh bt

Let B(s) = (z(s),y(s), 2(s),w(s)), s € I be a spacelike or timelike curve in Ef.
Then we consider a Moore type rotational surface M with the meridian curve
08 given by

X (s,t) = B(s)Bi(a,b)
(10) = (z(s) cosat — y(s)sinat, x(s) sin at + y(s) cos at,
z(s) cosh bt + w(s) sinh bt, z(s) sinh bt 4+ w(s) cosh bt)

which is invariant under the given above subgroup, where a and b are constants.
It is also called a double rotational surface.

In this work, we study double spacelike rotational surfaces defined by (10) in
E{ whose meridians lie in spacelike 2-planes. By choosing 3(s) = (z(s), 0, 2(s),
0) in the z;x3-plane, we have from (10) a rotational surface E{ given by

(11) F(s,t) = (x(s) cosat, z(s) sin at, z(s) cosh bt, z(s) sinh bt),

where s € I C R, t € (0,27). This surface is spacelike if a?z?(s) — b%2%(s) > 0
on I.

Suppose that s is the arc length parameter of 5. Then, x’2(s) +
and the curvature function k of 8 is given by k(s) = z/(s)z"(s) —
sel.

Let M be a rotational surface Ef defined by (11). We consider the following
orthonormal moving frame field {eq, eq, e3, €4} on M such that ey, e5 are tangent
to M, and eg, e4 are normal to M:

2%(s) =1,
"(s)z'(s),

0 10

12 =7 =22

(12) A5 q ot’

(13) e3 = (—2z' cosat, —z'sinat, z’' cosh bt, ' sinh bt),
1

(14) es = —(—bzsinat, bz cos at, ax sinh bt, ax cosh bt),
q

where ¢ = sgn(a’z?(s) — b?22(s)) = £1 and ¢ = /=(a222(s) — b222(s)) # 0.
Then ey =1, e0=¢, e3=1and g4 = —¢.

By a direct computation we have the components of the second fundamental
form and the connection forms as follows
a’rz’ + b2za!

3 _ 3
(15) iy = K, hyy =5 s a2

h?Q = 05

ab(zx' — xz')

4
(16) h12 - a2$2 _ b222 )

h%1 =0, héQ =0,
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a’zxx’ — b%z7

(17) W12(€1) = 0, wlg(eg) = m,
ab(za’ + z2")
(18) QJ34(€1) = 0, CLJ34(€2) = 7m.
Thus, the shape operators of M are of the form
_ (0 _( 0 hi

from which we obtain the mean curvature vector and the normal curvature of
M as

(20) H = S(hdy + chies
(21) RP(e1,ea;5e3,e4) = hiy(ehdy — h3)).

On the other hand, from the Codazzi equation (4) we have
(22) e1(h3y) = wia(ez) (hY) — €hdy) + ehfpwsa(ez),
(23) e1(hly) = —2ewia(e2)hiy + hijwaa(es).

3. Double spacelike rotational surfaces with pointwise 1-type Gauss
map of the first kind

In this section, we obtain spacelike rotational surfaces defined by (11) with
pointwise 1-type Gauss map of the first kind.

The Laplacian of the Gauss map v for an n-dimensional submanifold M in
a pseudo-Euclidean space Ef” was given:

Lemma 3.1 ([16]). Let M be an n-dimensional submanifold of a pseudo-
FEuclidean space Et"JFQ. Then, the Laplacian of the Gauss map v = epy1 A €pio
s given by
Av = ||h||*v + 2 Z EjekRD(ej, €k} ent1,Ent2)€5 A ek
i<k
(24) + V(tI'An+1) A €n+2 + €n+1 AN V(tI'An+2)

+1 Y Ejwmttyntz) () H Aej,
j=1
where ||h||? is the squared length of the second fundamental form, R the nor-
mal curvature tensor, and V(trA,) the gradient of trA,.

In [16], the following results were given for the characterization of spacelike
surfaces in E{ with pointwise 1-type Gauss map of the first kind.

Theorem 3.2 ([16]). Let M be an oriented mazimal surface in the Minkowski
space EY. Then M has pointwise 1-type Gauss map v of the first kind if and
only if M has flat normal bundle. Hence the Gauss map v satisfies (1) for
f=|h|* and C = 0.
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Theorem 3.3 ([16]). Let M be an oriented non-mazimal spacelike surface in
E}. Then M has pointwise 1-type Gauss map of the first kind if and only if M
has parallel mean curvature vector.

We will classify spacelike rotational surfaces in Ef defined by (11) with
pointwise 1-type Gauss map of the first kind by using the above theorems.
From now on we take € = 1, that is, a®z%(s) — b*22(s) > 0.

Theorem 3.4. Let M be a spacelike rotational surface in E{ defined by (11).
Then, M is mazimal, and its normal bundle is flat if and only if M is an open
part of a spacelike plane in Ef.

Proof. Let M be a spacelike rotational surface given by (11). Then, we have
an orthonormal moving frame {e1, ez, e3,e4} on M in E* given by (12)-(14),
and the shape operators As and A4 are given by (19). If M is maximal, and
its normal bundle is flat, then (20) and (21) imply, respectively,

(25) K+ hiy =0,
(26) h%2(h32 —-K)=0

as h$; = k, where k is the curvature of the meridian curve of M. By using
these equations we get hi,x = 0. Let O = {p € M |hj, # 0}. Suppose that
O # (). Then, from hi,k = 0 we have x(s) = 2/(s)2"(s) — 2" (s)2'(s) = 0 which
implies that

(27) 2(8) = coz(s) + ¢,

where ¢y and ¢y are constants. That is, the meridian curve of M is a line.
Now, from (25) we also have h3, = 0. By using the second equation in (15)
and (27) we obtain that

2'[(a® + b?)cox + b2eq]
222 — h222

which gives cg = c; =0 as 2’ # 0. If 2/ = 0, then = and z would be constants,
hence the surface M would be degenerate. Therefore, z = 0 which implies that
M is an open part of the spacelike zjxo-plane, that is, M and hence O are
totally geodesic. This is a contradiction, and thus h}, = 0.

So, from the first equation in (16) we have xz’ — 2’2z = 0, i.e., z = cox, where
co is a constant. Hence, 3 is an open part of a line passing through the origin.
Since the curvature x is zero we have the above case. By a similar argument it
is seen that M is an open part of the spacelike 1 zo-plane.

The converse of the proof of the theorem is trivial. O

hgzz =0

By Theorem 3.2 and Theorem 3.4 we state:

Theorem 3.5. There exists no non-planar maximal spacelike rotational surface
in Bt defined by (11) with pointwise 1-type Gauss map of the first kind.
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Now we investigate non-maximal spacelike rotational surfaces in Ef with
parallel mean curvature vector to obtain surfaces in Ef with pointwise 1-type
Gauss map of the first kind.

Theorem 3.6. A non-mazimal spacelike rotational surface M in Ef defined
by (11) has parallel mean curvature vector if and only if it is an open part of
the spacelike surface defined by

F(s,t) = (ro cos(i) cosat, Tg cos(i) sinat, o sin(i) cosh bt,
To To To
(28) s
7o sin(—) sinh bt)
To
which is mazimal in the de Sitter space S3(ro) C Et, where tan®(s/rg) <
(a/b)?.
Proof. Let M be a non-maximal spacelike rotational surface in Ef defined by
(11). Let {e1,e2,e3,e4} be an orthonormal moving frame on M in E} given
by (12)-(14). From (19) we have H = %(h$; + h3,)es. Suppose that the mean
curvature vector H is parallel. Then, VjiH = ( for ¢ = 1,2, and by considering
(18) we obtain that
VL H = _ab(h?1 + h3y) (za + zz’)e4 _o.
2 2(a2z? — b222)
Since M is non-maximal, this equation yields zz’ + 22’ = 0, i.e., 22 + 2% = rd,
where r( is a positive real number. Hence, the meridian curve [ is an open
part of a circle which is parametrized by

s .S
x(s) = ro cos o z(s) = rosin o
The surface is spacelike if tan?(s/rg) < (a/b)?. Therefore, M is an open part
of the spacelike surface given by (28).
The converse of the proof follows from a direct calculation. (I

By Theorem 3.3 and Theorem 3.6 we have:

Corollary 3.7. A non-mazximal spacelike rotational surface M in E{ defined
by (11) has pointwise 1-type Gauss map of the first kind if and only if it is an
open part of the surface given by (28).

By combining the results obtained in this section we state a classification
theorem:

Theorem 3.8. Let M be a spacelike rotational surface in Ef defined by (11).
Then M has pointwise 1-type Gauss map of the first kind if and only if M is
an open part of a spacelike plane or the surface given by (28). Moreover, the
Gauss map v = ez A eq of the rotational surface (28) satisfies (1) for C =0
and the function

f=1n?=

a?b?

(1 + (agcosz(i) _ bQSiDQ(i))2)7

To To

| o

[=] V]

r
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where tan®(s/rg) < (a/b)?.

Note that there is no non-planar spacelike rotational surface in E{ defined
by (11) with global 1-type Gauss map of the first kind.

4. Double spacelike rotational surfaces with pointwise 1-type Gauss
map of the second kind

In this section, we study spacelike rotational surfaces in the Minkowski space
E} with pointwise 1-type Gauss map of the second kind.

Let M be a spacelike surface in Ef. We choose a local orthonormal frame field
{e1,ea,e3,e4} on M such that ey, eq are tangent to M, and es, e4 are normal
to M. Let C be a vector field in A2E} = E§. Since the set {ea Aep|1 < A<
B < 4} is an orthonormal basis for E§, C' can be expressed as

(29) C= Z cacpCapeaNeg,
1<A<B<4

where Cap = (C,eq Aep). As eg, eq are spacelike, we have 1 = ¢5 = 1 and
€4 = —E3.
For the constancy of C, the following lemma was given in [15]:

Lemma 4.1. A vector C in A’E} = E§ written by (29) is constant if and only
if the following equations are satisfied for i = 1,2

(30)  €; (Cr2) =e3h,Ci3 — eshiyCra — esh) Cog + e3h}; Caa,

(31) e; (C13) = — hCha — e3waa(e;)Cra + wiz(ei)Caz + e3hf, Cay,
(32) ei (C1a) = — h}yC12 — e3w3a(e;)C13 + wia(e;)Cay + e3h? Caa,
(33) e; (Cag) =h3 C1a — wiz(e;)Chz — e3waa(e;)Cag + £3h35C34,
(34) e (Cas) =hj;C12 — wiz(e;)Cra — eswsa(e;)Cas + e3hyCay,
(35)  e; (Cs4) =h}Ci3 — h3Cra + hiyCas — hiyCay.

Theorem 4.2. A spacelike rotational surface M in Ef defined by (11) with
flat normal bundle has pointwise 1-type Gauss map of the second kind if and
only if M is an open part of a spacelike plane in Ef.

Proof. Let M be a spacelike rotational surface in E{ defined by (11). Let
{e1,€a,e3,e4} be an orthonormal moving frame on M in E} given by (12)-
(14). Then the shape operators Az and A4 are given by (19). Since M has flat
normal bundle we have RY = hi,(h3, — h$;) = 0 which implies that hf, = 0
or h3, = h3,.

Let O = {p € M |hi, # 0}. Suppose that O # (). Then, h3, = h}, on O.
Considering (24) and using the Codazzi equation (22) we obtain that

(36) Av :||h||2V + 2h112wi34(€2)€1 Neq — 2h?1w34(62)62 N es.



310 UGUR DURSUN

We assume that the Gauss map on O is of pointwise 1-type of the second
kind. According to the assumption, (1) is satisfied for some function f # 0 and
non-zero constant vector C' € ES. From (1), (29) and (36) we have

(37) f(1—Caq) =||n]1?,

(38) fCua = — 2Rt wsa(e),
(39) fCOo3 = — 2h3 w34(ea),
(40) Cha =Cig = Cay = 0,

From (38) and (39) it is seen that C14 # 0 and Ca3 # 0. Now (38) and (39)
imply that

(41) h3,C14 — hiyCaz = 0.

Since C' is a nonzero constant vector, its components satisfy (30)-(35) for
i =1,2. From (30) for ¢ = 1, we also obtain that
(42) hi5Cha + h3,Caz = 0.

So, (41) and (42) give that hi, = h$; = 0 which is a contradiction. Therefore,
ht, =0,

Now, from the first equation in (16) we get z = cx. Then, for x > 0 and
le| < |a/b] M is a spacelike regular cone in Ef. For ¢ = 0, M is a part of
the spacelike x1x2-plane. We suppose that ¢ # 0. If we parametrize the line
z = cx with respect to arc length parameter s, we then have x = ﬁs + xg,

zh: \/1175 + cxg, s > —x0V1+ 2, 9 € R. Thus, from (15)-(18) we obtain
that

3 3 c(a® +v*)
h1, =0, hao = )
V14 c2(a? — b2z
h3, =0, hiy=0,i,j=1,2,
(43) 1

w12 (61) =0,

)
abv/1 + ¢2
(a2 — b2z’
Hence the Laplacian of the Gauss map v = e3 A e4 from (24) is given by

(44) Av :||h||21/ + el(h§2)el Aeqg — thCu34(€2>€2 A es.

wasle1) =0, wasez) = —

We assume the cone has pointwise 1-type Gauss map of the second kind.
Therefore, from (1), (29), (44) and the Codazzi equation (22) we have

(45) F(1 = C3q) =[|0])* = (h3,)?,

(46) fCia == e1(h3,) = h3awiz(ez),
(47) fCa3 = — hiswsa(es),

(48) Cia =C13 = C2 = 0.
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It follows form (43), (46), and (47) that C14 # 0 and Ca3 # 0. Now, from (46)
and (47) we have

(49) w34(e2)Crq + wia(e2)Ca3 = 0.
On the other hand, by considering (48), equation (31) for ¢ = 2 implies
(50) w34 (e2)Cra — wiz(e2)Caz = 0.

Thus, considering (43) the solution of equations (49) and (50) gives Cy14 =
C53 = 0 which is a contradiction. That is, ¢ = 0, and thus z = 0. Therefore M
is an open part of a spacelike x1x2-plane. (I

Let 2 = cx, z > 0 and |c| < |a/b|. Then, the rotational surface M in E}
defined by

(51) F(z,t) = (z cosat, x sin at, cx cosh bt, cx sinh bt)

is a spacelike regular cone in Ef with vertex at the origin.
Following the proof of Theorem 4.2 we conclude:

Corollary 4.3. The spacelike rotational cone M in Ef defined by (51) has no
pointwise 1-type Gauss map of the second kind.

Corollary 4.4. There exists no a non-planar spacelike rotational surface M
in B} defined by (11) with flat normal bundle and pointwise 1-type Gauss map
of the second kind.
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