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DIRECTIONAL ASSOCIATED CURVES OF A NULL CURVE

IN MINKOWSKI 3-SPACE

Jinhua Qian and Young Ho Kim

Abstract. In this paper, we define the directional associated curve and

the self-associated curve of a null curve in Minkowski 3-space. We study
the properties and relations between the null curve, its directional asso-

ciated curve and its self-associated curve. At the same time, by solving
certain differential equations, we get the explicit representations of some

null curves.

1. Introduction

In the history of differential geometry, the theory of the associated curve
of a given curve has been one of interesting topics. Many geometers have in-
vestigated this problem from various viewpoints: For instance, in Euclidean
3-space, the Bertrand partner and the Mannheim partner curves are two im-
portant kinds of associated curves. They are characterized by the curvature
and the torsion, namely, a Bertrand curve satisfies λκ+µτ = 1 and a Mannheim
curve has κ = λ(κ2 + τ2), where κ is the curvature and τ the torsion.

In Minkowski 3-space, there are three kinds of typical curves, that is, space-
like, time-like and null (light-like) curves. Among them, a null curve is quite
different from other types of curves. Motivated by the idea about partner
curves, we naturally consider the associated curves of a null curve in Minkowski
3-space.

In [4], the authors defined the W -direction curve r̃ of a null curve r in such
a way that the tangent vector field of r̃ is W , where W is a vector field along
the given null curve. In this case, the curve r is called the W -direction donor
curve of r̃.
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In this paper, we define the directional associated curves of a null curve,
and introduce the notion of the self-associated curve of a null curve. Using the
representation formulas of cone curves introduced in [8], we study the properties
of a null curve and its directional associated curves in Minkowski 3-space.

In Section 2, we will review some basic facts for null curves and non-null
curves in Minkowski 3-space (see [1]-[8]). In Sections 3-5, we discuss some
specific directional associated curve of a null curve. In Section 6, we study the
relations between the null curve and its self-associated curve.

All geometric objects under consideration are smooth and curves are regular
unless otherwise stated.

2. Preliminaries

In this section, we review some basic facts for null curves and non-null curves
in Minkowski 3-space.

2.1. Vector product in Minkowski 3-space

Let E3
1 be a Minkowski 3-space with natural Lorentzian metric

〈·, ·〉 = dx21 + dx22 − dx23
in terms of the natural coordinate system (x1, x2, x3).

Let a = (a1, a2, a3), b = (b1, b2, b3) and c = (c1, c2, c3) be vectors in E3
1 .

Then their scalar product is given by

〈a, b〉 = a1b1 + a2b2 − a3b3,
and the exterior product by

a× b =

∣∣∣∣∣∣
e1 e2 e3
a1 a2 a3
b1 b2 b3

∣∣∣∣∣∣ =

(∣∣∣∣a2 a3
b2 b3

∣∣∣∣ , ∣∣∣∣a3 a1
b3 b1

∣∣∣∣ ,− ∣∣∣∣a1 a2
b1 b2

∣∣∣∣) ,
where {e1, e2, e3} is an orthonormal basis in E3

1 . One can have

e1 × e2 = −e3, e2 × e3 = e1, e3 × e1 = e2.

On the other hand, the mixed product is given by

〈a× b, c〉 =

∣∣∣∣∣∣
a1 a2 a3
b1 b2 b3
c1 c2 c3

∣∣∣∣∣∣
and the double exterior product is then obtained as

(2.1) (a× b)× c = 〈b, c〉a− 〈a, c〉b.
A vector υ∈E3

1 is said to be space-like if 〈υ, υ〉 > 0 or υ = 0; time-like if
〈υ, υ〉 < 0; null (light-like) if 〈υ, υ〉 = 0, respectively.

Remark 2.1. Hereafter, we assume that a null geodesic in E3
1 is not regarded

as a null curve.
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2.2. Frenet formulas of null curves in E3
1

Let r(s) be a null curve with parameter s in E3
1 . If 〈r′′(s), r′′(s)〉 6= 0, we

can take s̃ appropriately in such a way that 〈r′′(s̃), r′′(s̃)〉 = 1. In this case, the
parameter s̃ is called the null arc length parameter. For a null curve r = r(s)
with null arc length parameter s, there exists a unique frame field {x, α, y}
such that

(2.2)


r′(s) = x(s),
x′(s) = α(s),
α′(s) = κ(s)x(s)− y(s),
y′(s) = −κ(s)α(s),

where

〈x, x〉 = 〈y, y〉 = 〈x, α〉 = 〈y, α〉 = 0, 〈x, y〉 = 〈α, α〉 = 1,

α = x× y, α× x = x, α× y = −y.

Here in the sequel, x, α, y are also called the tangent, principal normal and
binormal vector field of r(s), respectively and the function κ(s) is called the
null curvature function of r(s).

From (2.2) we have

κ(s) = −1

2
〈r′′′(s), r′′′(s)〉

and

(2.3) r(4)(s)− 2κ(s)r′′(s)− κ′(s)r′(s) = 0.

2.3. Representation formulas of null curves in E3
1

In [8], the authors defined the structure function f of a cone curve inQ2 ⊂ E3
1

and described it with f , where Q2 = {(x1, x2, x3) ∈ E3
1 : x21 + x22 − x23 = 0}. It

is well-known that the integral curve of a cone curve in Q2 is a null curve in
E3

1 , so we can easily get the representation formulas of null curves in the sense
of [8].

Proposition 2.2 ([8]). Let r(s) : I → E3
1 be a null curve parameterized by

null arc length parameter s. Then r(s) can be written as

r(s) =

∫
f

2fs
(f − f−1, 2, f + f−1)ds,

where f(s) is called the structure function of r(s). The structure function f(s)
and the null curvature function κ(s) satisfy

κ(s) =
1

2
[(log fs)s]

2 − [(log fs)s]s

with fs = df(s)
ds .
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2.4. Frenet formulas of space-like and time-like curves in E3
1

Let r = r(s) : I → E3
1 be a space-like curve parameterized by arc length s

with the Frenet frame {T,N,B}.
Case 1 : If 〈r′′(s), r′′(s)〉 6= 0, the following Frenet equations are satisfied

r′(s) = T (s),
T ′(s) = κ(s)N(s),
N ′(s) = −εκ(s)T (s) + τ(s)B(s),
B′(s) = τ(s)N(s),

where 〈T, T 〉 = 1, 〈N,N〉 = ε = ±1, 〈B,B〉 = −ε, 〈T,N〉 = 〈T,B〉 = 〈B,N〉 =
0 for some functions κ and τ which are called the curvature and the torsion of
r, respectively.

Case 2: If 〈r′′(s), r′′(s)〉 = 0, the Frenet equations are given by
r′(s) = T (s),
T ′(s) = N(s),
N ′(s) = κ(s)N(s),
B′(s) = −T (s)− κ(s)B(s),

where 〈T, T 〉 = 〈N,B〉 = 1, 〈N,N〉 = 〈B,B〉 = 〈T,N〉 = 〈T,B〉 = 0. The
function κ(s) is also called the curvature function of r.

Remark 2.3. Let r be a space-like curve in Minkowski 3-space with arc length
parameter s. In particular, the space-like curve r is said to be null type space-
like if 〈r′′(s), r′′(s)〉 = 0.

If r = r(s) : I → E3
1 is a time-like curve parameterized by arc length and

framed by the Frenet frame {T,N,B}, then the following Frenet equations are
satisfied 

r′(s) = T (s),
T ′(s) = κ(s)N(s),
N ′(s) = κ(s)T (s) + τ(s)B(s),
B′(s) = −τ(s)N(s),

where 〈T, T 〉 = −1, 〈N,N〉 = 〈B,B〉 = 1, 〈T,N〉 = 〈T,B〉 = 〈B,N〉 = 0.
Similarly to those of the space-like curve, the functions κ(s) and τ(s) are called
the curvature and the torsion of r(s), respectively.

2.5. Directional associated curves and self-associated curve of a null
curve in E3

1

In this section, the definition of the directional associated curves of a null
curve is given. Also, the self-associated curve of a null curve is defined in E3

1 .

Definition. Let r(s) : I → E3
1 be a null curve parametrized by null arc length

parameter s with the Frenet frame {x, α, y} and W a vector field along r(s).
A curve r̃(s̃) : I → E3

1 is called the W -directional associated curve of r(s) if
r̃(s̃) is in the direction of W which is in the Frenet frame of r̃(s̃) at each r(s).
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Remark 2.4. From now on we assume that s̃ is the null arc length parameter
if r̃ is a null curve and the arc length parameter if r̃ is a non-null curve.

Remark 2.5. If the vector filed W is parallel to x (respectively, y or α) the
directional associated curve of r(s) is called the x-directional (respectively,
y-directional or α-directional) associated curve and it can be expressed by,
respectively,

r̃(s̃(s)) = r(s) + λ(s)x(s),

r̃(s̃(s)) = r(s) + λ(s)y(s)

or
r̃(s̃(s)) = r(s) + λ(s)α(s)

for some function λ, which is called the distance function between r(s) and
r̃(s̃). The distance function λ is assumed to be non-zero.

Example. Let r(s) be a null curve of null curvature − 1
2 and parametrized by

null arc length given by
r(s) = (cos s, sin s, s).

Then, the Frenet frame is given by

x(s)= (− sin s, cos s, 1), α(s)= (− cos s,− sin s, 0), y(s)=
1

2
(− sin s, cos s,−1).

Define r̃ by r̃(s) = r(s) + 2α(s). Then

r̃(s) = (− cos s,− sin s, s).

Obviously, r̃(s) is also a null curve parametrized by null arc length and its
Frenet frame {x̃, α̃, ỹ} is

x̃(s) = (sin s,− cos s, 1), α̃(s) = (cos s, sin s, 0), ỹ(s) =
1

2
(sin s,− cos s,−1).

In this example, α̃ = −α, so r̃(s) is an α-directional associated curve of r(s).

Definition. Let r(s) : I → E3
1 be a null curve parametrized by the null

arc length parameter s with the Frenet frame {x, α, y}. The integral curve
r̃(s̃) =

∫
y(s̃)ds̃ is called the self-associated curve of r(s).

3. x-directional associated curves of a null curve in E3
1

Theorem 3.1. Let r = r(s) : I → E3
1 be a null curve parametrized by null arc

length parameter s and r̃(s̃) its x-directional associated curve. Then, we get

(1) r̃(s̃) must be a null type space-like curve;
(2) the curvature function of r̃(s̃) satisfies

κ̃ = ± 1

λ2
;

(3) the null curvature function of r(s) can be expressed by

κ =
1 + 4λ′ + 3λ′2 − 2λλ′′

2λ2
,
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where λ(s) is the distance function.

Proof. The x-directional associated curve r̃ of r is given by

r̃(s̃) = r(s) + λ(s)x(s),

which implies

(3.1) ˙̃r(s̃)
ds̃

ds
= (1 + λ′)x+ λα,

where ˙̃r(s̃) = dr̃
ds̃ .

Then, (3.1) yields

(3.2) 〈 ˙̃r, ˙̃r〉(ds̃
ds

)2 = λ2.

Since the distance function λ(s) 6= 0 and r̃ is regular, r̃(s̃) must be a space-like

curve, i.e., 〈 ˙̃r, ˙̃r〉 > 0. By definition of the x-directional associated curve, we

know r̃(s̃) must be a null type space-like curve, i.e., 〈¨̃r, ¨̃r〉 = 0.

Let {T̃ , Ñ , B̃} be the Frenet frame of r̃. Then ˙̃r(s̃) = T̃ (s̃). So, equation
(3.1) can be written as

(3.3) T̃
ds̃

ds
= (1 + λ′)x+ λα.

Based on the definition of the x-directional associated curve and the Frenet
frame of the null type space-like curve, we consider the following cases.

Case 1: Ñ(s̃(s)) ∧ x(s) = 0 along r.
In this case, we get

(3.4) Ñ(s̃(s)) = a(s)x(s)

for some function a(s) 6= 0.
Differentiating (3.4) gives

(3.5) κ̃Ñ
ds̃

ds
= a′x+ aα,

from which,

a(s) = 0,

a contradiction.

Case 2: B̃(s̃(s)) ∧ x(s) = 0 along r.
We may suppose

(3.6) B̃(s̃(s)) = a(s)x(s)

for some function a(s) 6= 0.
Similarly as was given in Case 1, by differentiating (3.6), we have

(3.7) (−T̃ − κ̃B̃)
ds̃

ds
= a′x+ aα.
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Taking the scalar product on both sides of (3.7), we obtain

(3.8) (
ds̃

ds
)2 = a2.

By taking the scalar product with (3.7) with T̃ and using (3.3), we get

(3.9) −(
ds̃

ds
)2 = aλ.

Thus, (3.8) and (3.9) give

a = −λ.
Therefore, we get ds̃

ds = ±λ. Without loss of generality, we may assume

(3.10)
ds̃

ds
= λ.

Differentiating (3.3) with (3.10) , we get

(3.11) λ′T̃ + λ2Ñ = (λ′′ + λκ)x+ (1 + 2λ′)α− λy,

from which,

λ′2 = (1 + 2λ′)2 − 2λ(λ′′ + λκ).

Thus, the null curvature function κ can be expressed by

(3.12) κ =
1 + 4λ′ + 3λ′2 − 2λλ′′

2λ2
.

Taking the scalar product with (3.7) and (3.11), we obtain

κ̃ =
1

λ2
.

If ds̃
ds = −λ, equation (3.12) still holds with κ̃ = − 1

λ2 . �

Corollary 3.2. Let r(s) : I → E3
1 be a null curve with null arc length parameter

s and r̃(s̃) the x-directional associated curve. If the distance function λ(s) is a
nonzero constant, then we have

(1) the null curvature function of r(s) is a positive constant and the cur-
vature function of r̃(s̃) is a nonzero constant;

(2) r(s) can be expressed as

r(s) = C1 sinh(
√

2κ)s+ C2 cosh(
√

2κ)s+ C3s,

where C1, C2, C3 ∈ E3
1 ;

(3) the x-directional associated curve r̃(s̃) is

r̃(s) = C4 sinh(
√

2κ)s+ C5 cosh(
√

2κ)s+ C6s,

where C4, C5, C6 ∈ E3
1 .
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Proof. By Theorem 3.1, if the distance function is a nonzero constant, the null
curvature function κ is a positive constant and the curvature function κ̃ is a
nonzero constant.

From (2.3), we have

(3.13) r(4) = 2κr′′.

Solving the equation (3.13), we get up to translation in E3
1

r(s) = C1 sinh(
√

2κ)s+ C2 cosh(
√

2κ)s+ C3s.

Therefore, the x-directional associated curve is given as

r̃(s) = C4 sinh(
√

2κ)s+ C5 cosh(
√

2κ)s+ C6s,

where C1, C2, C3, C4, C5, C6 ∈ E3
1 . �

Corollary 3.3. Let r(s) : I → E3
1 be a null curve parametrized by null arc

length parameter s and r̃(s̃) its x-directional associated curve. If the distance
function λ(s) is a linear function of s, then we obtain

(1) the null curvature function of r(s) is

κ(s) = a(s+ b)−2,

where a 6= 0, b are constants;
(2) r(s) can be expressed by one of the following forms:

(a) r(s) = C1s
2 + C2s

(2+
√
1+2a) + C3s

(2−
√
1+2a) for 2a > −1,

(b) r(s) = C1s
2 + C2s

2 log s+ C3s
2 log2 s for 2a = −1,

(c) r(s) = C1s
2 +C2s

2 sin[(
√
−1−2a) log s]+C3s

2 cos[(
√
−1−2a) log s]

for 2a < −1,
where C1, C2, C3 ∈ E3

1 ;
(3) the curvature function of r̃(s̃) is given by

κ̃(s) = ±(cs+ d)−2,

where c 6= 0, d are constants.

Proof. By Theorem 3.1, if the distance function is a linear function of s, the
null curvature function can be written as

κ(s) = a(s+ b)−2,

where a 6= 0, b are constants. By a parameter transformation, we can put b = 0.
From (2.3), we have

(3.14) s3r(4) − 2asr′′ + 2ar′ = 0.

Solving the differential equation (3.14), we get

(1) r(s) = C1s
2 + C2s

(2+
√
1+2a) + C3s

(2−
√
1+2a) if 2a > −1,

(2) r(s) = C1s
2 + C2s

2 log s+ C3s
2 log2 s if 2a = −1,

(3) r(s) = C1s
2 + C2s

2 sin[(
√
−1− 2a) log s] + C3s

2 cos[(
√
−1− 2a) log s]

if 2a < −1,
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where C1, C2, C3 ∈ E3
1 .

Also by Theorem 3.1, the curvature function of r̃(s̃) is given by

κ̃(s) = ±(cs+ d)−2,

where c 6= 0, d are constants. �

Figure 1. The blue curve is a given null curve and the red
one is its x-directional associated curve when λ = 1, κ = 1/2.

Figure 2. The red curve is a given null curve and the blue
one is its x-directional associated curve when λ = s, κ = 4/s2.

4. y-directional associated curves of a null curve in E3
1

Theorem 4.1. Let r = r(s) : I → E3
1 be a null curve parametrized by null arc

length and r̃(s̃) its y-directional associated curve. Then we have

(1) the y-directional associated curve must be a null curve;
(2) the null curvature functions κ and κ̃ satisfy

κ̃ = κ, κ2 = 2(
1

λ
)′,
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where λ(s) is the distance function.

Proof. The definition of the y-directional associated curve of a null curve yields

(4.1) r̃(s̃) = r(s) + λ(s)y(s),

from which, we get

˙̃r(s̃)
ds̃

ds
= x+ λ′y − λκα

and

〈 ˙̃r, ˙̃r〉(ds̃
ds

)2 = λ2κ2 + 2λ′.

It is not difficult to find that a null curve and a null type space-like curve in
E3

1 can be the y-directional associated curve of a null curve by the definition.

Case 1: If r̃(s̃) is a null curve with null arc length parameter s̃ and the

Frenet frame {x̃, α̃, ỹ}, then we get ˙̃r(s̃) = x̃(s̃) and

(4.2) x̃(s̃)
ds̃

ds
= x+ λ′y − λκα.

It implies

(4.3) λ2κ2 + 2λ′ = 0,

or, equivalently,

κ2 = 2(
1

λ
)′.

Case 1.1: x̃(s̃) ∧ y(s) = 0.
Then, we get

(4.4) x̃(s̃) = a(s)y(s)

for some function a(s) 6= 0. Taking the scalar product with (4.2) and (4.4)
implies a(s) = 0, a contradiction.

Case 1.2: ỹ(s̃) ∧ y(s) = 0.
Similarly, we may put

(4.5) ỹ(s̃) = a(s)y(s)

for some function a(s) 6= 0 and some parametrization s̃ = s̃(s).
Taking the scalar product with (4.2) and (4.5), we get

ds̃

ds
= a(s).

Thus, (4.2) implies

(4.6) x̃a = x+ λ′y − λκα.
Differentiating (4.6) yields

(4.7) a2α̃+ x̃a′ = −λκ2x+ (λ′′ + λκ)y + (1− 2λ′κ− λκ′)α.
Making use of (4.5) and (4.7), we get

(4.8) a′ = −aλκ2.
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Together with (4.3) and (4.8), we obtain

a′

a
=

2λ′

λ
.

Thus, we have

a = cλ2

for some positive constant c.
On the other hand, differentiating (4.5), we obtain

(4.9) −κ̃α̃a = a′y − aκα.
Using (4.9) and (4.6), we get

(4.10) −a2κ̃x̃ = −a′α− aκx+ (aκλ′ − λκa′)y.
Taking account of (4.5) and (4.10), we have

κ̃ = κ.

Case 2: In case that r̃(s̃) is a null type space-like curve parametrized by arc

length with the Frenet frame {T̃ , Ñ , B̃}, a contradiction is derived no matter

the direction of Ñ or B̃ coincides with that of y. �

Corollary 4.2. Let r = r(s) : I → E3
1 be a null curve parametrized by null arc

length s and r̃(s̃) the y-directional associated curve. If the distance function
λ(s) is a nonzero constant, then we have

(1) r(s) and r̃(s̃) are all null cubics;
(2) r(s) can be expressed as

r(s) = C1s
3 + C2s

2 + C3s,

where Ci ∈ E3
1 (i = 1, 2, 3).

Proof. In Theorem 4.1, if the distance function is a nonzero constant, both of
the null curvatures κ and κ̃ are equal to zero. Thus, they are null cubics.

From (2.3), we have

(4.11) r(4) = 0.

Therefore, up to translation, we get

(4.12) r(s) = C1s
3 + C2s

2 + C3s,

where C1, C2, C3 ∈ E3
1 . (For the null cubics, see [6].) �

Corollary 4.3. Let r(s) : I → E3
1 be a null curve with null arc length parameter

s and r̃(s̃) the y-directional associated curve. When the distance function λ(s)
is a linear function of s, we have

(1) the null curvature function is given by

κ̃ = κ = a(s+ b)−1,

where a 6= 0, b are constants.
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(2) r(s) can be expressed by

r(s) = C1

∫
u2(s)ds+ C2

∫
u(s)v(s)ds+ C3

∫
v2(s)ds,

where C1, C2, C3 ∈ E3
1 .

Proof. In Theorem 4.1, if the distance function is a linear function of s, the
null curvature functions are easily obtained as

κ̃ = κ = a(s+ b)−1,

where a 6= 0, b are constants.
From (2.3), when κ(s) = a

s (by a parameter transformation we can put
b = 0), the curve r(s) satisfies

(4.13) s2r(4) − 2asr′′ + ar′ = 0.

Solving the equation (4.13), we get

r(s) = C1

∫
u2(s)ds+ C2

∫
u(s)v(s)ds+ C3

∫
v2(s)ds

for some functions u and v given by{
u(s) =

√
sJ1(
√
−2as

1
2 ),

v(s) =
√
sY1(
√
−2as

1
2 ) if a < 0

and {
u(s) = Re(

√
sZ1(i

√
2as

1
2 )),

v(s) = Im(
√
sZ1(i

√
2as

1
2 )) if a > 0,

where C1, C2, C3 ∈ E3
1 , Zv(s) is the cylinder function, Jv(s) is the Bessel func-

tion of the first kind and Yv(s) is the Bessel function of the second kind (see
[9]). �

5. α-directional associated curves of a null curve in E3
1

Theorem 5.1. Let r : I → E3
1 be a null curve parametrized by null arc length

parameter s and r̃(s̃) its α-directional associated curve. When the direction of
the principal normal vector field of r̃(s̃) coincides with that of α, we have

1. r̃(s̃) is a null curve written as

r̃(s) = λ

∫
y(s)ds,

that is, r(s) is the binormal donor curve of r̃(s̃), where λ is a nonzero constant.
In this case, the null curvature function κ of r(s) is a nonzero constant and
r(s) can be expressed by one of following forms:

(1) r(s) = C1 sinh(
√

2κ)s+ C2 cosh(
√

2κ)s+ C3s for κ > 0,
(2) r(s) = C1 sin(

√
−2κ)s+ C2 cos(

√
−2κ)s+ C3s for κ < 0,
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where C1, C2, C3 ∈ E3
1 .

2. r̃(s̃) is a curve on a de Sitter 3-space or hyperbolic 3-space written as

r̃(s) = r(s) + Cα(s)

for some nonzero constant C. In this case, the null curvature function κ of
r(s) is a constant and r(s) is given by

(1) r(s) = C1s
3 + C2s

2 + C3s for κ = 0;

(2) r(s) = C1 sinh(
√

2κ)s+ C2 cosh(
√

2κ)s+ C3s for κ > 0;
(3) r(s) = C1 sin(

√
−2κ)s+ C2 cos(

√
−2κ)s+ C3s for κ < 0,

where C1, C2, C3 ∈ E3
1 .

3. When r̃(s̃) is not a null curve or a curve on a de Sitter 3-space or hyper-
bolic 3-space, it is given by

r̃(s) = r(s)− 2

κ+ C
α(s).

In this case, the null curvature function κ(s) of r(s) is given by the differential
equation

2κ′′ − 3κ2 − 2κC + C2 = 0,

where C is a constant.

Proof. In the proof, we use the same parameter s for the null curve r and the
associated curve r̃. Then, we have

r̃(s) = r(s) + λ(s)α(s),

from which,

(5.1) r̃′(s) = (1 + λκ)x+ λ′α− λy,

r̃′′(s) = (2λ′κ+ λκ′)x+ (1 + 2λκ+ λ′′)α− 2λ′y.

It implies

(5.2) 〈r̃′, r̃′〉 = λ′2 − 2λ− 2λ2κ.

From (2.1) and (5.1), we have

(5.3) (r̃′ × r̃′′)× r̃′ = (λ′λ′′ − λ′ − 2λλ′κ− λ2κ′)r̃′ − (λ′2 − 2λ− 2λ2κ)r̃′′.

When the direction of the principal normal vector field of r̃(s̃) coincides with
that of α, from (5.3), we have
(5.4){

2λ′(λ′2 − 2λ− 2λ2κ) = λ(λ′λ′′ − λ′ − 2λλ′κ− λ2κ′),
(λ′2 − 2λ− 2λ2κ)(2λ′κ+ λκ′) = (1 + λκ)(λ′λ′′ − λ′ − 2λλ′κ− λ2κ′).

We put

A = λ′2 − 2λ− 2λ2κ, B =
1

2
A′ = λ′λ′′ − λ′ − 2λλ′κ− λ2κ′.

Case 1: A ≡ 0.
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Since λ 6= 0, B = 0. From (5.2), r̃(s) is a null curve. From the Frenent
frame (2.2), r̃(s) can be written as

(5.5) r̃(s) = c

∫
y(s)ds,

where c is a nonzero constant.
Thus, from (5.5) and (5.1), λ and κ are non-zero constants. Then r(s) can

be written as

(1) r(s) = C1 sinh(
√

2κ)s+ C2 cosh(
√

2κ)s+ C3s for κ > 0;
(2) r(s) = C1 sin(

√
−2κ)s+ C2 cos(

√
−2κ)s+ C3s for κ < 0,

where C1, C2, C3 ∈ E3
1 .

Case 2: A 6= 0, B = 0.
From (5.4), λ is a nonzero constant and κ′ = 0. Therefore, r(s) is given as

follow:

(1) r(s) = C1s
3 + C2s

2 + C3s for κ = 0;

(2) r(s) = C1 sinh(
√

2κ)s+ C2 cosh(
√

2κ)s+ C3s for κ > 0;
(3) r(s) = C1 sin(

√
−2κ)s+ C2 cos(

√
−2κ)s+ C3s for κ < 0,

where C1, C2, C3 ∈ E3
1 .

Its α-directional associated curve is expressed as

r̃(s) = r(s) + λα(s),

where λ is a nonzero constant. Apparently, r̃(s) is a curve on a de Sitter 3-space
or a hyperbolic 3-space.

Case 3: A 6= 0, B 6= 0.
From (5.4), we have

2λ′A

A(2λ′κ+ λκ′)
=

λB

(1 + λκ)B
,

i.e.,

(5.6) 2λ′ = λ2κ′.

Solving the differential equation (5.6), we have

(5.7) λ =
−2

κ+ C
,

where C is a constant of integration.
Substituting (5.7) into (5.4) yields

(5.8) 2κ′′ − 3κ2 − 2κC + C2 = 0.

Solving (5.8) (by a parameter transformation), we have the solution in para-
metric forms: {

s = ± 1√
|2C|

∫
(C1 + η3 ± η2)

−1
2 dη + C2,

κ = ±2Cη − C,
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or {
s = ± 1√

|2C|

∫
(C1 − η3 ± η2)

−1
2 dη + C2,

κ = ±2Cη − C,
where C,C1, C2 are constants (see [9]).

In this case, its α-directional associated curve can be written as

r̃(s) = r(s)− 2

κ+ C
α(s),

where C is a constant and α(s) = r′′(s). �

Theorem 5.2. Let r : I → E3
1 be a null curve parametrized by null arc length

parameter s and r̃(s̃) the α-directional associated curve. When the direction of
the binormal vector field of r̃(s̃) coincides with that of α, we have

1. r̃(s̃) is a curve on a de Sitter 3-space or hyperbolic 3-space written as

r̃(s) = r(s) + Cα(s)

for some non-zero constant C. In this case, the null curvature function of r(s)
is a non-zero constant and r(s) is given by

(1) r(s) = C1 sinh(
√

2κ)s+ C2 cosh(
√

2κ)s+ C3s for κ > 0;
(2) r(s) = C1 sin(

√
−2κ)s+ C2 cos(

√
−2κ)s+ C3s for κ < 0,

where C1, C2, C3 ∈ E3
1 .

2. When r̃(s̃) is not a curve on a de Sitter 3-space or hyperbolic 3-space, it
is given by

r̃(s) = r(s)− 2

κ+ C
α(s).

In this case, the null curvature function κ(s) of r(s) is given by the differential
equation

2κ′′ − 3κ2 − 2κC + C2 = 0,

where C is a constant.

Remark 5.3. For a null curve r with the α-directional associated curve r̃, if the
binormal vector field of r̃ is parallel to α or the principal normal vector field of
r̃ is parallel to α, we have similar results.

6. Self-associated curve of a null curve in E3
1

Theorem 6.1. Let r(s) be a null curve in Minkowski 3-space E3
1 with null arc

length parameter s and r̃(s̃) its self-associated null curve. Then the followings
are equivalent:

(1) The null curvature functions κ and κ̃ satisfy κ̃ = 1
κ .

(2) The self-associated curve of r̃(s̃) is r(s).
(3) r(s) is the binormal donor curve of r̃(s̃).
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Proof. Define r̃(s̃) =
∫
y(s̃)ds̃, where s̃ denotes the null arc length parameter

of r̃. Let {x̃, α̃, ỹ} be the Frenet frame of r̃ .
From r̃(s̃) =

∫
y(s̃)ds̃, we have

(6.1) x̃(s̃) = y(s̃).

Differentiating (6.1) with respect to s̃, we have

α̃ = −καds
ds̃
.

It gives

(
ds̃

ds
)2 = κ2.

For convenience, we put

ds̃

ds
= −κ.

Then, we get

(6.2) α̃ = α.

Differentiating (6.2), we have

κ̃x̃− ỹ = (κx− y)
ds

ds̃
,

in other words,

κ̃x̃− ỹ = −x+
y

κ
.

It implies

κ̃ =
1

κ
.

Therefore, we get

ỹ(s̃) = x(s),

from which, ∫
ỹ(s̃)ds =

∫
x(s)ds = r(s).

This completes the proof. �

Finally, we give a simple example to show the null curve and its self-associated
curve. Let r(s) = (cos s, sin s, s) with null curvature κ = −1/2 and parametrized
by null arc length.
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Figure 3. The blue curve is a null curve and the red one is
its self-associated curve.

Figure 4. A null curve and its self-associated null curve on
light-like cone.
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