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LIGHTLIKE HYPERSURFACES OF AN INDEFINITE

KAEHLER MANIFOLD WITH A QUARTER-SYMMETRIC

METRIC CONNECTION

Dae Ho Jin

Abstract. In this paper, we study lightlike hypersurfaces of an indefinite
Kaehler manifold with a quarter-symmetric metric connection. We prove
several classification theorems for such a lightlike hypersurface.

1. Introduction

A linear connection ∇̄ on a semi-Riemannian manifold (M̄, ḡ) is said to be
a quarter-symmetric connection if its torsion tensor T̄ satisfies

(1.1) T̄ (X,Y ) = π(Y )JX − π(X)JY,

for any vector fields X and Y on M̄ , where J is a (1, 1)-type tensor field and
π is a 1-form associated with a non-vanishing smooth vector field ζ, which is
called the torsion vector field of M̄ , by π(X) = ḡ(X, ζ). Moreover, if ∇̄ satisfies
∇̄ḡ = 0, then it is called a quarter-symmetric metric connection.

Quarter-symmetric metric connection was introduced by K. Yano and T.
Imai [15], and then it have been studied by S. C. Rastogi [13, 14], D. Kamilya
and U. C. De [8], R. S. Mishra and S. N. Pandey [9], S. Golab [7] and others.
On the other hand, N. Pušić [12], and J. Nikić and Pušić [10] studied quarter-
symmetric metric connections on Kaehler manifold.

The theory of lightlike hypersurfaces is an important topic of research in
differential geometry due to its application in mathematical physics, especially
in the general relativity. The study of such notion was initiated by Duggal and
Bejancu [3] and later studied by many authors (see recent results in two books
[4, 6]). Although now we have lightlike version of a large variety of Riemann-
ian submanifolds, the geometry of lightlike hypersurfaces of semi-Riemannian
manifolds with quarter-symmetric metric connections is hardly known.

In this paper, we study lightlike hypersurfaces of an indefinite Kaehler man-
ifold (M̄, ḡ, J) with a quarter-symmetric metric connection, in which the tensor
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field J of (1.1) is identical with the indefinite almost complex structure J of
M̄ . We prove several classification theorems for such a lightlike hypersurface.

2. Lightlike hypersurfaces

Let M̄ = (M̄, ḡ, J) be a 2n-dimensional indefinite Kaeler manifold, where ḡ

is a semi-Riemannian metric of index q = 2v (0 < v < n) and J is an indefinite
almost complex structure on M̄ satisfying

(2.1) J2 = −I, ḡ(JX, JY ) = ḡ(X,Y ), (∇̄XJ)Y = 0

for any vector fields X and Y of M̄ [3].

Let (M, g) be a lightlike hypersurface of M̄ . It is well known that the normal
bundle TM⊥ of M is a vector subbundle of the tangent bundle TM , of rank
1. A complementary vector bundle S(TM) of TM⊥ in TM is non-degenerate
distribution on M , which is called a screen distribution on M , such that

(2.2) TM = TM⊥ ⊕orth S(TM),

where ⊕orth denotes the orthogonal direct sum. We denote such a lightlike
hypersurface by M = (M, g, S(TM)). Denote by F (M) the algebra of smooth
functions on M , by Γ(E) the F (M) module of smooth sections of any vector
bundle E over M and by (−.−)i the i-th equation of the equations (−.−). We
use same notations for any others. Due to [3], it is known that, for any null
section ξ of TM⊥ on a coordinate neighborhood U ⊂ M , there exists a unique
null section N of a unique vector bundle tr(TM) in S(TM)⊥ satisfying

ḡ(ξ,N) = 1, ḡ(N,N) = ḡ(N,X) = 0, ∀X ∈ Γ(S(TM)).

We call tr(TM) and N the transversal vector bundle and the null transversal

vector field of M with respect to the screen distribution S(TM), respectively.
Then the tangent bundle TM̄ of M̄ is decomposed as follow:

(2.3) TM̄ = TM ⊕ tr(TM) = {TM⊥ ⊕ tr(TM)} ⊕orth S(TM).

Let P be the projection morphism of TM on S(TM) with respect to the
decomposition (2.2). From (2.2) and (2.3), the local Gauss and Weingartan
formulas of M and S(TM) are given, respectively, by

∇̄XY = ∇XY +B(X,Y )N,(2.4)

∇̄XN = −A
N
X + τ(X)N,(2.5)

∇XPY = ∇∗

XPY + C(X,PY )ξ,(2.6)

∇Xξ = −A∗

ξX − τ(X)ξ,(2.7)

for any X, Y ∈ Γ(TM), where ∇ and ∇∗ are the induced linear connections
on TM and S(TM), respectively, B and C are the local second fundamental
forms on TM and S(TM), respectively, A

N
and A∗

ξ are the shape operators on

TM and S(TM), respectively and τ is a 1-form on TM .
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The induced connection ∇ on M is not metric and satisfies

(2.8) (∇Xg)(Y, Z) = B(X,Y )η(Z) +B(X,Z)η(Y ),

for any X, Y, Z ∈ Γ(TM), where η is a 1-form on TM such that

η(X) = ḡ(X,N), ∀X ∈ Γ(TM).

But the connection ∇∗ is metric. From the fact that B(X,Y ) = ḡ(∇̄XY, ξ), we
know that B is independent of the choice of S(TM) and satisfies

(2.9) B(X, ξ) = 0, ∀X ∈ Γ(TM).

The above second fundamental forms are related to their shape operators by

g(A∗

ξX,Y ) = B(X,Y ), ḡ(A∗

ξX,N) = 0,(2.10)

g(A
N
X,PY ) = C(X,PY ), ḡ(A

N
X,N) = 0.(2.11)

Definition. A lightlike hypersurface M of M̄ is said to be

(1) totally umbilical [3] if there is a smooth function β on any coordinate
neighborhood U in M such that A∗

ξX = βPX , or equivalently,

(2.12) B(X,Y ) = βg(X,Y ), ∀X, Y ∈ Γ(TM).

(2) screen totally umbilical [3] if there exists a smooth function γ on U such
that A

N
X = γPX , or equivalently,

(2.13) C(X,PY ) = γg(X,Y ), ∀X, Y ∈ Γ(TM).

In case γ = 0 (γ 6= 0) on U , we say that M is screen totally geodesic

(proper screen totally umbilical).
(3) screen conformal [1] if there exists a non-vanishing smooth function ϕ

on U such that A
N
= ϕA∗

ξ , or equivalently,

(2.14) C(X,PY ) = ϕB(X,Y ), ∀X, Y ∈ Γ(TM).

3. Quarter-symmetric metric connections

Let M be a lightlike hypersurface of an indefinite Kaehler manifold M̄ ad-
mitting a quarter-symmetric metric connection. For a lightlike hypersurface M
of an indefinite Kaehler manifold M̄ , S(TM) splits as follows [3]:

If ξ and N are local sections of TM⊥ and tr(TM), respectively, we have

(3.1) ḡ(Jξ, ξ) = ḡ(Jξ,N) = ḡ(JN, ξ) = ḡ(JN,N) = 0, ḡ(Jξ, JN) = 1.

These equations show that Jξ and JN belong to S(TM). Thus J(TM⊥) and
J(tr(TM)) are distributions on M , of rank 1 such that TM⊥ ∩ J(TM⊥) =
{0} and TM⊥ ∩ J(tr(TM)) = {0}. Hence J(TM⊥) ⊕ J(tr(TM)) is a vector
subbundle of S(TM), of rank 2. Then there exists a non-degenerate almost
complex distribution Do on M with respect to J , i.e., J(Do) = Do, such that

TM = TM⊥ ⊕orth {J(TM⊥)⊕ J(tr(TM))⊕orth Do}.
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Consider the 2-lightlike almost complex distribution D such that

(3.2) D = {TM⊥ ⊕orth J(TM⊥)} ⊕orth Do, TM = D ⊕ J(tr(TM))

and the local lightlike vector fields U and V such that

(3.3) U = −JN, V = −Jξ.

Denote by S the projection morphism of TM on D with respect to the decom-
position (3.2)2. Then any vector field X on M is expressed as follow:

X = SX + u(X)U,

where u and v are 1-forms locally defined on M by

(3.4) u(X) = g(X,V ), v(X) = g(X,U), ∀X ∈ Γ(TM).

Using (3.3), the action JX of X by J is expressed as follow:

(3.5) JX = FX + u(X)N,

where F is a tensor field of type (1, 1) globally defined on M by F = J ◦ S.
Using (1.1), (2.4) and (3.5), we show that

T (X,Y ) = π(Y )FX − π(X)FY,(3.6)

B(X,Y )−B(Y,X) = π(Y )u(X)− π(X)u(Y ),(3.7)

for all X, Y ∈ Γ(TM), where T is the torsion tensor with respect to ∇. From
(2.8) and (3.6), we show that ∇ is a quarter-symmetric non-metric connection
of M . In the entire discussion of this article, we shall assume that the torsion
vector field ζ of M̄ to be unit spacelike, without loss of generality. We set
b = π(ξ). Replacing X by ξ to (3.7) and using (2.9), we have

(3.8) B(ξ,X) = −bu(X), ∀X ∈ Γ(TM).

From this, (2.10) and the fact that S(TM) is non-degenerate, we have

(3.9) A∗

ξξ = −bV.

Applying ∇̄X to (3.3) and (3.4) by turns, and using (2.1), (2.4), (2.5), (2.7),
(2.9), (2.10), (2.11) (3.3), (3.4) and (3.5), we have

∇XU = F (A
N
X) + τ(X)U,(3.10)

∇XV = F (A∗

ξX)− τ(X)V,(3.11)

(∇XF )(Y ) = u(Y )A
N
X −B(X,Y )U,(3.12)

B(X,U) = C(X,V ), ∀X, Y ∈ Γ(TM).(3.13)

Example 1. Let (R6
2, ḡ) be a 6-dimensional semi-Euclidean space of index 2

with signature (−, −, +, +, +, +) of the canonical basis (∂0, . . . , ∂5). Con-
sider a Monge hypersurface M of R6

2 given by

x0 = u1 + u2 + u3 and xi = ui (1 ≤ i ≤ 5).

Then the tangent bundle TM of M is spanned by
{

∂u
1
= ∂0 + ∂1, ∂u

2
= ∂0 + ∂2, ∂u

3
= ∂0 + ∂3, ∂u

4
= ∂4, ∂u

5
= ∂5

}

.
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It is easy to check that M is a lightlike hypersurface of (R6
2, ḡ) such that the

normal bundle TM⊥ is spanned by

ξ = ∂0 − ∂1 + ∂2 + ∂3.

Let E = ∂0 − ∂1, then g(E,E) = −2 and g(ξ, E) = −2. Then the lightlike
transversal vector bundle is given by

tr(TM) = Span{N = −
1

4
(∂0 − ∂1 − ∂2 − ∂3)}.

It follows that the corresponding screen distribution S(TM) is spanned by

{W1 = ∂0 + ∂1, W2 = ∂2 − ∂3, W3 = ∂4, W4 = ∂5} .

Since R6
2 has complex structure J , we see that Jξ = W1 −W2 ∈ Γ(S(TM)),

JN = − 1
4{W1 + W2} ∈ Γ(S(TM)), JW3 = W4 and JW4 = −W3. Thus the

almost complex distribution Do is given by Do = Span{W3, W4}.

Theorem 3.1. There exist no lightlike hypersurfaces of an indefinite Kaehler

manifold admitting a quarter-symmetric metric connection such that the local

second fundamental form B of M is symmetric.

Proof. Assume that B is symmetric. From (3.7), we have

π(X)u(Y ) = π(Y )u(X)

for all X, Y ∈ Γ(TM). Replacing Y by U to this, we have

π(X) = π(U)u(X).

Taking X = ξ and X = V by turns, we get b = 0, i.e., the torsion vector field
ζ is tangent to M , and π(V ) = 0, respectively. As ζ is tangent to M , we have

u(ζ) = g(ζ, V ) = π(V ) = 0.

Taking Y = ζ to π(Y )u(X) = π(X)u(Y ), we get u(X) = u(ζ)π(X) = 0 for all
X ∈ Γ(TM). It is a contradiction to u(U) = 1. Thus there exist no lightlike
hypersurfaces of an indefinite Kaehler manifold admitting a quarter-symmetric
metric connection such that B is symmetric. �

Assume that M is totally umbilical. Then B is symmetric. Thus we have:

Corollary 3.2. There exist no totally umbilical lightlike hypersurfaces of an

indefinite Kaehler manifold admitting a quarter-symmetric metric connection.

Theorem 3.3. Let M be a lightlike hypersurface of an indefinite Kaehler mani-

fold M̄ admitting a quarter-symmetric metric connection. If M is either screen

totally umbilical or screen conformal, then b = 0 and ζ is tangent to M .

Proof. Assume that M is screen totally umbilical. Replacing X by U to (3.8)
and using (2.13) and (3.13), we have

−b = B(ξ, U) = C(ξ, V ) = γg(ξ, V ) = 0.
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Assume that M is screen conformal. From (3.8), we have B(ξ, U) = −b and
B(ξ, V ) = 0. From these two equations, (2.14) and (3.13), we have

−b = B(ξ, U) = C(ξ, V ) = ϕB(ξ, V ) = 0.

In the above two cases, we get b = 0. It follow that ζ is tangent to M . �

Theorem 3.4. Let M be a lightlike hypersurface of an indefinite Kaehler man-

ifold M̄ admitting a quarter-symmetric metric connection. If V and U are par-

allel with respect to ∇, then M is screen totally geodesic, τ vanishes and ζ is

tangent to M . Moreover, M is locally a product manifold C
ξ
×M∗, where C

ξ

is a null curve tangent to TM⊥ and M∗ is a leaf of S(TM).

Proof. If V is parallel with respect ∇, then, from (3.5) and (3.11), we have

J(A∗

ξX)− u(A∗

ξX)N − τ(X)V = 0, ∀X ∈ Γ(TM).

Applying J to this equation and using (2.1) and (3.3), we obtain

A∗

ξX − u(A∗

ξX)U + τ(X)ξ = 0, ∀X ∈ Γ(TM).

Taking the scalar product with N , we get τ = 0. Consequently, we have

A∗

ξX = u(A∗

ξX)U, ∀X ∈ Γ(TM).

Taking the scalar product with U to this and using (3.13), we have

u(A
N
X) = v(A∗

ξX) = g(A∗

ξX, U) = u(A∗

ξX)g(U,U) = 0.

If U is parallel with respect to ∇, then, from (3.5) and (3.10), we have

J(A
N
X)− u(A

N
X)N + τ(X)U = 0, ∀X ∈ Γ(TM).

Applying J to this equation and using (2.1) and (3.3), we obtain

A
N
X − u(A

N
X)U + τ(X)N = 0, ∀X ∈ Γ(TM).

Taking the scalar product with ξ to this equation, we get τ = 0 and

A
N
X = u(A

N
X)U, ∀X ∈ Γ(TM).

In case V and U are parallel with respect to∇. From the above two equations
u(A

N
X) = 0 and A

N
X = u(A

N
X)U , we obtain A

N
= 0. Thus M is screen

totally geodesic. By Theorem 3.3, the torsion vector field ζ is tangent to M .
As C = 0 and b = 0, from (2.6), (2.7) and (3.9), we see that S(TM) and
TM⊥ are auto-parallel distributions such that TM = TM⊥ ⊕orth S(TM). By
the decomposition theorem of de Rham [2], M is locally a product manifold
C

ξ
× M∗, where C

ξ
is a null curve tangent to TM⊥ and M∗ is a leaf of the

screen distribution S(TM). �

Theorem 3.5. Let M be a lightlike hypersurface of an indefinite Kaehler man-

ifold M̄ admitting a quarter-symmetric metric connection. If F is parallel with

respect to the connection ∇, then D and J(tr(TM)) are parallel distributions

on M . Moreover, M is locally a product manifold C
U
×M ♯, where C

U
is a null

curve tangent to J(tr(TM)) and M ♯ is a leaf of D.
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Proof. In general, by using (2.1), (2.8), (2.9), (3.5) and (3.11), we derive

(3.14) g(∇Xξ, V ) = −B(X,V ), g(∇XV, V ) = 0, g(∇XZ, V ) = B(X,FZ)

for all X ∈ Γ(TM) and Z ∈ Γ(Do). If F is parallel with respect to ∇, then,
from (3.12), we have B(X,Y )U = u(Y )A

N
X , i.e., we get

B(X,Y ) = u(Y )u(A
N
X), ∀X, Y ∈ Γ(TM).

Taking Y = V and Z ∈ Γ(Do) to this equation by turns, we have B(X,V ) = 0
and B(X,Z) = 0 for all X ∈ Γ(TM), respectively. It follow from (3.14) that

∇XY ∈ Γ(D), ∀X ∈ Γ(TM), ∀Y ∈ Γ(D),

due to FZ ∈ Γ(Do). Thus D is a parallel distribution on M .
Taking Y = U to B(X,Y )U = u(Y )A

N
X , we get

A
N
X = B(X,U)U, ∀X, Y ∈ Γ(TM).

Applying F to this relation and using the fact that FU = 0, we get

F (A
N
X) = B(X,U)FU = 0, ∀X ∈ Γ(TM).

Thus, from (3.10), we obtain

∇XU ∈ Γ(J(tr(TM))), ∀X ∈ Γ(TM),

and J(tr(TM)) is also a parallel distribution on M .
As D and J(tr(TM)) are parallel distributions and TM = D⊕ J(tr(TM)).

By the decomposition theorem [2], M is locally a product manifold Cu ×M ♯,
where Cu is a null curve tangent to J(tr(TM)) and M ♯ is a leaf of D. �

Theorem 3.6. There exist no screen conformal lightlike hypersurfaces of an

indefinite Kaehler manifold M̄ with a quart-symmetric metric connection such

that at least one of the objects V, U and F is parallel with respect to ∇.

Proof. In the proof of Theorem 3.4, if V is parallel, then τ = 0, u(A
N
X) = 0

and A∗

ξX = u(A∗

ξX)U for any X ∈ Γ(TM). Using the second equation of the
above relations and the fact that A

N
= ϕA∗

ξ , we have

u(A∗

ξX) = ϕ−1u(A
N
X) = 0, ∀X ∈ Γ(TM).

From this and the fact that A∗

ξX = u(A∗

ξX)U for all X ∈ Γ(TM), we have
A∗

ξ = 0. It is a contradiction to Corollary 3.2.

If U is parallel, then τ = 0 and A
N
X = u(A

N
X)U for any X ∈ Γ(TM).

From the last equation, we have v(A
N
X) = 0 for any X ∈ Γ(TM). Using

(3.13) and the fact that A
N
= ϕA∗

ξ , we have

u(A
N
X) = v(A∗

ξX) = ϕ−1v(A
N
X) = 0, ∀X ∈ Γ(TM).

From this and A
N
X = u(A

N
X)U , we have A

N
= 0. As M is screen conformal,

it follow that A∗

ξ = 0. It is also a contradiction to Corollary 3.2.
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If F is parallel, then we have B(X,Y ) = u(Y )u(A
N
X) and B(X,V ) = 0 for

all X, Y ∈ Γ(TM). Thus

u(A
N
X) = ϕu(A∗

ξX) = ϕB(X,V ) = 0, ∀X ∈ Γ(TM).

From this and B(X,Y ) = u(Y )u(A
N
X) we have B = 0. It is also a contradic-

tion to Corollary 3.2. �

As {U, V } is a basis of J(TM⊥)⊕ J(tr(TM)), the vector fields

(3.15) µ = U − ϕV, ν = U + ϕV

form an orthogonal basis of J(TM⊥)⊕ J(tr(TM)).

Theorem 3.7. Let M be a screen conformal lightlike hypersurface of an in-

definite Kaehler manifold M̄ with a quart-symmetric metric connection. Then

µ is parallel with respect to ∇ if and only if τ vanishes and ϕ is a constant.

Proof. From (3.10), (3.11) and the linearity of F , we have

∇
X
µ = τ(X)ν − (Xϕ)V, ∀X ∈ Γ(TM),

due to A
N
= ϕA∗

ξ . Thus we see that µ is parallel if and only if

τ(X)U − {Xϕ− ϕτ(X)}V = 0, ∀X ∈ Γ(TM).

Taking the scalar product with V and U in turns, we get our assertion. �

Let G(µ) = Span{µ} and S(µ) = TM⊥⊕orthDo⊕orthSpan{ν}. Then S(µ)
is a complementary vector subbundle to G(µ) in TM such that

TM = G(µ) ⊕orth S(µ).

From (2.14), (3.13) and (3.15)1, we show that

(3.16) B(X,µ) = 0, ∀X ∈ Γ(TM).

Theorem 3.8. Let M be a screen conformal lightlike hypersurface of an indef-

inite Kaehler manifold M̄ with a quart-symmetric metric connection. If µ is

parallel with respect to ∇, then M is locally a product manifold Cµ×M ♭, where

Cµ is a non-null geodesic tangent to G(µ) and M ♭ is a leaf of S(µ).

Proof. For any X ∈ Γ(TM) and Y ∈ Γ(Do), we get

g(∇XY, µ) = g(∇̄XY, µ) = −g(Y, ∇Xµ) = 0,

g(∇Xξ, µ) = −g(ξ, ∇̄Xµ) = −B(X,µ) = 0,

g(∇Xν, µ) = −g(ν, ∇Xµ) = 0.

Thus S(µ) is a parallel distribution on M . As µ is parallel with respect to ∇,
G(µ) is also parallel distribution on M such that TM = G(µ) ⊕orth S(µ). By
the decomposition theorem [2], M is locally a product manifold Cµ×M ♭, where

Cµ is a non-null geodesic tangent to G(µ) and M ♭ is a leaf of S(µ). �
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Theorem 3.9. There exist no screen conformal lightlike hypersurface of an

indefinite Kaehler manifold M̄ with a quart-symmetric metric connection such

that the vector field ν is parallel with respect to ∇.

Proof. If M is screen conformal, then, from (3.10) and (3.11), we have

∇Xν = 2F (A
N
X) + τ(X)U + {Xϕ− ϕτ(X)}V, ∀X ∈ Γ(TM).

As g(F (A
N
X), V ) = g(F (A

N
X), U) = 0, we show that ν is parallel if and only

if τ = 0 on M , ϕ is a constant and F (A
N
X) = 0. Therefore, by using (3.10),

(3.11) and the fact that A
N

= ϕA∗

ξ , we show that U and V are parallel with
respect to ∇. Thus, by Theorem 3.6, we have our assertion. �

4. Indefinite complex space forms

Denote by R̄, R and R∗ the curvature tensors of the quarter-symmetric
metric connection ∇̄ on M̄ , the induced connection ∇ on M and the induced
connection ∇∗ on S(TM), respectively. Using the Gauss-Weingarten formulas,
we obtain the Gauss-Codazzi equations for M and S(TM) :

ḡ(R̄(X,Y )Z, PW ) = g(R(X,Y )Z, PW )(4.1)

+ B(X,Z)C(Y, PW )−B(Y, Z)C(X,PW ),

ḡ(R̄(X,Y )Z, ξ) = (∇XB)(Y, Z)− (∇Y B)(X,Z)(4.2)

+ τ(X)B(Y, Z)− τ(Y )B(X,Z)

− π(X)B(FY,Z) + π(Y )B(FX,Z),

ḡ(R̄(X,Y )Z, N) = ḡ(R(X,Y )Z, N),(4.3)

g(R(X,Y )PZ, N) = (∇XC)(Y, PZ)− (∇Y C)(X,PZ)(4.4)

− τ(X)C(Y, PZ) + τ(Y )C(X,PZ)

− π(X)C(FY, PZ) + π(Y )C(FX,PZ),

for any X, Y, Z, W ∈ Γ(TM).
An indefinite complex space form, denoted by M̄(c), is a connected indefinite

Kaehler manifold of constant holomorphic sectional curvature c such that

R̄(X,Y )Z =
c

4
{ḡ(Y, Z)X − ḡ(X,Z)Y + ḡ(JY, Z)JX(4.5)

− ḡ(JX,Z)JY + 2ḡ(X, JY )JZ}, ∀X,Y, Z ∈ Γ(TM̄).

Theorem 4.1. Let M be a screen conformal lightlike hypersurface of an indef-

inite complex space form M̄(c) admitting a quarter-symmetric metric connec-

tion. Then c = 0, and the conformal factor ϕ satisfies the differential equation

ξϕ− ϕτ(ξ) = 0.

Proof. Substituting (4.5) into (4.2), for all X, Y, Z ∈ Γ(TM), we have

(∇XB)(Y, Z)− (∇Y B)(X,Z)(4.6)

= B(X,Z)τ(Y )−B(Y, Z)τ(X) +B(FY,Z)π(X)−B(FX,Z)π(Y )
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+
c

4
{u(X)ḡ(JY, Z)− u(Y )ḡ(JX,Z) + 2u(Z)ḡ(X, JY )}.

As M is screen conformal, we get b = 0, i.e., ζ is tangent to M by Theorem
3.3. Applying ∇X to C(Y, PZ) = ϕB(Y, PZ), we have

(∇XC)(Y, PZ) = (Xϕ)B(Y, PZ) + ϕ(∇XB)(Y, PZ)

for all X,Y, Z ∈ Γ(TM). Substituting this into (4.4) and using (4.6), we get

g(R(X,Y )PZ, N)

= {Xϕ− ϕτ(X)}B(Y, PZ)− {Y ϕ− ϕτ(Y )}B(X,PZ)

+
c

4
ϕ{u(X)ḡ(JY, PZ)− u(Y )ḡ(JX,PZ) + 2u(PZ)ḡ(X, JY )}.

Substituting this equation and (4.5) into (4.3) with Z = PZ, we have

c

4
{g(Y, PZ)η(X)− g(X,PZ)η(Y )

+ v(X)ḡ(JY, PZ)− v(Y )ḡ(JX,PZ) + 2v(PZ)ḡ(X, JY )}

= {Xϕ− ϕτ(X)}B(Y, PZ)− {Y ϕ− ϕτ(Y )}B(X,PZ)

+
c

4
ϕ{u(X)ḡ(JY, PZ)− u(Y )ḡ(JX,PZ) + 2u(PZ)ḡ(X, JY )}

for all X,Y, Z ∈ Γ(TM). Replacing Y by ξ and using (3.8), we have

{ξϕ− ϕτ(ξ)}B(X,PY )(4.7)

=
c

4
{g(X,PY ) + v(X)u(PY ) + 2u(X)v(PY )− 3ϕu(X)u(PY )}.

Let µ = U − ϕV . From (2.14) and (3.13), we show that

(4.8) B(X,µ) = 0, ∀X ∈ Γ(TM).

Replacing PY by µ to (4.7) and using (3.4) and (4.8), we have

c

2
{v(X)− 3ϕu(X)} = 0, ∀X ∈ Γ(TM).

Taking X = V to this equation and using (3.4), we obtain c = 0. Therefore,
from (4.7) we have {ξϕ − ϕτ(ξ)}B(X,PY ) = 0. Using Corollary 3.2, we get
ξϕ− ϕτ(ξ) = 0. Thus we have our theorem. �

Theorem 4.2. Let M be a screen totally umbilical lightlike hypersurface of

an indefinite complex space form M̄(c) admitting a quarter-symmetric metric

connection. Then c = 0, and the second fundamental form B of M becomes

B(X,Y ) = αg(X,Y )− π(X)u(Y ), ∀X, Y ∈ Γ(TM),

where α is a smooth function given by α = π(V ).

Proof. As M is screen totally umbilical, we show that b = 0, i.e, ζ is tangent
to M by Theorem 3.3. Applying ∇Z to (2.13) and using (2.7), we obtain

(∇XC)(Y, PZ) = (Xγ)g(Y, PZ) + γB(X,PZ)η(Y )
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for all X, Y, Z ∈ Γ(TM). Substituting this equation into (4.4), we have

g(R(X,Y )PZ, N)

= {Xγ − γτ(X)}g(Y, PZ)− {Y γ − γτ(Y )}g(X,PZ)

+ γ{B(X,PZ)η(Y )−B(Y, PZ)η(X)

+ g(FX,PZ)π(Y )− g(FY, PZ)π(X)}.

Substituting this equation and (4.5) into (4.3) with Z = PZ, we have

c

4
{g(Y, PZ)η(X)− g(X,PZ)η(Y )

+ v(X)ḡ(JY, PZ)− v(Y )ḡ(JX,PZ) + 2v(PZ)ḡ(X, JY )}

= {Xγ − γτ(X)}g(Y, PZ)− {Y γ − γτ(Y )}g(X,PZ)

+ γ{B(X,PZ)η(Y )−B(Y, PZ)η(X)

+ ḡ(JX,PZ)π(Y )− ḡ(JY, PZ)π(X)}.

Replacing Y by ξ and using (3.3), (3.4) and (3.8), we have

γB(X,PY ) = {ξγ − γτ(ξ)−
c

4
}g(X,PY )(4.9)

−
c

4
{v(X)u(PY ) + 2u(X)v(PY )} − γπ(X)u(PY )

for all X,Y ∈ Γ(TM). Taking X = U and PY = V to (4.9), we have

γB(U, V ) = ξγ − γτ(ξ)−
3

4
c.

In case γ = 0, we have c = 0. In case γ 6= 0. Taking X = V and Y = PU to
(4.9) and using (3.4), we have

(4.10) γB(V, U) = ξγ − γτ(ξ) −
2

4
c− γπ(V ).

Substituting the last two equation into (3.7), we get c = 0.
From (2.13) and (3.13), we obtain

B(X,U) = γu(X), ∀X ∈ Γ(TM).

Replacing X by V to this, we have B(V, U) = 0. From this and (4.10), we get

γπ(V ) = ξγ − γτ(ξ).

Substituting this into (4.9) and using (2.9) and the fact u(ξ) = 0, we have

B(X,Y ) = π(V )g(X,Y )− π(X)u(Y ), ∀X, Y ∈ Γ(TM).

As α = π(V ), we have our theorem. �

The induced Ricci type tensor R(0, 2) of M is defined by

R(0, 2)(X,Y ) = trace{Z → R(Z,X)Y }
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for any X, Y ∈ Γ(TM). Consider the induced quasi-orthonormal frame field
{ξ;Wa} on M such that Rad(TM) = Span{ξ} and S(TM) = Span{Wa}.
Using this quasi-orthonormal frame field, for any X,Y ∈ Γ(TM), we obtain

(4.11) R(0, 2)(X,Y ) =
m
∑

a=1

ǫa g(R(Wa, X)Y, Wa) + ḡ(R(ξ,X)Y, N),

where ǫa = g(Wa,Wa) is the sign of Wa. In general, the induced Ricci type
tensor R(0, 2), defined by the method of the geometry of the non-degenerate
submanifolds [11], is not symmetric [4, 5]. Therefore R(0, 2) has no geomet-
ric or physical meaning similar to the Ricci curvature of the non-degenerate
submanifolds and it is just a tensor quantity. Hence we need the following
definition: A tensor field R(0, 2) on M is called its induced Ricci tensor of M if
it is symmetric. A symmetric R(0, 2) tensor will be denoted by Ric.

In case c = b = 0. (4.1) and (4.3) are reduced, respectively, to

g(R(X,Y )Z, PW ) = B(Y, Z)C(X,PW )−B(X,Z)C(Y, PW ),(4.12)

ḡ(R(X,Y )Z, N) = 0, ∀X, Y, Z, W ∈ Γ(TM).(4.13)

Substituting (4.12) and (4.13) into (4.11) and using (3.7), we have

R(0, 2)(X,Y ) = B(X,Y )tr A
N
− g(A∗

ξY,AN
X)(4.14)

+ π(A
N
X)u(Y )− u(A

N
X)π(Y ), ∀X,Y ∈ Γ(TM).

Remark 4.3. From the last equation, we show that if M is screen totally geo-
desic, then M is Ricci flat.

Theorem 4.4. There exist no proper screen totally umbilical lightlike hypersur-

faces of an indefinite almost complex space form admitting a quarter-symmetric

metric connection such that the Ricci type tensor R(0, 2) of M is symmetric.

Proof. Using (2.13) and (3.7), we show that tr A
N
= mγ and

g(A∗

ξY,AN
X) = C(X,A∗

ξY ) = γg(X,A∗

ξY ) = γB(Y,X)

= γ{B(X,Y )− π(Y )u(X) + π(X)u(Y )}

for all X, Y ∈ Γ(TM). Substituting these equations into (4.14) and using the
fact that π(ξ) = 0 = u(ξ), we obtain

(4.15) R(0, 2)(X,Y ) = γ(m− 1)B(X,Y ), ∀X, Y ∈ Γ(TM).

This result implies that R(0, 2) is symmetric if and only if B is symmetric. Thus,
by Theorem 3.1, we have our theorem. �
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