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SUFFICIENT CONDITION FOR THE EXISTENCE OF

THREE DISJOINT THETA GRAPHS

Yunshu Gao and Ding Ma

Abstract. A theta graph is the union of three internally disjoint paths
that have the same two distinct end vertices. We show that every graph
of order n ≥ 12 and size at least ⌊ 11n−18

2
⌋ contains three disjoint theta

graphs. As a corollary, every graph of order n ≥ 12 and size at least
⌊ 11n−18

2
⌋ contains three disjoint cycles of even length.

1. Terminology and introduction

In this paper, we only consider finite undirected graphs, without loops or
multiple edges. We use [1] for the notation and terminology not defined here.
A theta graph is the union of three internally disjoint paths that have the
same two distinct end vertices. Let n be a positive integer, let Kn denote
the complete graph of order n and K−

4 be the graph obtained by removing
exactly one edge from K4. For a graph G, we denote its vertex set, edge set,
minimum degree by V (G), E(G) and δ(G), respectively. The order and size of
a graph G, are defined by |V (G)| and |E(G)|, respectively. A set of subgraphs
is said to be vertex-disjoint or independent, if no two of them have any common
vertex in G, and we use disjoint to stand for vertex-disjoint throughout this
paper. If u is a vertex of G and H is either a subgraph of G or a subset of
V (G), we define NH(u) to be the set of neighbors of u contained in H , and
dH(u) = |NH(u)|. For a subset U of V (G), G[U ] denotes the subgraph of G
induced by U . In particular, we often use [U ] to stand for G[U ]. If S is a
set of subgraphs of G, we write G ⊇ S, it means that S is isomorphic to a
subgraph of G, in particular, we use mS to represent a set of m vertex-disjoint
copies of S. When S = {x1, x2, . . . , xt}, we may also use [x1, x2, . . . , xt] to
denote [{x1, x2, . . . , xt}]. Let V1, V2 be two disjoint subsets or subgraphs of G,
we use E(V1, V2) to denote the set of edges in G with one end-vertex in V1,
while the other in V2, for simplicity, let E(x, V2) stand for E({x}, V2), E(V1, x)
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for E(V1, {x}), respectively. A path of order n is denoted by Pn. Throughout
this paper, we consider that any cycle has a fixed orientation. Let C be a cycle

of G. For x, y ∈ V (C), we denote by
−→
C [x, y] the path from x to y on

−→
C . A

vertex u is called a leaf of G if dG(u) = 1.
Corrádi and Hajnal [3] proved the following well-known result on the exis-

tence of vertex-disjoint cycles in graphs.

Theorem 1.1 ([3]). Let k be a positive integer and G be a graph with order

n ≥ 3k. If δ(G) ≥ 2k, then G contains k disjoint cycles.

Later, Wang [10] and independently Enomoto [5] proved a result stronger
than Theorem 1.1 as follows.

Theorem 1.2 ([10]). Let k be a positive integer and G be a graph with order

n ≥ 3k. Suppose for any pair of nonadjacent u and v in G, dG(u) + dG(v) ≥
4k − 1, then G contains k disjoint cycles.

Given a cycle C of a graph G, a chord of C is an edge of G − E (C) which
joins two vertices of C. A cycle is called a chorded cycle if it has at least one
chord. A theta graph is the union of three internally disjoint paths that have
the same two distinct end vertices. A chorded cycle is a simple example of a
theta graph but, in general a theta graph need not be a chorded cycle. It is
obvious that K−

4 is the theta graph with minimum order and every theta graph
contains a cycle of even length. Pósa [9] proved that any graph with minimum
degree at least three contains a chorded cycle. Motivated by these results,
Finkel et al. [6] and Chiba et al. [3] obtained the following results analogous to
Theorem 1.2, respectively.

Theorem 1.3 ([6]). If G is a graph of order n ≥ 4k and δ(G) ≥ 3k, then G
contains k disjoint chorded cycles.

Theorem 1.4 ([3]). Let r,s be two nonnegative integers and let G be a graph

with order n ≥ 3r + 4s. Suppose for any pair of nonadjacent u and v in G,

dG(u) + dG(v) ≥ 4r + 6s− 1, then G contains r + s disjoint cycles such that s
of them are chorded cycles.

Kawarabayashi [8] considered the minimum degree to ensure the existence
of disjoint copies of K−

4 in a general graph G, which can be seen as a specified
version of disjoint chorded cycles.

Theorem 1.5 ([8]). Let k be a positive integer and G be a graph with order

n ≥ 4k. If δ (G) ≥ ⌈n+k
2 ⌉, then G contains k disjoint copies of K−

4 .

In this paper, we determine the edge number for a graph to contain three
disjoint theta graphs. Our research is motivated by the conjecture put forward
by Gao and Ji [7].
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Conjecture 1.6 ([7]). Let k ≥ 2 be an integer. Every graph of order n and

size at least f(n, k) + 1 contains k disjoint theta graphs, when

f(n, k) = max
{(

4k − 1

2

)

+
3

2
(n− 4k + 1),

⌊

2(k − 1)(2k − 1) + (4k − 1)(n− 2k + 1)

2

⌋}

.

If the conjecture is true, then the bound on size is best possible, which can
be seen as following examples in [7]: Let G1 be K1+(K4k−2∪

n−4k+1
2 K2). The

order of G1 is n and size
(

4k−1
2

)

+ 3
2 (n − 4k + 1), but G1 does not contain k

disjoint theta graphs. Also, let n be an integer such that n− (2k − 1) is even.

Let l1 = n−(2k−1)
2 , F = K2k−1, H1 = l1K2 and G2 = F + H1. It is obvious

that the graph G2 has order n, |E(G1 )| = (k − 1)(2k − 1) + (4k − 1)l1 =

(k − 1)(2k − 1) + (4k−1)(n−2k+1)
2 =

⌊

2(k−1)(2k−1)+(4k−1)(n−2k+1)
2

⌋

. Gao and

Ji [7] verified Conjecture 1.6 for the case k = 2.

Theorem 1.7 ([7]). Every graph of order n ≥ 8 and size at least f(n) contains
two disjoint theta graphs, if

f(n) =

{

23 if n = 8
⌊ 7n−13

2 ⌋ if n ≥ 9.

Based on Theorem 1.7, in this paper, we give a sufficient condition for the
existence of three disjoint theta graphs.

Theorem 1.8. Every graph of order n ≥ 12 and size at least ⌊ 11n−18
2 ⌋ contains

three disjoint theta graphs.

Note that there is a small gap on the lower bound of size between Theo-
rem 1.8 and Conjecture 1.6 for k = 3. However, the following corollary follows
from Theorem 1.8.

Corollary 1.9. Every graph of order n ≥ 12 and size at least ⌊ 11n−18
2 ⌋ contains

three disjoint cycles of even length.

2. Basic lemma

Lemma 2.1. Let G be a graph of order 12 and size at least 57. Then G
contains three disjoint copies of K−

4 .

Proof. Suppose that G does not contain three disjoint copies of K−

4 . If δ(G) ≥
8, then by Theorem 1.5, G ⊇ 3K−

4 , a contradiction. Hence, we may assume
that δ(G) ≤ 7. Let v0 ∈ V (G) such that dG(v0) = δ(G). Suppose that
dG(v0) = 1, then 56 = |E(G)| < 57, a contradiction. Thus, dG(v0) ≥ 2
and let v1, v2 ∈ NG(v0). Suppose that dG(v0) = 2, then choose w ∈ V (G −
{v0, v1, v2}), since |E(G − {v0})| ≥ 55, it is obvious that {v0, v1, v2, w} ⊇ K−

4

and [V (G) − {v0, v1, v2, w}] ⊇ 2K−

4 , a contradiction. Hence, we may assume
that dG(v0) ≥ 3. Furthermore, since G − {v0} can be obtained from K11 by
removing at most five edges, it follows that [NG(v0)] contains a path of order
three, denoted by P3. That is, P3 + {v0} contains a subgraph Q ∼= K−

4 . Note
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that |E(G − V (Q) − {v0}| ≥ 57 − 7 − (10 + 9 + 8) = 23, by Theorem 1.7,
G − V (Q) − {v0} contains two disjoint copies of K−

4 , which disjoints from Q,
this implies that G ⊇ 3K−

4 , a contradiction. This proves Lemma 2.1. �

3. Proof of Theorem 1.8

If n = 12, then Lemma 2.1 gives us the required conclusion. Hence, it is
sufficient to prove that every graph of order n ≥ 13 and size at least ⌊ 11n−18

2 ⌋
contains three disjoint theta graph. We employ induction on n.

Assume that for all integers k with 12 ≤ k < n, every graph of order k and
size at least ⌊ 11k−18

2 ⌋ contains three disjoint theta graphs. In the following

proof, we always let G be any graph of order n and size at least ⌊ 11n−18
2 ⌋. By

way of contradiction, we suppose that

(1) G does not contain three disjoint theta graphs.

Claim 3.1. 6 ≤ δ(G) ≤ 8.

Proof. By Theorem 1.3, we have δ(G) ≤ 8. Suppose that δ(G) ≤ 5 and let
v0 ∈ V (G) such that dG(v0) = δ(G). The graph G−v0 is of order n−1 and size
⌊

11n−18
2

⌋

− dG(v0) ≥
⌊

11n−18
2

⌋

− 5 ≥ 11n−19−10
2 = 11(n−1)−18

2 ≥
⌊

11(n−1)−18
2

⌋

,

by induction hypothesis, G − v0 contains three disjoint theta graphs, and so
does G, which contradicts (1). Therefore, δ(G) ≥ 6. �

Let v0 be a vertex in G such that dG(v0) = δ(G). In what following, we
always assume that NG(v0) = {v1, . . . , vl} and H = [v1, . . . , vl], where l =
dG(v0). By Claim 3.1, 6 ≤ l ≤ 8. If l = 6, then let εl = 1; if l = 7, then let
εl = 2; if l = 8, then let εl = 3. Note that l = 5+ εl.

Claim 3.2. For each 1 ≤ i ≤ l, dH(vi) ≥ l − εl.

Proof. Suppose that there exists 1 ≤ i ≤ l such that dH(vi) ≤ l − εl − 1 =
(l − 1) − εl. Without loss of generality, we may assume that i = l, and we
may also assume that vjvl /∈ E(G) for each 1 ≤ j ≤ εl (otherwise, we can
relabel the index of V (H)). Define the edge set X = {vjvl : 1 ≤ j ≤ εl} and
construct the graph G′ = (G− v0) +X , which is a graph with order n− 1 and

|E(G′)| =
⌊

11n−18
2

⌋

− l + εl ≥
11n−19

2 − l + εl =
11(n−1)−18

2 ≥ ⌊ 11(n−1)−18
2 ⌋,

because of l = 5+ εl. By induction hypothesis, G′ contains three disjoint theta
graphs, say T1, T2 and T3, respectively. Clearly, at least two of them, say T1

and T2, do not contain vertex vl, since T1, T2 and T3 are disjoint theta graphs,
then E(T1) ∩X = ∅, E(T2) ∩X = ∅ and by (1), E(T3) ∩X 6= ∅.

Suppose that |E(T3) ∩X| = 1, we may assume that E(T3) ∩ X = {vlv1}.
Then T3

′ = (T3 − {vlv1}) + {v1v0, vlv0} is a theta graph in G, T1, T2 and
T3

′ are disjoint in G, which contradicts (1). Therefore, it remains the case
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E(T3) ∩X = {v1vl, v2vl} or E(T3) ∩X = {v1vl, v2vl, v3vl}, as εl ≤ 3. Let

T ′

3=















(T3 − {v1vl, v2vl})+{v0v1, v0v2}, if dT3
(vl) = 2

(T3 − {v1vl, v2vl})+{v0v1, v0v2, v0v3}, if dT3
(vl) = 3 and

E(T3) ∩X = {v1vl, v2vl}
(T3 − {v1vl, v2vl, v3vl})+{v0v1, v0v2, v0v3}, otherwise.

It is obvious that T1, T2 and T3
′ are three disjoint theta graphs in G, which

contradicts (1). �

By Claim 3.2, Theorem 1.5 and the definition of εl, when 7 ≤ l ≤ 8, for each
subset S of V (H) with |S| ≥ 7, we obtain

(2) [{v0} ∪ S] ⊇ 2K−

4 .

In particular, if l = 6, then

(3) [{v0} ∪ V (H)] ∼= K7.

We take a vertex v ∈ V (G−H −{v0}) such that |E(v, V (H))| is maximum.
When l = 6, by (3) and the definition of v, denote W = V (H) ∪ {v}, we claim
that

(4) [{v0} ∪W ] ⊇ 2K−

4 .

Proof. By way of contradiction, suppose that [{v0} ∪W ] does not contain two
disjoint K−

4 . By (3) and the assumption that [{v0} ∪W ] + 2K−

4 , for each
w ∈ V (G − {v0} − V (H)), there is at most one edge between w and V (H).
If n = 13, then 62 ≤ |E(G)| ≤ 7×6

2 + 6 + 6×5
2 = 42, a contradiction. If

n = 14, then 68 ≤ |E(G)| ≤ 7×6
2 + 7 + 7×6

2 = 49, a contradiction. If n = 15,

then 73 ≤ |E(G)| ≤ 7×6
2 + 8 + 8×7

2 = 57, a contradiction. If n = 16, then

84 ≤ |E(G)| ≤ 7×6
2 + 9 + 9×8

2 = 66, a contradiction. Therefore, we see that
n ≥ 17. Since

|E(G− {v0} − V (H))| ≥ |E(G)| −
7× 6

2
− (n− 7)

≥
11n− 19

2
− n− 14

≥
7n− 13

2
,

by Theorem 1.7, G−{v0}−V (H) contains two disjoint theta graphs, together
with (3), G contains three disjoint theta graphs, a contradiction. �

Let

G∗ =

{

G− ({v0} ∪ V (H)), if 7 ≤ l ≤ 8
G− ({v0, v} ∪ V (H)), if l = 6.

Let F ∗ be the set of components of G∗. By (2) and (4), it follows from (1)
that every graph in F ∗ contains no theta graph. In the following proof, let F
denote arbitrary component in F ∗, then, each block of F is either a K2 or a
cycle.
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Claim 3.3. Let F ∈ F ∗ with |V (F )| ≥ 4. Then each end block of F is

isomorphic to K2.

Proof. Otherwise, suppose that there exists an end block B of F , such that
B is a cycle. Let C denote the set of cut vertices of F . Let u1 and u2 be
two distinct vertices in V (B) − C. Next, we choose two distinct vertices u3

and u4 (both are distinct with u1 and u2) as follows: If F = B, then let
{u3, u4} ⊆ V (F −{u1, u2}); otherwise, F contains another end blocks B′ which
is different from B, let u3 ∈ V (B′) such that u3 /∈ C and choose u4 ∈ V (F ) \C
if possible, unless F contains exactly two end blocks B and B′, such that B is a
triangle and B′ ∼= K2. For each i with 1 ≤ i ≤ 3, since dF (ui) ≤ 2 , if 7 ≤ l ≤ 8,
then |E(ui, V (H))| ≥ δ(G)−2 = l−2, if l = 6, then |E(ui, V (H)∪{v})| ≥ l−2.
This implies that there exists a vertex v′ ∈ V (H) (v′ ∈ V (H) ∪ {v} if l = 6),
such that u1v

′, u2v
′ ∈ E(G). As B is a cycle, it is easy to see that [B ∪ {v′}]

contains a theta graph. When F = B, without loss of generality, we may
assume that u1, u2, u3 and u4 occur along the direction of B.

If l = 8, by applying (2) and Theorem 1.5, [{v0} ∪ V (H)− {v′}] contains two
theta graphs, that is, G contains three disjoint theta graphs, which contradicts
(1). If l = 7, we may assume that {v2, v3, v4, v5, v6} ⊆ NG(u3) and v′ 6= v4, v5
and v6, then [{v4, v5, v6, u3}] ⊇ K−

4 by Claim 3.2. If u3 /∈ V (B), that is, u3

belongs to another end block by our choice, notice that [V (H−{v4, v5, v6, v′})∪
{v0}] ⊇ K−

4 and [B ∪ {v′}] contains a theta graph, we obtain a contradiction
to (1). Therefore, we see that u3 ∈ V (B) and so F = B by our choice. We
may assume that {v1, v2, v3} ⊆ NG(u1) ∩NG(u2) because we don’t use the as-
sumption of {v2, v3, v4, v5, v6} ⊆ NG(u3). Suppose for the moment, there exists
at most one vi ∈ {v1, v2, v3}, such that viu3, viu4 ∈ E(G). Then there exist
vp, vq ∈ V (H −{v1, v2, v3}) with p 6= q, such that {vp, vq} ⊆ NG(u3)∩NG(u4).
However, by Claim 3.2, [{v0} ∪ V (H − {v1, v2, vp, vq})] ⊇ K−

4 , notice that

[{v1, v2}∪V (
−→
B [u1, u2])] and [{vp, vq}∪V (

−→
B [u3, u4])] contain two disjoint theta

graphs, this implies that G contains three disjoint theta graphs, a contradic-
tion. Thus, without loss of generality, say {v1, v2} ⊆ NH(u3) ∩ NH(u4). As
|E(u3, V (H))| ≥ 5, without loss of generality, we may assume that v4u3, v5u3 ∈
E(G). As dH(v1) ≥ 5 by Claim 3.2, we may assume that v1v4 ∈ E(G).
This implies that [v4, v1, u4, u3] ⊇ K−

4 , notice that [{v0, v5, v6, v7}] ⊇ K−

4 and

[{v2, v3}∪V (
−→
B [u1, u2])] contains a theta graph, then G contains three disjoint

theta graphs, a contradiction. Now, it remains the case l = 6. As dF (ui) ≤ 2
for i ∈ {1, 2, 3}, so |E(ui, V (H) ∪ {v})| ≥ l−2 = 4. Furthermore, by our choice
of u4, dF (ui) ≤ 3 and |E(u4, V (H) ∪ {v})| ≥ 3.

Suppose for the moment that u1v, u2v, u3v ∈ E(G), then [B ∪ {v}] contains
a theta graph. If u3 /∈ V (B), by the choice of u3 and (3), H + {v0, u3} ⊇ 2K−

4 ,
this implies that G contains three disjoint theta graphs, which contradicts (1).

Thus, u3 ∈ V (B) and so F = B. However, [{v} ∪ V (
−→
B [u1, u3])] contains a

theta graph and [{u4, v0} ∪ V (H)] ⊇ 2K−

4 , a contradiction. Thus, there exists
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i ∈ {1, 2, 3}, such that uiv /∈ E(G). By the definition of v, |E(v, V (H))| ≥ 4.
Without loss of generality, we assume that {v1, v2, v3, v4} ⊆ NH(v).

If u1v, u2v ∈ E(G), then F = B. Without loss of generality, we may assume

that v4u1 ∈ E(G) and so [{v, v4}∪V (
−→
B [u1, u2])] contains a theta graph. Notice

that u3v /∈ E(G) and u4v /∈ E(G), then [{u3, u4, v0} ∪ V (H − {v4})] ⊇ 2K−

4 , a
contradiction. Therefore, we assume that u1v /∈ E(G) by symmetry.

Suppose that u3 /∈ V (B). Then |E(u3, {v1, v2, v3, v4})| ≥ 2; otherwise,
u3v ∈ E(G) and we may further assume that u3v4, u3v5, u3v6 ∈ E(G). Since
|E(u1, V (H))| ≥ 4 and |E(u2, V (H))| ≥ 3, there exists i ∈ {1, 2, 3, 4}, such that
ui∈NH(u2)∩NH(u1), then [B∪{ui}] is a theta graph, since [{u1, u2, u3, u4, v}−
{ui}] ⊇ K−

4 and [v0, v5, v6, u3] ⊇ K−

4 , which contradicts (1). By symmetry, we
assume that v1u3, v2u3 ∈ E(G). If v′ 6= v1 and v′ 6= v2, then [v, u3, v1, v2] ⊇ K−

4

and [{v0} ∪ (V (H) − {v1, v2, v′})] ⊇ K−

4 , which disjoints from [B ∪ {v′}], a
contradiction. Hence, we may assume that v′ = v1. By Claim 3.2 and (1),
we may assume that v5u3, v6u3 ∈ E(G). However, [v0, v5, v6, u3] ⊇ K−

4 and
[v, v2, v3, v4] ⊇ K−

4 , which disjoints from [B ∪ {v1}], a contradiction. Thus,
u3 ∈ V (B) and so F = B by our choice.

By symmetry, we may assume that u2v /∈ E(G) and u3v /∈ E(G). By pi-
geonhole principle, there exists {vp, vq} ⊆ V (H) such that {vp, vq} ⊆ NH(u1)∩

NH(u2). If u3vp ∈ E(G), then [V (
−→
B [u1, u3]) ∪ {vp}] contains a theta graph,

notice that [V (H − {vp}) ∪ {v, v0, u4}] ⊇ 2K−

4 , G contains three disjoint
theta graphs, a contradiction. Thus, u3vp /∈ E(G) and by symmetry, u3vq /∈
E(G), u4vp /∈ E(G) and u4vq /∈ E(G). This implies that there exist vi, vj ∈
V (H) − {vp, vq}, such that {vi, vj} ⊆ NH(u3) ∩ NH(u4). By (1), we see that
|{p, q}∩{1, 2, 3, 4}| ≤ 1 and |{i, j}∩{1, 2, 3, 4}| ≤ 1. Therefore, [{v, v0}∪V (H−

{vp, vq, vi, vj})] ⊇ K−

4 . Notice that [{vp, vq} ∪ V (
−→
B [u1, u2])] and [{vi, vj} ∪

V (
−→
B [u3, u4])] contains two disjoint theta graphs, which contradicts (1). This

completes the proof that B is not an end block, and in particular, we see that
every end block of F is isomorphic K2. �

Claim 3.4. Let F ∈ F ∗ with |V (F )| ≥ 4. Then each block of F is isomorphic

to K2.

Proof. Since |V (F )| ≥ 4, F contains at least two end block, say F1 and F2.
Note Fi

∼= K2 for each 1 ≤ i ≤ 2. Let u1 ∈ V (F1) such that dF1
(u1) = 1

and let u3 ∈ V (F2) such that dF2
(u3) = 1. Suppose that the conclusion of

Claim 3.4 is false, we may assume that B is the nearest block to u1 in F , such
that B is a cycle. By Claim 3.3, B is not an end block of F . We choose two
distinct vertices u2 and u4 such that both of them are distinct with u1 and u3

as follows: Let u2 ∈ V (B) and u2 is not a cut vertex of F , and choose u4 such
that u4 is not a cut vertex of F , unless F contains exactly three blocks F1, F2

and B ∼= K3, then choose u4 ∈ V (F2) − {u3}. Notice that if there exists v′

such that u1v
′, u2v

′ ∈ E(G), then using these blocks of F from F1 to B, we see
that [V (F − {u3}) ∪ {u1}] contains a theta graph. Now, since u1 and u3 are
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in different blocks, with the same role of u1, u2, u3 and u4, we continue part of
the process in the proof of Claim 3.3, we can complete the proof. This proves
Claim 3.4. �

Claim 3.5. |V (F )| ≤ 3 for each F ∈ F ∗.

Proof. Otherwise, suppose that there exists F ∈ F ∗ such that |V (F )| ≥ 4. By
Claim 3.4, F must be a tree.

Suppose for the moment that there exists three distinct leaves in V (F ), say
u1, u2 and u3. Then for each 1 ≤ i ≤ 3, |E(ui, V (H))| ≥ l − 1 if 7 ≤ l ≤ 8,
and |E(ui, V (H) ∪ {v})| ≥ l − 1 if l = 6. As |V (F )| ≥ 4, by Claim 3.4, we
choose u4 ∈ V (F − {u1, u2, u3}) as follows: if F contains at least four leaves,
then let u4 denote the leave different from u1, u2 and u3; otherwise, let u4 and
u1 belongs to the same block of F . It is obvious that |E(u4, V (H))| ≥ l − 3 if
7 ≤ l ≤ 8, and |E(u4, V (H) ∪ {v})| ≥ l − 3 if l = 6.

Suppose that l = 8. Notice that there exist v′, v′′ ∈ V (H) with v′ 6= v′′

and v′v′′ ∈ E(G) such that {v′, v′′} ⊆ NH(u1) ∩ NH(u2). It is obvious that
[v′, v′′, u1, u2] ⊇ K−

4 . by Claim 3.1, H − {v′, v′′} + {v0, u3} induces a graph
with minimum degree at least five, and therefore contains two disjoint copies of
K−

4 by Theorem 1.5, a contradiction. Next, suppose that l = 7, by pigeonhole
principle, we can find two distinct vertices vi, vj ∈ V (H) such that {vi, vj} ⊆
NH(u3) ∩ NH(u4). Since there is a path P in F which connecting u3 and
u4, thus, [V (P ) ∪ {vi, vj}] contains a theta graph. Notice that there exist
v′, v′′ ∈ V (H − {vi, vj}) with v′ 6= v′′ and v′v′′ ∈ E(G), such that {v′, v′′} ⊆
NH(u1) ∩NH(u2). It is obvious that [v′, v′′, u1, u2] ⊇ K−

4 . As [{v0} ∪ V (H −
{v′, v′′, vi, vj})] ⊇ K−

4 , which contradicts (1). Thus, l = 6.
We show NH(u1) ∩ NH(u4) 6= ∅. Suppose not, without loss of generality,

we may assume that NG(u1)∩ (V (H) ∪ {v}) = {v, v1, v2, v3, v4} and NG(u4)∩
(V (H) ∪ {v}) = {v, v5, v6}. If u3v ∈ E(G), then [V (F − {u2}) ∪ {v}] contains
a theta graph, as [V (H) ∪ {v0, u2}] ⊇ 2K−

4 , which contradicts (1). Hence,
u3v /∈ E(G) and u2v /∈ E(G) by symmetry. Furthermore, by the choice of v, we
have |E(v, V (H))| ≥ 4 and so NH(v) ∩NH(u1) 6= ∅, without loss of generality,
say vv1 ∈ E(G). Then [v, v1, u1, u4] ⊇ K−

4 , since |NH(u2) ∩ NH(u3)| ≥ 3, it
follows that [V (H − {v1}) ∪ {u2, u3, v0}] ⊇ 2K−

4 , which contradicts (1).
Now, by symmetry, say v6 ∈ NH(u1) ∩ NH(u4). If u2v6 ∈ E(G), then

[{v6}∪V (F −{u3})] contains a theta graph, as [V (H−{v6})∪{v, u3}] ⊇ 2K−

4 ,
which contradicts (1). Thus, v6u2 /∈ E(G) and v6u3 /∈ E(G) by symme-
try. As |E(u2, V (H))| ≥ 4 and |E(u3, V (H))| ≥ 4, we may assume that
{v1, v2, v3, v4} ⊆ NH(u2) and {v1, v2, v3} ⊆ NH(u2)∩NH(u3). If v5u1 ∈ E(G),
then [{v6, v5, u1, u4}] ⊇ K−

4 . Notice that [V (H − {v5, v6}) ∪ {v0, v, u3, u2}] ⊇
2K−

4 by the definition of v and (3), which contradicts (1). Thus, v5u1 /∈ E(G).
If u1v4 ∈ E(G), then u2v, u3v ∈ E(G). Otherwise, say u2v /∈ E(G). Then
u2v5 ∈ E(G) and |E(v, V (H))| ≥ 5 by the choice of v. By symmetry, we
may assume that {v1, v2} ⊆ NH(v) ∩ NH(u3). Then [v, v1, v2, u3] ⊇ K−

4 ,
[u1, u4, v4, v6] ⊇ K−

4 and [u2, v3, v5, v0] ⊇ K−

4 , which contradicts (1). Hence,
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by (1), vvi /∈ E(G) for each i ∈ {1, 2, 3}, that is, |E(v, V (H))| ≤ 3, which con-
tradicts the choice of v. Therefore, u1v4 /∈ E(G) and so {v1, v2, v3} ⊆ NH(u1)
and u1v ∈ E(G). By (1) and (3), u2v, u3v ∈ E(G) and |E(v, V (H))| ≤ 3,
which contradicts the choice of v. Consequently, F contains exactly two leaves
and F must be a path with order at least four.

Let F = u1u2 · · ·up−1up and p ≥ 4. Suppose that 7 ≤ l ≤ 8, then continue
the process as above, we can find three disjoint theta graphs, a contradic-
tion. Hence, l = 6. Then |E(u1, V (H) ∪ {v})| ≥ 5, |E(up, V (H) ∪ {v})| ≥ 5,
|E(u2, V (H) ∪ {v})| ≥ 4 and |E(up−1, V (H) ∪ {v})| ≥ 4.

Suppose u1v, upv ∈ E(G). Then u2v /∈ E(G) or up−1v /∈ E(G), other-

wise, [v, u1, u2, up−1] ⊇ K−

4 , as [V (H) ∪ {v0, up}] ⊇ 2K−

4 by Claim 3.2, which
contradicts (1). By symmetry, say u2v /∈ E(G) and so |E(u2, V (H))| ≥ 4.
Without loss of generality, by pigeonhole principle, we may assume that v1 ∈
NH(u2) ∩ NH(up−1) and {v1, v2, v3, v4} ⊆ NH(u2). Suppose for a moment
that |NH(u2) ∩ NH(up−1)| ≥ 2. Without loss of generality, say v2up−1 ∈
E(G). Then [u2, up−1, v1, v2] ⊇ K−

4 . We prove that vv1 /∈ E(G) and vv2 /∈
E(G). Otherwise, by symmetry, say vv1 ∈ E(G). If u1v1 ∈ E(G), then
[v, v1, u1, u2] ⊇ K−

4 , since [{up, v0} ∪ V (H − {v1})] ⊇ 2K−

4 , which contra-
dicts (1). Hence, u1v1 /∈ E(G). Next, we show that u1v2 /∈ E(G). Suppose
that u1v2 ∈ E(G). Then [V (F − {up}) ∪ {v2}] contains a theta graph, as

[{v, up, v0} ∪ V (H − {v2})] ⊇ 2K−

4 , a contradiction once again. Until now, we
see that NH(u1) = {v3, v4, v5, v6}. According to this, we have upv1 /∈ E(G)
and upv2 /∈ E(G). This implies that NH(u1) = NH(up). If vv2 ∈ E(G), then

[v, v1, v2, up−1] ⊇ K−

4 , notice that [V (H − {v1, v2}) ∪ {u1, u2, up, v0}] ⊇ 2K−

4 ,
which contradicts (1). Thus, vv2 /∈ E(G) and it follows that there exists
i ∈ {3, 4} such that viv ∈ E(G). Without loss of generality, say i = 3, then
[v, v3, u1, u2] ⊇ K−

4 , as [V (H − {v3}) ∪ {up−1, up, v0}] ⊇ 2K−

4 , which contra-
dicts (1) and completes the proof of vv1 /∈ E(G). Then {v3, v4, v5, v6} ⊆ NH(v)
and so [V (H − {v1, v2}) ∪ {v, up, u1, v0}] ⊇ 2K−

4 , a contradiction. This proves
that NH(u2) ∩ NH(up−1) = {v1} and so v5up−1, v6up−1, up−1v ∈ E(G). Sup-
pose that v1u1 ∈ E(G), then let P ′ = P − {up}, then [V (P ′) ∪ {v1}] con-
tains a theta graph, by (3), [V (H − {v1}) ∪ {v, up}] ⊇ 2K−

4 , which con-
tradicts (1). Thus, v1u1 /∈ E(G) and so |NH−v1(u1) ∩ NH−v1(up)| ≥ 2.
If vv1 ∈ E(G), then [V (P − {u1, up}) ∪ {v, v1}] contains a theta graph, as
[V (H − {v1}) ∪ {u1, up}] ⊇ 2K−

4 , which contradicts (1). Thus, vv1 /∈ E(G).
As |E(v, V (H))| ≥ 4, by the symmetry role of v5 and v6, we may assume that
vv5 ∈ E(G), then [v, v5, up−1, up] ⊇ K−

4 , since u1 and u2 has at least two com-

mon neighbors in V (H)− {v1, v5, v6}, [V (H − {v5}) ∪ {u1, u2}] ⊇ 2K−

4 , which
contradicts (1). Consequently, we may assume that u1v /∈ E(G) by symmetry.
This gives us |E(u1, V (H))| ≥ 5 and so |E(v, V (H))| ≥ 5 by the maximality of
v. Without loss of generality, we may assume that {v1, v2, v3, v4, v5} ⊆ NH(v)
and {v1, v2, v3, v4} ⊆ NH(u1) ∩ NH(v). Because of |E(u1, V (H))| ≥ 5, we
divide the proof into two cases.
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Case 1. u1v5 ∈ E(G).

Without loss of generality, say v4u2, v5u2 ∈ E(G), because of |E(u2, V (H))|
≥ 3. If up−1v4 ∈ E(G), then [u1, u2, . . . , up−1, v4] contains a theta graph,
since [V (H −{v4})∪{v, up, v0}] ⊇ 2K−

4 , which contradicts (1) and proves that
up−1v4 /∈ E(G). Similarly, up−1v5 /∈ E(G). If there exists vi ∈ {v1, v2, v3}, say
i = 1, such that v1u2 ∈ E(G), then up−1v1 /∈ E(G), NH(up−1) = {v2, v3, v6}
and up−1v ∈ E(G). Suppose that there exist vi, vj ∈ {v1, v4, v5} such that
upvi, upvj ∈ E(G), then [vi, vj , u2, up] ⊇ K−

4 . For simplicity, say i = 4 and

j = 5. Since [v, v2, v6, up−1] ⊇ K−

4 and [v0, u1, v1, v3] ⊇ K−

4 , this contradicts (1)
and proves that up has at most one neighbor in {v1, v4, v5}. This implies that
upv6, upv ∈ E(G). Hence, [v, up−1, up, v6] ⊇ K−

4 , notice that [V (H − {v6}) ∪
{v0, u1, u2}] ⊇ 2K−

4 , a contradiction. This proves that u2 has no neighbor in
{v1, v2, v3} and so u2v6, u2v ∈ E(G). As |E(up−1, V (H))| ≥ 3, we may assume

that v2up−1, v3up−1 ∈ E(G). Since [v, v4, u1, u2] ⊇ K−

4 and [v0, v2, v3, up−1] ⊇
K−

4 , |E(up, {v1, v5, v6})| ≤ 1 by (1) and (3). Therefore, {v2, v3, v4} ∈ NH(up)

and upv ∈ E(G). However, [v, v5, v6, u2] ⊇ K−

4 , [up−1, v2, v3, up] ⊇ K−

4 and

[v0, v1, v4, u1] ⊇ K−

4 , a contradiction. This proves Case 1.

Case 2. u1v6 ∈ E(G).

Suppose that u2v ∈ E(G). Then for each vi with 1 ≤ i ≤ 4, viu2 /∈ E(G),
otherwise, [v, vi, u2, u1] ⊇ K−

4 , it is obvious that [V (H−{vi})∪{v0, up, up−1}] ⊇
2K−

4 , which contradicts (1). However, this gives us |E(u2, V (H) ∪ {v})| ≤ 3,
a contradiction. Thus, u2v /∈ E(G) and |E(u2, V (H))| ≥ 4. By symmetry, we
may assume that u2v3, u2v4 ∈ E(G). According to (1), up−1v3 /∈ E(G) and
up−1v4 /∈ E(G). If there exists vi ∈ {v1, v2}, say i = 1, such that v1u2 ∈ E(G),
then up−1v1 /∈ E(G), NH(up−1) = {v2, v5, v6} and up−1v ∈ E(G). This to-
gether with (1) tell us up has at most one neighbor in {v1, v3, v4} and thus

{v2, v5, v6} ⊆ NH(up) and upv ∈ E(G). We see that [v, up, up−1, v6] ⊇ K−

4 ,
[u1, u2, v3, v4] ⊇ K−

4 and [v0, v1, v2, v5] ⊇ K−

4 , a contradiction. This proves that
u2 has no neighbor in {v1, v2} and so u2v5, u2v6 ∈ E(G). As |E(up−1, V (H))| ≥
3, by the symmetry role of v1 and v2, we may assume that v1up−1 ∈ E(G).

Suppose that up−1v6 ∈ E(G). If v6up ∈ E(G), then [up−1, up, v1, v6] ⊇ K−

4 ,

[v, v2, v3, u1] ⊇ K−

4 and [v0, u2, v4, v5] ⊇ K−

4 , a contradiction. Therefore,
v6up /∈ E(G) and then there exist vi, vj ∈ {v2, v3, v4, v5}, such that viup, vjup ∈
E(G). If 2 ∈ {i, j}, then [v, vi, vj , up] ⊇ K−

4 , [v1, u1, up−1, v6] ⊇ K−

4 and
[V (H − {v1, vi, vj , v6}) ∪ {v0, u2}] ⊇ K−

4 , a contradiction. Hence, 2 /∈ {i, j}.
Then [u2, vi, vj , up] ⊇ K−

4 , [v1, u1, v6, up−1] ⊇ K−

4 and [V (H−{v1, vi, vj , v6})∪
{v0, v}] ⊇ K−

4 , a contradiction. This proves that up−1v6 /∈ E(G) and it
follows that v2up−1, v5up−1 ∈ E(G). By (1), upv5 /∈ E(G). Since [V (F −
{u1, up}) ∪ {v5, v6}] contains a theta graph and up has at least two neighbors
in {v1, v2, v3, v4}, we see that [V (H − {v5, v6})∪ {v, u1, up, v0}] ⊇ 2K−

4 , a con-
tradiction. This completes the proof of Case 2 and the proof of Claim 3.5. �
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Since n ≥ 13 and 6 ≤ |V (H)| ≤ 8, it follows from Claim 3.5 that |F ∗| ≥ 2.

Claim 3.6. |V (F )| ≤ 2 for each F ∈ F ∗.

Proof. By way of contradiction. Suppose that there exists F ∈ F ∗ such that
|V (F )| ≥ 3. According to Claim 3.5, |V (F )| = 3. If F is a triangle, then the
proof of Claim 3.3 works, because of |F ∗| ≥ 2. Thus, F is a path of order three
and write F = u1u4u3. Let F ′ ∈ F ∗ − F and u4 ∈ V (F ′) such that u2 is an
end vertex of F ′. It is obvious that dF ′(u2) = 1. Suppose that 7 ≤ l ≤ 8. It
is obvious that there exists vi ∈ V (H), such that u1vi, u4vi, u3vi ∈ E(G), that
is, [vi, u1, u4, u3] ⊇ K−

4 , since [V (H −{vi})∪{v0, u2}] ⊇ 2K−

4 , a contradiction.
Thus, l = 6, then continue the same proof in Claim 3.5 (when |F | ≥ 4 and
contains at least three leaves). �

Claim 3.7. For each graph F ∈ F such that |V (F )| = 2, there exists S ⊂ V (H)
with |S| = 2 and [V (F ) ∪ S] ⊇ K−

4 .

Proof. Let F ∈ F such that |V (F )| = 2, label V (F ) = {u1, u2}. Since
|E(ui, V (H))| ≥ l − 1 if 7 ≤ l ≤ 8 and |E(ui, V (H) ∪ {v})| ≥ l − 1 for each
i with 1 ≤ i ≤ 2, it follows from the pigeonhole principle that there exists a
subset S ⊂ V (H) with |S| = 2 and S ⊆ NH(u1) ∩ NH(u2). By (3), we know
[V (F ) ∪ S] ⊇ K−

4 . �

Claim 3.8. For any u ∈ V (G∗), |E(u, {v0} ∪ V (H))| = |E(u, V (H))| ≤ l − 1
if 7 ≤ l ≤ 8; |E(u, V (H) ∪ {v})| ≤ l if l = 6.

Proof. Suppose that there exists u ∈ V (G∗) such that |E(u, V (H))| ≥ l if
7 ≤ l ≤ 8, and |E(u, V (H) ∪ {v})| ≥ l + 1 if l = 6. By Claim 3.6, we may
assume that F ∗ contains two components F1 and F2 with |V (Fi)| ≤ 2 for each
1 ≤ i ≤ 2, such that u ∈ V (F1). Suppose that |V (F2)| = 2 and label F2 = u2u3.
Note that |E(ui, V (H))| ≥ l − 1 for each i ∈ {2, 3}. By Claim 3.7, there exist
vi, vj ∈ V (H) such that [u2, u3, vi, vj ] ⊇ K−

4 . If 7 ≤ l ≤ 8, combining with (2)

and (3), [V (H − {vi, vj}) ∪ {u, v0}] ⊇ 2K−

4 , which contradicts (1). Therefore,
l = 6. By the choice of v, |E(v, V (H))| = 6. Notice that vpvq ∈ E(G), thus,

[vp, vq, v, u] ⊇ K−

4 . Since F ∗ \ (F1∪F2) 6= ∅, choose u4 ∈ V (F ∗ \ (F1∪F2)). By
Claim 3.6, |E(u4, V (H))| ≥ 4, choose {vp, vq} ⊆ NH(u4)∩NH(v)−{vi, vj} such
that p 6= q. Now, [vp, vq, u4, v0] ⊇ K−

4 and [V (H − {vi, vj , vp, vq}) ∪ {u, v}] ⊇
K−

4 , which contradicts (1). This shows the order of each components of F ∗ \F1

is one. Now, note that |F ∗ \ F1| ≥ 3, we can choose three different vertices
u1, u2, u3, such that |E(ui, V (H))| ≥ 5 for each 1 ≤ i ≤ 3. As above, it is
obvious that [V (H) ∪ {v, u, v0, u1, u2, u3}] ⊇ 3K−

4 , a contradiction. �

Now we are in the position to complete the proof of Theorem 1.8. By
Claim 3.6 and Claim 3.8, |V (F )| = 2 for all F ∈ F ∗, we have

∑

F∈F∗

|E(F )| =

{

n−1−l
2 , if 7 ≤ l ≤ 8

n−8
2 , if l = 6.
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Suppose that 7 ≤ l ≤ 8. We may assume that u1u2 and u3u4 are two
component of G∗, since |E(ui, V (H))| ≥ l − 1, by Claim 3.2, it is obvious
that [V (H) ∪ {v0, u1, u2, u3, u4}] ⊇ 3K−

4 , a contradiction. Thus, l = 6, and
according to Claim 3.8, we obtain

|E(G)| = |E([{v0, v} ∪ V (H)])|+ |E(V (G∗), {v0, v} ∪ V (H))|+
∑

F∈F∗

|E(F )|

≤ 27 + 5|V (G∗)|+
∑

F∈F∗

|E(F )|

= 27 + 5(n− 8) +
n− 8

2

=
11n− 34

2
,

this is an obvious contradiction and completes the proof of Theorem 1.8.
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[3] K. Corrádi and A. Hajnal, On the maximal number of independent circuits in a graph,

Acta Math. Acad. Sci. Hungar. 14 (1963), 423–439.
[4] G. A. Dirac, On the maximal number of independent triangles, Abh. Math. Sem. Univ.

Hamburg 26 (1963), 78–82.
[5] H. Enomoto, On the existence of disjoint cycles in a graph, Combinatorica 18 (1998),

no. 4, 487–492.
[6] D. Finkel, On the number Of independent chorded cycle in a graph, Discrete Math. 308

(2008), no. 22, 5265–5268.
[7] Y. Gao and N. Ji, The extremal function for two disjoint cycles, Bull. Malays. Math.

Sci. Soc. DOI:10.1007/s40840-014-0102-0, 2014.

[8] K. Kawarabayashi, K−
4 -factor in graphs, J. Graph Theory 39 (2002), no. 2, 111–128.
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