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SUFFICIENT CONDITION FOR THE EXISTENCE OF
THREE DISJOINT THETA GRAPHS

YUNSHU GAO AND DING MA

ABSTRACT. A theta graph is the union of three internally disjoint paths
that have the same two distinct end vertices. We show that every graph
of order n > 12 and size at least L%J contains three disjoint theta
graphs. As a corollary, every graph of order n > 12 and size at least
L%J contains three disjoint cycles of even length.

1. Terminology and introduction

In this paper, we only consider finite undirected graphs, without loops or
multiple edges. We use [1] for the notation and terminology not defined here.
A theta graph is the union of three internally disjoint paths that have the
same two distinct end vertices. Let n be a positive integer, let K, denote
the complete graph of order n and K, be the graph obtained by removing
exactly one edge from K. For a graph G, we denote its vertex set, edge set,
minimum degree by V(G), E(G) and §(G), respectively. The order and size of
a graph G, are defined by |V (G)| and |E(G)|, respectively. A set of subgraphs
is said to be vertex-disjoint or independent, if no two of them have any common
vertex in G, and we use disjoint to stand for vertex-disjoint throughout this
paper. If u is a vertex of G and H is either a subgraph of G or a subset of
V(G), we define Ng(u) to be the set of neighbors of u contained in H, and
dg(u) = |[Ng(u)|. For a subset U of V(G), G[U] denotes the subgraph of G
induced by U. In particular, we often use [U] to stand for G[U]. If S is a
set of subgraphs of G, we write G 2 S, it means that .S is isomorphic to a
subgraph of GG, in particular, we use mS to represent a set of m vertex-disjoint
copies of S. When S = {z1,22,...,2+}, we may also use [x1,22,...,2¢] to
denote [{x1,22,...,x}]. Let V1, V4 be two disjoint subsets or subgraphs of G,
we use F(V1,V3) to denote the set of edges in G with one end-vertex in V4,
while the other in Vs, for simplicity, let F(x, V) stand for E({x}, V2), E(V1, x)
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for E(V1,{x}), respectively. A path of order n is denoted by P,. Throughout
this paper, we consider that any cycle has a fixed orientation. Let C be a cycle
of G. For z,y € V(C), we denote by 8[x,y] the path from z to y on C. A
vertex u is called a leaf of G if dg(u) = 1.

Corradi and Hajnal [3] proved the following well-known result on the exis-
tence of vertex-disjoint cycles in graphs.

Theorem 1.1 ([3]). Let k be a positive integer and G be a graph with order
n > 3k. If 6(G) > 2k, then G contains k disjoint cycles.

Later, Wang [10] and independently Enomoto [5] proved a result stronger
than Theorem 1.1 as follows.

Theorem 1.2 ([10]). Let k be a positive integer and G be a graph with order
n > 3k. Suppose for any pair of nonadjacent u and v in G, dg(u) + dg(v) >
4k — 1, then G contains k disjoint cycles.

Given a cycle C of a graph G, a chord of C' is an edge of G — E (C) which
joins two vertices of C. A cycle is called a chorded cycle if it has at least one
chord. A theta graph is the union of three internally disjoint paths that have
the same two distinct end vertices. A chorded cycle is a simple example of a
theta graph but, in general a theta graph need not be a chorded cycle. It is
obvious that K is the theta graph with minimum order and every theta graph
contains a cycle of even length. Pésa [9] proved that any graph with minimum
degree at least three contains a chorded cycle. Motivated by these results,
Finkel et al. [6] and Chiba et al. [3] obtained the following results analogous to
Theorem 1.2, respectively.

Theorem 1.3 ([6]). If G is a graph of order n > 4k and 6(G) > 3k, then G
contains k disjoint chorded cycles.

Theorem 1.4 ([3]). Let r,s be two nonnegative integers and let G be a graph
with order n > 3r + 4s. Suppose for any pair of nonadjacent v and v in G,
da(u) + dg(v) > 4r 4+ 6s — 1, then G contains v + s disjoint cycles such that s
of them are chorded cycles.

Kawarabayashi [8] considered the minimum degree to ensure the existence
of disjoint copies of K, in a general graph G, which can be seen as a specified
version of disjoint chorded cycles.

Theorem 1.5 ([8]). Let k be a positive integer and G be a graph with order
n>4k. If 6 (G) > ("—;rk}, then G contains k disjoint copies of K .

In this paper, we determine the edge number for a graph to contain three
disjoint theta graphs. Our research is motivated by the conjecture put forward
by Gao and Ji [7].
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Conjecture 1.6 ([7]). Let k > 2 be an integer. Every graph of order n and
size at least f(n,k)+ 1 contains k disjoint theta graphs, when

k) = max{<4k; 1) . %(H—AJH D, {Q(k — )2k —1)+ (241“ 1)(n — 2k + 1)J }

If the conjecture is true, then the bound on size is best possible, which can

be seen as following examples in [7]: Let G be K7+ (Ky45—2U "‘4k+1K2). The

2
order of G is n and size (4k2_1) + %(n — 4k + 1), but Gy does not contain k

disjoint theta graphs. Also, let n be an integer such that n — (2k — 1) is even.

Let [, = =1 p — Ky 1, H = 1Ky and Gy = F + Hy. Tt is obvious
that the graph Gy has order n, |E(Gy )| = (k—1)(2k — 1) + (4k — 1)l =
(k — 1)(2k — 1) + (41@71)(372“1) _ {2(1@71)(2k71)+(24k71)(n72k+1)J. Gao and

Ji [7] verified Conjecture 1.6 for the case k = 2.

Theorem 1.7 ([7]). Every graph of order n > 8 and size at least f(n) contains
two disjoint theta graphs, if

o0 ={ P 155

Based on Theorem 1.7, in this paper, we give a sufficient condition for the
existence of three disjoint theta graphs.

Theorem 1.8. Every graph of order n > 12 and size at least LH"—Q_ng contains
three disjoint theta graphs.

Note that there is a small gap on the lower bound of size between Theo-
rem 1.8 and Conjecture 1.6 for k£ = 3. However, the following corollary follows
from Theorem 1.8.

Corollary 1.9. Every graph of order n > 12 and size at least L%J contains
three disjoint cycles of even length.

2. Basic lemma

Lemma 2.1. Let G be a graph of order 12 and size at least 57. Then G
contains three disjoint copies of K .

Proof. Suppose that G does not contain three disjoint copies of K . If 6(G) >
8, then by Theorem 1.5, G D 3K, , a contradiction. Hence, we may assume
that 6(G) < 7. Let vy € V(G) such that dg(vg) = 6(G). Suppose that
da(vo) = 1, then 56 = |E(G)| < 57, a contradiction. Thus, dg(ve) > 2
and let v1,v2 € Ng(vg). Suppose that dg(vg) = 2, then choose w € V(G —
{vg, v1,v2}), since |E(G — {wo})| > 55, it is obvious that {vg,v1,ve,w} 2 K
and [V(G) — {vo,v1,v2,w}] 2 2K, , a contradiction. Hence, we may assume
that dg(vg) > 3. Furthermore, since G — {vg} can be obtained from K, by
removing at most five edges, it follows that [Ng(vp)] contains a path of order
three, denoted by Ps;. That is, P; + {vo} contains a subgraph Q = K, . Note
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that |[E(G — V(Q) — {wo}| > 57— 7 — (10 + 9+ 8) = 23, by Theorem 1.7,
G —V(Q) — {vo} contains two disjoint copies of K, , which disjoints from @,
this implies that G O 3K, a contradiction. This proves Lemma 2.1. (I

3. Proof of Theorem 1.8

If n = 12, then Lemma 2.1 gives us the required conclusion. Hence, it is
sufficient to prove that every graph of order n > 13 and size at least L%J
contains three disjoint theta graph. We employ induction on n.

Assume that for all integers k with 12 < k < n, every graph of order k and
size at least |1E-18| contains three disjoint theta graphs. In the following
proof, we always let G be any graph of order n and size at least L%J By
way of contradiction, we suppose that

(1) G does not contain three disjoint theta graphs.
Claim 3.1. 6 < §(G) < 8.

Proof. By Theorem 1.3, we have §(G) < 8. Suppose that 6(G) < 5 and let
vo € V(G) such that dg(vg) = §(G). The graph G — vy is of order n— 1 and size

Llln—18J — dg(vo) > Llan—lSJ —5> 11n—219—10 _ 11(n721)718 > {11(11—1)—18}

2 2
by induction hypothesis, G — vy contains three disjoint theta graphs, and so
does G, which contradicts (1). Therefore, §(G) > 6. O

Let vy be a vertex in G such that dg(vg) = 0(G). In what following, we
always assume that Ng(vg) = {v1,...,v} and H = [v1,...,v], where | =
dg(vg). By Claim 3.1, 6 <[ < 8. If [ = 6, then let ¢, = 1; if [ = 7, then let
g = 2;if [ =8, then let ¢, = 3. Note that [ =5+ ¢;.

Claim 3.2. For each 1 <i <l dy(v;) >1—¢y.

Proof. Suppose that there exists 1 < ¢ < [ such that dy(v;) <l —¢ —1=
(I—1) — g;. Without loss of generality, we may assume that ¢ = [, and we
may also assume that vju; ¢ E(G) for each 1 < j < g; (otherwise, we can
relabel the index of V(H)). Define the edge set X = {v;u;:1<j <¢g} and
construct the graph G/ = (G — vy) + X, which is a graph with order n — 1 and
\B(G")| = L11n2—18J B 11n2—19 —l4e = 11(n—21)—18 > Lll(n—;)—lsj

)

because of | = 5+ ¢;. By induction hypothesis, G’ contains three disjoint theta
graphs, say T1, T» and T3, respectively. Clearly, at least two of them, say T}
and T5, do not contain vertex vy, since 711, 15 and T3 are disjoint theta graphs,
then E(T1)NX =0, E(Tx) N X =0 and by (1), E(T5) N X # 0.

Suppose that |E(T5) N X| = 1, we may assume that F(T5) N X = {vv;}.
Then 73" = (T3 — {vjv1}) + {v1vo,vive} is a theta graph in G, Ty, T and
T3’ are disjoint in G, which contradicts (1). Therefore, it remains the case
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E(T3) N X = {viv, vau} or E(T3) N X = {viv;,vav;,v301}, as g < 3. Let

(T5 — {v1vg, vau; }) +{vov1, Vov2 }, if dp, (v;) =2
T (T5 — {v1vr, vau }) +{vov1, Vova, Vovs }, if dpy (v;) = 3 and
3 E(T5) N X = {viv, vour}
(T5 — {v1vr, vauy, v3ur }) +{vov1, Vova, Vous }, otherwise.

It is obvious that Ty, T5 and T3’ are three disjoint theta graphs in G, which
contradicts (1). O

By Claim 3.2, Theorem 1.5 and the definition of ;, when 7 < [ < 8, for each
subset S of V(H) with |S| > 7, we obtain

(2) [{vo} U S] 22K, .
In particular, if [ = 6, then
(3) [{vo} UV(H)] = K.

We take a vertex v € V(G — H — {vp}) such that |E(v, V(H))| is maximum.
When [ = 6, by (3) and the definition of v, denote W = V(H) U {v}, we claim
that

(4) {vo} UW] 22K

Proof. By way of contradiction, suppose that [{vo} U W] does not contain two
disjoint K; . By (3) and the assumption that [{vo} UW] 2 2K, for each
w € V(G — {vo} — V(H)), there is at most one edge between w and V(H).
If n = 13, then 62 < |E(G)| < B8 +6 + &5 = 42, a contradiction. If
n = 14, then 68 < |E(G)| < %8 —|— 7 + X6 = 49 a contradiction. If n = 15,
then 73 < |E(G)| < X8 484 87 = 57 a contradiction. If n = 16, then
84 < |E(G)| < X8 + 9+ 2X8 = 66, a contradiction. Therefore, we see that
n > 17. Since

[E(G —A{vo} — V(H))| = |E(G) (n—17)
> Hn-19 14
2
™ — 13
> )
- 2
by Theorem 1.7, G — {vg} — V(H) contains two disjoint theta graphs, together
with (3), G contains three disjoint theta graphs, a contradiction. ([

Let
G*{G—({UO}UV(H)), if7<I<8
- — ({vo, v} UV (H)), ifl=6.
Let F* be the set of components of G*. By (2) and (4), it follows from (1)
that every graph in F'* contains no theta graph. In the following proof, let F’
denote arbitrary component in F* then, each block of F' is either a K5 or a
cycle.
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Claim 3.3. Let F € F* with |V(F)| > 4. Then each end block of F is
isomorphic to Ks.

Proof. Otherwise, suppose that there exists an end block B of F, such that
B is a cycle. Let C denote the set of cut vertices of F'. Let u; and us be
two distinct vertices in V(B) — C. Next, we choose two distinct vertices ug
and uy (both are distinct with u; and ug) as follows: If F = B, then let
{ug,us} C V(F —{uy,us}); otherwise, F' contains another end blocks B’ which
is different from B, let uz € V(B’) such that uz ¢ C and choose uq € V(F)\ C
if possible, unless F' contains exactly two end blocks B and B’, such that B is a
triangle and B’ 2 K5. For each ¢ with 1 <i < 3, since dp(u;) <2,if7<1<8,
then |E(u;, V(H))| > §(G)—2 = 1—2,if | = 6, then |E(u;, V(H)U{v})| > 1-2.
This implies that there exists a vertex v € V(H) (v € V(H) U {v} if | = 6),
such that uiv’,ugv’ € E(G). As B is a cycle, it is easy to see that [B U {v'}]
contains a theta graph. When F' = B, without loss of generality, we may
assume that uq, us, us and ug occur along the direction of B.

If I = 8, by applying (2) and Theorem 1.5, [{vo} UV (H) — {v'}] contains two
theta graphs, that is, G contains three disjoint theta graphs, which contradicts
(1). If I =7, we may assume that {va,vs3,v4, 05,06} C Ng(us) and v’ # vg,v5
and ve, then [{vs,vs,v6,us3}] O K, by Claim 3.2. If ug ¢ V(B), that is, ug
belongs to another end block by our choice, notice that [V (H —{vg4, vs, v, v'})U
{v}] 2 K, and [BU {v'}] contains a theta graph, we obtain a contradiction
to (1). Therefore, we see that uz € V(B) and so F' = B by our choice. We
may assume that {v1,vs,v3} C Ng(u1) N Ng(uz) because we don’t use the as-
sumption of {vg, vs, v4,v5,v6} C Ng(usz). Suppose for the moment, there exists
at most one v; € {v1,va,v3}, such that v;us,vius € E(G). Then there exist
Up, Vg € V(H — {v1,v2,v3}) with p # ¢, such that {vp,v4} C Ng(us) N Ng(ua).
However, by Claim 3.2, [{vo} U V(H — {v1,v2,vp,v4})] 2 K, , notice that
[{v1, vg}UV(g[ul, ug])] and [{vp, vg} UV (B [us, u4])] contain two disjoint theta
graphs, this implies that G contains three disjoint theta graphs, a contradic-
tion. Thus, without loss of generality, say {vi,v2} C Np(us) N Npg(uq). As
|E(us, V(H))| > 5, without loss of generality, we may assume that vqug, vsug €
E(G). As dg(v1) > 5 by Claim 3.2, we may assume that vivy € E(G).
This implies that [va, v1,us, us] 2 K, , notice that [{vo,vs,ve,v7}] 2 K, and
[{v2,v3}U V(?[ul, uz])] contains a theta graph, then G contains three disjoint
theta graphs, a contradiction. Now, it remains the case | = 6. As dp(u;) < 2
fori € {1,2,3},s0 |E(u;, V(H)U{v})| > 1—2 = 4. Furthermore, by our choice
of ug, dp(u;) < 3 and |E(uq, V(H) U {v})| > 3.

Suppose for the moment that uiv, ugv, usv € E(G), then [B U {v}] contains
a theta graph. If ug ¢ V(B), by the choice of uz and (3), H + {vo, us} 2 2K,
this implies that G contains three disjoint theta graphs, which contradicts (1).
Thus, us € V(B) and so F = B. However, [{v} U V(ﬁ[ul,uﬂ)] contains a
theta graph and [{u4,vo} UV (H)] 2 2K, , a contradiction. Thus, there exists
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i € {1,2,3}, such that u;v ¢ E(G). By the definition of v, |[E(v,V(H))| > 4.
Without loss of generality, we assume that {v1,va,vs,v4} C Ny (v).

If uyv, ugv € E(G), then F = B. Without loss of generality, we may assume
that vqu; € F(G) and so [{v, v4}UV(§[u1, us])] contains a theta graph. Notice
that ugv ¢ E(G) and ugv ¢ E(Q), then [{us, us,vo} UV (H — {vs4})] D 2K, a
contradiction. Therefore, we assume that u1v ¢ E(G) by symmetry.

Suppose that uz ¢ V(B). Then |E(us,{v1,vs,v3,v4})|] > 2; otherwise,
uzv € E(G) and we may further assume that ugvy, usvs, usvg € E(G). Since
|E(u1,V(H))| > 4 and |E(ug, V(H))| > 3, there exists ¢ € {1,2, 3,4}, such that
u; € Npr(u2) N (uy), then [BU{u;}] is a theta graph, since [{u1, ua, ug, w4, v} —
{vw;}] © K and [vg, vs,vs,us] 2 K, , which contradicts (1). By symmetry, we
assume that vius, veusz € E(G). If v’ # vy and v’ # v, then [v, us, vy, ve] 2 K
and [{vo} U (V(H) — {v1,v2,v'})] 2 K, which disjoints from [BU {v'}], a
contradiction. Hence, we may assume that v" = v;. By Claim 3.2 and (1),
we may assume that vsus,veus € E(G). However, [vg,vs,vs,us] 2 K, and
[v,v2,v3,v4] 2 K, , which disjoints from [BU {v;}], a contradiction. Thus,
us € V(B) and so F' = B by our choice.

By symmetry, we may assume that usv ¢ E(G) and usv ¢ E(G). By pi-
geonhole principle, there exists {v,, vy} € V(H) such that {vy,v,} C Ng(ui)N
Ny (ug). If ugv, € E(G), then [V(é[ul,m]) U {vp}] contains a theta graph,
notice that [V(H — {vp}) U {v,v0,ua}] 2O 2K, , G contains three disjoint
theta graphs, a contradiction. Thus, usv, ¢ E(G) and by symmetry, usv, ¢
E(G), uqv, ¢ E(G) and uqv, ¢ E(G). This implies that there exist v;,v; €
V(H) — {vp,vq}, such that {v;,v;} C Ng(ug) N Nug(usg). By (1), we see that
Hp,q}n{1,2,3,4}| < 1and |{7,5}N{1,2,3,4}| < 1. Therefore, [{v,vo} UV (H —
{vp,vq,vi,v;})] 2 K. Notice that [{vp,ve} U V(B[u1,uz])] and [{vi,v;} U
V(B|us,u4])] contains two disjoint theta graphs, which contradicts (1). This
completes the proof that B is not an end block, and in particular, we see that
every end block of F' is isomorphic K. O

Claim 3.4. Let F € F* with |V (F')| > 4. Then each block of F is isomorphic
to KQ.

Proof. Since |V(F)| > 4, F contains at least two end block, say F; and Fb.
Note F; = Ky for each 1 < i < 2. Let uy € V(F1) such that dp, (u1) = 1
and let ug € V(Fy) such that dp,(us) = 1. Suppose that the conclusion of
Claim 3.4 is false, we may assume that B is the nearest block to u; in F, such
that B is a cycle. By Claim 3.3, B is not an end block of F'. We choose two
distinct vertices us and uy4 such that both of them are distinct with w1 and us
as follows: Let us € V(B) and w2 is not a cut vertex of F', and choose u4 such
that u4 is not a cut vertex of F', unless F' contains exactly three blocks F1, Fb
and B = K3, then choose uy € V(F2) — {us}. Notice that if there exists v’
such that u1v’, ugv’ € E(G), then using these blocks of F' from F; to B, we see
that [V(F — {us}) U {u1}] contains a theta graph. Now, since u; and ug are
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in different blocks, with the same role of w1, us, us and w4, we continue part of
the process in the proof of Claim 3.3, we can complete the proof. This proves
Claim 3.4. 0

Claim 3.5. |V(F)| <3 for each F € F*.

Proof. Otherwise, suppose that there exists F' € F* such that |V (F)| > 4. By
Claim 3.4, F' must be a tree.

Suppose for the moment that there exists three distinct leaves in V(F'), say
u1, uz and uz. Then for each 1 < i < 3, |[E(u;, V(H))| >1-1if7<1<8,
and |E(u;, V(H)U{v})| >1—-1ifl = 6. As |[V(F)| > 4, by Claim 3.4, we
choose ug € V(F — {uy,us,us}) as follows: if F' contains at least four leaves,
then let u4 denote the leave different from w1, us and ug; otherwise, let u4 and
uy belongs to the same block of F. It is obvious that |E(u4, V(H))| > 1 — 3 if
7<1<8,and |E(uq, V(H)U{v})| >1-3if I =6.

Suppose that | = 8. Notice that there exist v’,v” € V(H) with v # v”
and v'v"” € E(G) such that {v/,v"} C Ng(u1) N Ng(usz). It is obvious that
[/, 0" ui,us] 2 K. by Claim 3.1, H — {v',v"} 4+ {vo,us} induces a graph
with minimum degree at least five, and therefore contains two disjoint copies of
K, by Theorem 1.5, a contradiction. Next, suppose that { = 7, by pigeonhole
principle, we can find two distinct vertices v;,v; € V(H) such that {v;,v;} C
Nipr(us) N Np(uq). Since there is a path P in F' which connecting us and
uq, thus, [V(P) U {v;,v;}] contains a theta graph. Notice that there exist
v 0" € V(H — {v;,v;}) with o' # v” and v'v"”" € E(G), such that {v/,v"} C
Nipr(u1) N Ny (uz). Tt is obvious that [v/,v”,ui,ug] 2 K; . As {vo} UV (H —
{v/,v",v;,v;})] D K, which contradicts (1). Thus, [ = 6.

We show Ng(u1) N Npg(us) # 0. Suppose not, without loss of generality,
we may assume that Ng(u1) N (V(H)U{v}) = {v,v1,v2,v3,v4} and Ng(uqg) N
(V(H)U{v}) = {v,vs5,v6}. If ugv € E(G), then [V(F — {us}) U {v}] contains
a theta graph, as [V(H) U {vo,u2}] 2 2K, , which contradicts (1). Hence,
usv ¢ F(G) and ugv ¢ E(G) by symmetry. Furthermore, by the choice of v, we
have |E(v, V(H))| > 4 and so Ny (v) N Ng(u1) # 0, without loss of generality,
say vv; € E(G). Then [v,v1,u1,us] D K, since |[Ng(uz) N Ng(ug)| > 3, it
follows that [V (H — {v1}) U{us2,us,vo}] 2 2K, , which contradicts (1).

Now, by symmetry, say vs € Ng(u1) N Ng(ua). If ugvg € E(G), then
{ve} UV (F —{us})] contains a theta graph, as [V (H —{vs})U{v,us}] D 2K,
which contradicts (1). Thus, veus ¢ E(G) and wveuz ¢ E(G) by symme-
try. As |E(u2,V(H))| > 4 and |E(us, V(H))| > 4, we may assume that
{v1,v2,v3,v4} C Np(u2) and {v1,v2,v3} C Ny (uz) NNy (usz). If vsuy € E(G),
then [{ve,vs,u1,us}] 2 K . Notice that [V(H — {vs,v6}) U {vo, v, us,us}] 2
2K, by the definition of v and (3), which contradicts (1). Thus, vsu; ¢ E(G).
If uyvy € E(G), then usv,usv € E(G). Otherwise, say usv ¢ E(G). Then
ugvs € E(G) and |E(v,V(H))| > 5 by the choice of v. By symmetry, we
may assume that {vi,v2} C Ng(v) N Ng(ug). Then [v,v1,v2,us] 2 K,
[u1, uq,v4,v6)] 2 K and [ug,vs,vs,v0] 2 K, , which contradicts (1). Hence,
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by (1), vv; ¢ E(Q) for each i € {1,2,3}, that is, |[E(v, V(H))| < 3, which con-
tradicts the choice of v. Therefore, ujvg ¢ E(G) and so {v1,v2,v3} C Ny (uq)
and u1v € FE(G). By (1) and (3), ugv,uzv € E(G) and |E(v,V(H))| < 3,
which contradicts the choice of v. Consequently, F' contains exactly two leaves
and F must be a path with order at least four.

Let F' = ujuz -+ -up_1up and p > 4. Suppose that 7 <1 < 8, then continue
the process as above, we can find three disjoint theta graphs, a contradic-
tion. Hence, | = 6. Then |E(u1, V(H) U {v})| > 5, |E(up, V(H) U {v})| > 5,
|E(u2, V(H) U {v})| > 4 and |E(up—1, V(H) U {v})| > 4.

Suppose u1v,upv € E(G). Then usv ¢ E(G) or up—1v ¢ E(G), other-
wise, [v,u1,u2,up—1] 2 K, as [V(H) U {vo,up}] D 2K; by Claim 3.2, which
contradicts (1). By symmetry, say usv ¢ E(G) and so |E(ugz, V(H))| > 4.
Without loss of generality, by pigeonhole principle, we may assume that v, €
Ny (ug) N Ny (up—1) and {vi,va,v3,v4} C Ng(ugz). Suppose for a moment
that |Ng(u2) N Nu(up—1)| > 2. Without loss of generality, say voup—1 €
E(G). Then [ug,up—1,v1,v2] 2 K, . We prove that vv; ¢ E(G) and vvy ¢
E(G). Otherwise, by symmetry, say vv; € E(G). If uyv; € E(G), then
[v,v1,u1,u2] D K, since [{up,vo} UV(H — {vn})] D 2K, which contra-
dicts (1). Hence, ujv; ¢ E(G). Next, we show that ujve ¢ E(G). Suppose
that ujve € E(G). Then [V(F — {up}) U {v2}] contains a theta graph, as
{v, up,v0} UV (H — {v2})] 2 2K, a contradiction once again. Until now, we
see that Ny (u1) = {vs,v4,vs,v6}. According to this, we have upv1 ¢ E(G)
and upvy ¢ E(G). This implies that Ny (ui) = Nu(up). If vvg € E(G), then
[v,v1,v2,up—1] D K, , notice that [V(H — {vi,v2}) U {u1,u2,up,v0}] 2 2K,
which contradicts (1). Thus, vvy ¢ E(G) and it follows that there exists
i € {3,4} such that v;v € E(G). Without loss of generality, say ¢ = 3, then
[v,v3,u1,u2] 2O Ky, as [V(H — {v3}) U{up—1,up,v0}] 2 2K, , which contra-
dicts (1) and completes the proof of vvy ¢ E(G). Then {vs, vy, v5,06} C Ny (v)
and so [V(H — {vi,v2}) U {v,up,u1,v0}] 2 2K, , a contradiction. This proves
that Ng(u2) N Ny (up—1) = {v1} and so vsup—1, VUp—1, up—1v € E(G). Sup-
pose that viuq € E(G), then let P’ = P — {u,}, then [V(P’) U {v1}] con-
tains a theta graph, by (3), [V(H — {wi}) U {v,u,}] 2 2K, , which con-
tradicts (1). Thus, viu1r ¢ E(G) and 80 [Ng—u, (u1) N Na—y, (up)] > 2.
If vu; € E(G), then [V(P — {ui,up}) U {v,v1}] contains a theta graph, as
[V(H — {v1}) U{u1,up}] 2 2K, which contradicts (1). Thus, vv1 ¢ E(G).
As |E(v,V(H))| > 4, by the symmetry role of vs and vg, we may assume that
vus € E(G), then [v,vs, up—1,up] 2 K, , since uy and us has at least two com-
mon neighbors in V(H) — {v1,vs,v6}, [V(H — {vs}) U{u1,uz}] 2 2K, which
contradicts (1). Consequently, we may assume that u1v ¢ E(G) by symmetry.
This gives us |E(uy, V(H))| > 5 and so |E(v, V(H))| > 5 by the maximality of
v. Without loss of generality, we may assume that {vi,ve,vs3,v4,v5} € Ny (v)
and {v1,v2,v3,v4} C Ng(ui1) N Ng(v). Because of |E(uy, V(H))| > 5, we
divide the proof into two cases.
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Case 1. uyus € E(G).

Without loss of generality, say vius, vsus € E(G), because of |E(uq, V(H))|
> 3. If up_1vy € E(G), then [uq,usg,...,up_1,v4] contains a theta graph,
since [V (H —{va}) U{v,up,v0}] D 2K, , which contradicts (1) and proves that
Up—1v4 ¢ E(G). Similarly, up,—1v5 ¢ E(G). If there exists v; € {v1,v2,v3}, say
i = 1, such that vius € E(G), then u,_1v1 ¢ E(G), Nu(up—1) = {v2,v3,06}
and up—1v € E(G). Suppose that there exist v;,v; € {vi,v4,v5} such that
Ups, upv; € E(G), then [v;,v;,u9,up] D K. For simplicity, say ¢ = 4 and
j = 5. Since [v, v2,v6, up—1] 2 K, and [vo, u1, v1,v3] O K, this contradicts (1)
and proves that u, has at most one neighbor in {v1,v4,vs}. This implies that
upve, upv € E(G). Hence, [v,up_1,up,v6] 2 K, , notice that [V(H — {ve}) U
{vo, u1,u2}] 2 2K, a contradiction. This proves that us has no neighbor in
{v1,v2,v3} and so uavg, ugv € E(G). As |E(up—1,V(H))| > 3, we may assume
that voup—_1,v3up—1 € E(G). Since [v,va, u1,u2] 2 K, and [vg, va,v3, up—1] 2
K, |E(up,{v1,vs,v6})| <1 by (1) and (3). Therefore, {ve,vs,v4} € Ny (up)
and upv € E(G). However, [v,vs,v6,u2] 2 Ky, [up—1,v2,vs3,up] 2 K, and
[vo, v1,v4,u1] 2 K, a contradiction. This proves Case 1.

Case 2. uyvg € E(G).

Suppose that usv € E(G). Then for each v; with 1 <4 < 4, vus ¢ E(G),
otherwise, [v, v;, u2, u1] 2 K , it is obvious that [V (H —{v; })U{vo, up, up—1}] 2
2K, , which contradicts (1). However, this gives us |E(ug, V(H) U {v})| < 3,
a contradiction. Thus, ugv ¢ E(G) and |E(us, V(H))| > 4. By symmetry, we
may assume that usvs, ugvs € E(G). According to (1), up—1v3 ¢ E(G) and
up—1v4 ¢ E(G). If there exists v; € {v1,v2}, say ¢ = 1, such that vius € E(G),
then u,—1v1 ¢ E(G), Nu(up—1) = {ve,v5,v6} and up—1v € E(G). This to-
gether with (1) tell us u, has at most one neighbor in {vi,vs,v4} and thus
{v2,v5,v6} C Npg(up) and upv € E(G). We see that [v, up, up—1,v6] 2 K,
[u1, ug,v3,v4] 2 K, and [vg, v1,v2,v5] 2 K, a contradiction. This proves that
us has no neighbor in {v1, v2} and so uavs, usvg € E(G). As |E(up—1, V(H))| >
3, by the symmetry role of v; and vy, we may assume that viup,—1 € E(G).
Suppose that up,_1vs € E(G). If veu, € E(G), then [up_1,up, v1,v6] 2 K,
[v,v2,v3,u1] 2 K, and [vg,us2,v4,v5] 2 K, , a contradiction. Therefore,
veup ¢ E(G) and then there exist v;, v; € {v2,v3, va, vs}, such that vyu,, viu, €
E(G). If 2 € {i,j}, then [v,v;,v;,up] 2 K, [vi,u1,up—1,v6] 2 K; and
[V(H — {v1,vi,v5,v6}) U{vo,u2}] 2 K, a contradiction. Hence, 2 ¢ {i,j}.
Then [ug, vi, vj, up] 2 K, , [v1,u1,v6, up—1] 2 K, and [V(H —{v1, v;, v}, v6})U
{vo,v}] D K, a contradiction. This proves that up,—1vs ¢ E(G) and it
follows that voup—1,vsup—1 € E(G). By (1), upvs ¢ E(G). Since [V(F —
{u1,up}) U{vs,v6}] contains a theta graph and u, has at least two neighbors
in {v1,v2,v3,v4}, we see that [V(H — {vs,vs}) U{v,u1,up, v0}] 2 2K, a con-
tradiction. This completes the proof of Case 2 and the proof of Claim 3.5. [
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Since n > 13 and 6 < |V(H)| < 8, it follows from Claim 3.5 that |F*| > 2.
Claim 3.6. |V(F)| <2 for each F € F*.

Proof. By way of contradiction. Suppose that there exists F' € F* such that
|[V(F)| > 3. According to Claim 3.5, |[V(F)| = 3. If F is a triangle, then the
proof of Claim 3.3 works, because of |F*| > 2. Thus, F is a path of order three
and write F' = ujuqug. Let F/ € F* — F and uyq € V(F”) such that us is an
end vertex of F’. It is obvious that dps(u2) = 1. Suppose that 7 <1 < 8. Tt
is obvious that there exists v; € V(H), such that uqv;, ugqv;, uzv; € E(G), that
is, [vi, u1, uq,us] 2 K, since [V(H — {v;})U{vg,uz}] 2 2K, a contradiction.
Thus, | = 6, then continue the same proof in Claim 3.5 (when |F| > 4 and
contains at least three leaves).

Claim 3.7. For each graph F € F such that |V (F)| = 2, there exists S C V(H)
with |S| =2 and [V(F)US] D K.

Proof. Let F € F such that |[V(F)| = 2, label V(F) = {uy,u2}. Since
|E(u;, V(H))| > 1—-1if 7 <1 <8 and |E(u;, V(H) U {v})] > 1—1 for each
i with 1 <4 < 2, it follows from the pigeonhole principle that there exists a
subset S C V(H) with |S| =2 and S C Ng(u1) N Ny (ug). By (3), we know
[V(F)US] D K, . O

Claim 3.8. For any u € V(G*), |E(u,{vo} UV(H))| = |[E(u,V(H))| <1-1
if 7T<1<8; |E(u, V(H)U{v})| <1 ifl=6.

Proof. Suppose that there exists u € V(G*) such that |E(u,V(H))| > 1 if
7<1<8,and |E(u,V(H)U{v})| > 1+ 1if | = 6. By Claim 3.6, we may
assume that F* contains two components Fy and Fy with |V (F;)| < 2 for each
1 <4 < 2,such that u € V(F1). Suppose that |V (F»)| = 2 and label F» = ugus.
Note that |E(u;, V(H))| > 1 — 1 for each i € {2,3}. By Claim 3.7, there exist
v;,v; € V(H) such that [ug, us,v;,v;] 2 K, . If 7 <1 <8, combining with (2)
and (3), [V(H — {vi,v;}) U{u,v}] 2 2K, , which contradicts (1). Therefore,
I = 6. By the choice of v, |E(v, V(H))| = 6. Notice that v,v, € E(G), thus,
[Vp, g, v, u] D K, . Since F*\ (Fy UF,) # 0, choose ug € V(F*\ (F1UFy)). By
Claim 3.6, |E(u4, V(H))| > 4, choose {vp, vq} C Ny (us)NNg(v)—{v;,v;} such
that p # ¢. Now, [vp,vq,ua,v0] 2 K, and [V(H — {v;,v;,vp,v4}) U {u,v}] D
K, , which contradicts (1). This shows the order of each components of F*\ F;
is one. Now, note that |F™* \ Fi| > 3, we can choose three different vertices
u1,ug, uz, such that |E(u;, V(H))| > 5 for each 1 < ¢ < 3. As above, it is
obvious that [V (H) U {v, u, v, u1,us, us}] 2 3K, , a contradiction. O

Now we are in the position to complete the proof of Theorem 1.8. By
Claim 3.6 and Claim 3.8, |V(F)| = 2 for all F € F*, we have

nolol o 3f7<]<8
> e ={ ok 5

FeF*
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Suppose that 7 < [ < 8. We may assume that ujus and usuy are two
component of G*, since |E(u;,V(H))| > | — 1, by Claim 3.2, it is obvious
that [V(H) U {vo, u1,uz,us,us}] O 3K, , a contradiction. Thus, [ = 6, and
according to Claim 3.8, we obtain

|E(G)| = |E([{vo, 0} UV(H))| + [ E(V(G™), {vo, 0} UV(H)| + > |E(F)]
FeF+
<27 +5|V(GY) + > |E(F))
FeF*
n—2=8
2

— 27+ 5(n—8) +

11n — 34
2 )
this is an obvious contradiction and completes the proof of Theorem 1.8.
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