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ON DISTANCE ESTIMATES AND ATOMIC

DECOMPOSITIONS IN SPACES OF ANALYTIC FUNCTIONS

ON STRICTLY PSEUDOCONVEX DOMAINS

Miloš Arsenović and Romi F. Shamoyan

Abstract. We prove some sharp extremal distance results for functions
in various spaces of analytic functions on bounded strictly pseudoconvex
domains with smooth boundary. Also, we obtain atomic decompositions
in multifunctional Bloch and weighted Bergman spaces of analytic func-
tions on strictly pseudoconvex domains with smooth boundary, which
extend known results in the classical case of a single function.

1. Introduction

Throughout this paper H(D) denotes the space of all holomorphic func-
tions on an open set D ⊂ Cn. We follow notation from [14]. Let D be
a bounded strictly pseudoconvex domain in Cn with smooth boundary, let
d(z) = dist(z, ∂D). Then there is a neighborhood U of D and ρ ∈ C∞(U) such
that D = {z ∈ U : ρ(z) > 0}, |∇ρ(z)| ≥ c > 0 for z ∈ ∂D, 0 < ρ(z) < 1
for z ∈ D and −ρ is strictly plurisubharmonic in a neighborhood U0 of ∂D.
Note that d(z) ≍ ρ(z), z ∈ D. Then there is an r0 > 0 such that the domains
Dr = {z ∈ D : ρ(z) > r} are also smoothly bounded strictly pseudoconvex
domains for all 0 ≤ r ≤ r0. Let dσr be the normalized surface measure on ∂Dr

and dV the Lebesgue measure on Cn. The following mixed norm spaces were
investigated in [14]. For 0 < p < ∞, 0 < q ≤ ∞, δ > 0 and k = 0, 1, 2, . . . set

‖f‖p,q,δ;k =





∑

|α|≤k

∫ r0

0

(

rδ
∫

∂Dr

|Dαf |pdσr

)q/p
dr

r





1/q

, 0 < q < ∞

and

‖f‖p,∞,δ;k = sup
0<r<r0

∑

|α|≤k

(

rδ
∫

∂Dr

|Dαf |pdσr

)1/p

.
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The corresponding spaces Ap,q
δ;k = Ap,q

δ;k(D) = {f ∈ H(D) : ‖f‖p,q,δ;k < ∞}
are complete quasi normed spaces, for p, q ≥ 1 they are Banach spaces. We
mostly deal with the case k = 0, then we write simply Ap,q

δ and ‖f‖p,q,δ. We
also consider these spaces for p = ∞ and k = 0, the corresponding space is
denoted by A∞,p

δ = A∞,p
δ (D) and consists of all f ∈ H(D) such that

‖f‖∞,p,δ =

(∫ r0

0

(sup
∂Dr

|f |)prδp−1dr

)1/p

< ∞.

Also, for δ > −1, the space A∞
δ = A∞

δ (D) consist of all f ∈ H(D) such that

‖f‖A∞

δ
= sup

z∈D
|f(z)|ρ(z)δ < ∞,

and the weighted Bergman space Ap
δ = Ap

δ(D) = Ap,p
δ+1(D) consists of all f ∈

H(D) such that

‖f‖Ap

δ
=

(∫

D

|f(z)|pρδ(z)dV (z)

)1/p

< ∞.

The space of all f ∈ H(D) such that supz∈D |Df(z)|ρ(z) = ‖f‖B < +∞ is
called Bloch space on D and denoted by B. Here Df = (∂f/∂z1, . . . , ∂f/∂zn).
This space is a Banach space, if one identifies functions which differ by a con-
stant.

The next section is a continuation of our previous work [18] and treats the
following problem: estimate distY (f,X), f ∈ Y where (X,Y ) is one of the

following pairs: (A1,p
δ , A1,∞

δ ) and (A∞,p
δ , A∞

δ ). In both cases we give sharp
results. Techniques used to obtain our results were previously used to study
analogous problems for analytic Besov spaces in the unit ball and polydisc
(see [19], [20]). The literature on the extremal problems in spaces of analytic
functions is extensive, even in the case of the unit disk, a classical exposition
of these problems treated by duality methods developed by S. Havinson, W.
Rogosinski and H. Shapiro can be found in [7].

Now we recall some of the definitions and results from [14].

Definition 1. For ǫ > 0, ν ∈ R, 0 < p < ∞ and 0 < q ≤ ∞ mixed norm
double sequence spaces lp,q,ǫν are defined by: c = (cm,j)

∞
m,j=0 ∈ lp,q,ǫν if

‖c‖p,q,ν,ǫ =







∞
∑

m=0





∞
∑

j=0

|cm,j |
p





q/p

ǫmνq/p







1/q

,

with the usual modification if q = ∞.

Clearly this definition applies also in the case where the range of indices is
m ≥ 0, 0 ≤ j ≤ jm. Note that these spaces depend on 3 parameters, namely
p, q and ǫν .



ON DISTANCE ESTIMATES AND ATOMIC DECOMPOSITIONS 87

Lemma 1 ([14]). Let dK be Koranyi pseudodistance in D, let BK(ζ, ǫ) be the

Koranyi ball centered at ζ of radius ǫ > 0. Then for each η > 0 and 0 < ǫ < 1
there exist 0 < η0 < η1 < η and a sequence {am,j}, m = 0, 1, . . ., j = 0, . . . , jm
of points in D such that:

∪m,j BK(am,j , η1d(am,j)) = D,

BK(am,j , η0d(am,j)) ∩BK(am′,j′ , η0d(am′,j′)) 6= ∅ if and only if

m = m′, j = j′, ρ(am,j) ≍ ǫm.

Let us call such a system of points in D an η0-η1 lattice in D. These lattices
play an important role in investigation of spaces of analytic functions on D and
operators acting on them. As an example of such applications in the case of
the unit ball in Cn see [17]; we note that these results on Lusin’s area operator
acting on weighted Bergman spaces can be extended to the present context
using recent results from [1].

Theorem 1 ([14]). Let {am,j} be an η0-η1 lattice in D, as in Lemma 1. Let

us set, for a double sequence c = {cm,j}, m ≥ 0, 0 ≤ j ≤ jm:

Ts(c) =

∞
∑

m=0

jm
∑

j=0

cm,jK
n+1+s,s(am,j , z), z ∈ D.

For s > δ/p this operator is continuous and onto from lp,q,ǫn+δ−kp to Ap,q
δ,k(D).

We refer reader to [14] for definition of kernels Kn+1+s,s(ζ, z).
Clearly, the above theorem is a result on atomic decomposition of the spaces

Ap,q
δ,k(D). It is a natural question to generalize this result to the multifunctional

setting.
We define, for m ∈ N, 0 < p1, . . . , pm < ∞, α1, . . . , αm > −1 the weighted

multifunctional Bergman space MAp̃,α̃(D) = MAp̃,α̃, p̃ = (p1, . . . , pm), α̃ =
(α1, . . . , αm) as the space of all m-tuples (f1, . . . , fm) of holomorphic functions
in D such that

(f1, . . . , fm)p̃,α̃ =

∫

D

m
∏

j=1

|fj(z)|
pjρ(z)(m−1)(n+1)+

∑m
j=1

αjdV (z) < ∞.

In the third section we generalize Theorem 1, in the special case of weighted
Bergman spaces, to the case of multifunction spaces over strictly pseudoconvex
domains. For the case of the unit ball in Cn, see [11]. Moreover, we prove an
atomic decomposition theorem for multifunctional Bloch space MB(m) con-
sisting of all m-tuples (f1, . . . , fm) of functions analytic in D such that

(f1, . . . , fm)MB(m) = sup
z∈D

|∇(f1 · · · fm)(z)|d(z) log1−m 1

d(z)
< ∞,

generalizing a classical result (m = 1) on atomic decomposition of Bloch func-
tions, see [5].
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We use common convention regarding constants: letter C denotes a constant
which can change its value from one occurrence to the next one.

2. Distance estimates in A
p,q
δ (D) and A

∞

δ (D) spaces

Our proofs are heavily based on the estimates from [3], where more general
situation was considered.

Since |f(z)|p is subharmonic (even plurisubharmonic) for a holomorphic f ,
we have Ap

s(D) ⊂ A∞
t (D) for 0 < p < ∞, sp > n and t = s. Also, Ap

s(D) ⊂
A1

s(D) for 0 < p ≤ 1 and Ap
s(D) ⊂ A1

t (D) for p > 1 and t sufficiently large.
Therefore we have an integral representation

(1) f(z) =

∫

D

f(ξ)K(z, ξ)ρt(ξ)dV (ξ), f ∈ A1
t (D), z ∈ D,

where K(z, ξ) is a kernel of type t, that is a smooth function on D ×D such

that |K(z, ξ)| ≤ C|Φ̃(z, ξ)|−(n+1+t), where Φ̃(z, ξ) is so called Henkin-Ramirez
function for D. Note that (1) holds for functions in any space X that embeds

into A1
t . We review some facts on Φ̃ and refer reader to [16] for details. This

function is C∞ in U × U , where U is a neighborhood of D, it is holomorphic
in z, and Φ̃(ζ, ζ) = ρ(ζ) for ζ ∈ U . Moreover, on D × D it vanishes only
on the diagonal (ζ, ζ), ζ ∈ ∂D. Locally, it is up to a non vanishing smooth
multiplicative factor equal to the Levi polynomial of ρ. From now on we work
with a fixed Henkin-Ramirez function Φ̃. We are going to use the following
results from [3] and [2].

Lemma 2. Assume K(z, ξ) is a kernel of type t, t > −1.
a) For 0 < r < r0 we have

∫

∂Dr

|K(z, ζ)|dσr(z) ≤ C(ρ(ζ) + r)−t−1, ζ ∈ D.

b) Assume σ > 0 satisfies σ − t− 1 < 0. Then we have
∫

D

|K(z, ζ)|ρσ−1(z)dV (z) ≤ Cρσ−t−1(ζ) ζ ∈ D.

For part a) of the above lemma see Corollary 3.9. of [3], for part b) see [2].

We note that the same estimates are valid ifK is replaced by K̃(z, ζ) = K(ζ, z).
The estimates of such type for strictly pseudoconvex domains have a long

history, the basis for such results were constructive methods in several complex
variables, namely integral representation formulas developed by Henkin and
Ramirez around 1970. E. Ligocka obtained an important factorization theorem
for the weighted Bergman kernel, see [13], building on the previous work by
Kerzman and Stein, see [8]. Then, using results from [13], P. Ahern and R.
Schneider obtained estimate contained in Lemma 2, which is of vital importance
for our work. For further results in this directions see [2], [4] and recent papers
[1], [6].
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Each of the embedding results we cite below poses the corresponding problem
of distance estimates, and in each of these cases we provide at least a partial
answer. In most cases we provide two-sided estimates.

Proposition 1 ([14]). If 0 < p0 < p1 < ∞, 0 < q ≤ ∞, δ0, δ
′
0 > 0 and

n+δ′0
p1

= n+δ0
p0

, then Ap0,q
δ0;k

(D) →֒ Ap1,q
δ′
0
;k(D).

As a special case of the above proposition we have the following result.

Lemma 3. If 0 < p ≤ 1 and α > −1, then

Ap
α(D) →֒ A1

β(D), β =
n+ 1 + α

p
− (n+ 1).

Equivalently:
∫

D

|F (z)|ρ(z)
n+1+α

p
−(n+1)dV (z) ≤ C‖F‖Ap

α
, F ∈ H(D).

Proposition 2 ([14]). If 0 < p < ∞, 0 < q0 < q1 ≤ ∞, δ > 0 and k =
0, 1, 2, . . ., then Ap,q0

δ;k (D) →֒ Ap,q1
δ;k (D).

In particular, A1,p
δ →֒ A1,∞

δ . This result motivates the following problem:

Estimate the distance from a given function f ∈ A1,∞
δ to A1,p

δ . The solution
to this problem is given in the following two theorems. We set, for ǫ > 0 and
δ > 0:

Lǫ,δ(f) =

{

r ∈ (0, r0) : r
δ

∫

∂Dr

|f |dσr ≥ ǫ

}

.

Theorem 2. Let 1 ≤ p < ∞, δ > 0 and f ∈ A1,∞
δ (D). Set

(2) s1(f) = distA1,∞

δ
(f,A1,p

δ ),

(3) s2(f) = inf

{

ǫ > 0 :

∫ 1

0

χLǫ,δ(f)(r)
dr

r
< ∞

}

.

Then s1(f) ≍ s2(f).

Proof. Assume s2(f) < s1(f). Then there are ǫ > ǫ1 > 0 and f1 ∈ A1,p
δ such

that ‖f − f1‖1,p,δ ≤ ǫ1 and

(4)

∫ r0

0

χLǫ,δ(f)(r)
dr

r
= +∞.

Therefore we have

rδ
∫

∂Dr

|f1|dσr ≥ rδ
∫

∂Dr

|f |dσr − sup
0<R<r0

Rδ

∫

∂DR

|f − f1|dσR

≥ rδ
∫

∂Dr

|f |dσr − ǫ1
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for every 0 < r < r0. Hence the following estimate from below

(5) rδ
∫

∂Dr

|f1|dσr ≥ rδ
∫

∂Dr

|f |dσr − ǫ1 ≥ ǫ− ǫ1.

holds for every r ∈ Lǫ,δ(f). However, this implies:

(ǫ− ǫ1)
p

∫ r0

0

χLǫ,δ(f)(r)
dr

r
≤

∫ r0

0

(

rδ
∫

∂Dr

|f1|dσr

)p
dr

r

= ‖f‖p1,p,δ < ∞,

which contradicts (4). Hence we proved s1(f) ≤ s2(f).

Next we prove s2(f) ≤ Cs1(f). Let us choose f ∈ A1,∞
δ and fix an ǫ > 0

such that the integral appearing in (3) is finite. Since A1,∞
δ →֒ A1

δ, we can use
integral representation (1) for function f :

f(z) =

∫

D

f(ζ)K(z, ζ)ρt(ζ)χLǫ,δ(f)(ρ(ζ))dV (ζ)

+

∫

D

f(ζ)K(z, ζ)ρt(ζ)[1 − χLǫ,δ(f)(ρ(ζ))]dV (ζ)

= f1(z) + f2(z).

The proof will be completed once we show the following two estimates:

(6) ‖f1‖1,p,δ ≤ C‖f‖1,∞,δ,

(7) ‖f2‖1,∞,δ ≤ Cǫ.

Since, by Proposition 2, we have ‖f1‖1,p,δ ≤ C‖f1‖1,1,δ it suffices, in proving
estimate (6), to assume p = 1. Set L = Lǫ,δ(f). We have, using Lemma 2 and
Fubini’s theorem:

‖f1‖1,1,δ =

∫ r0

0

(∫

∂Dr

|f1(z)|dσr(z)

)

rδ−1dr

≤

∫ r0

0

(∫

∂Dr

(∫

D

|f(ζ)K(z, ζ)ρt(ζ)χL(ρ(ζ))|dV (ζ)

)

dσr(z)

)

rδ−1dr

=

∫

D

|f(ζ)|ρt(ζ)χL(ρ(ζ))

∫ r0

0

∫

∂Dr

|K(z, ζ)|dσr(z)r
δ−1drdV (ζ)

≤ C

∫

D

|f(ζ)|ρt(ζ)χL(ρ(ζ))

∫

D

|K(z, ζ)|ρδ−1dV (z)dV (ζ)

≤ C

∫

D

|f(ζ)|ρδ(ζ)χL(ρ(ζ))dV (ζ)

≤ C‖f‖1,∞,δ

∫ r0

0

χL(r)
dr

r

≤ Cǫ‖f‖1,∞,δ.
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Next we prove estimate (7). For 0 < r < r0 we have, using Fubini’s theorem,
Lemma 2 and definition of the set L = Lǫ,δ:

rδ
∫

∂Dr

|f2(z)|dσr(z)

≤ rδ
∫

∂Dr

∫

D

|f(ζ)K(z, ζ)|ρt(ζ)[1 − χL(ρ(ζ))]dV (ζ)dσr(z)

= rδ
∫

D

|f(ζ)|ρt(ζ)[1 − χL(ρ(ζ))]

∫

∂Dr

|K(z, ζ)|dσr(z)dV (ζ)

≤ Crδ
∫

D

|f(ζ)|ρt(ζ)(r + ρ(ζ))−t−1[1− χL(ρ(ζ))]dV (ζ)

≤ Crδ
∫ r0

0

∫

∂DR

|f(ζ)|
Rt

(r +R)t+1
[1− χL(R)]dσR(ζ)dR

≤ Cǫrδ
∫ r0

0

Rt−δ

(r +R)t+1
dR

≤ Cǫ,

and the proof is complete. �

The next theorem complements the previous one, it deals with the case
0 < p ≤ 1.

Theorem 3. Let 0 < p ≤ 1, δ > 0, t > δ − 1 and f ∈ A1,∞
δ . Set

(8) s̃1(f) = distA1,∞

δ
(f,A1,p

δ )

and

(9) s̃2(f) = inf

{

ǫ > 0 :

∫ 1

0

(∫ 1

0

χLǫ,δ(f)(r)
rt−δdr

(r + ρ)t+1

)p

ρpδ−1dρ < ∞

}

.

Then s̃1(f) ≍ s̃2(f).

Proof. We rely on the method used in [20] to prove an analogous result in the
one dimensional setting. Inequality s̃2(f) ≤ s̃1(f) is proved by a standard
argument, as in the previous theorem. Let us prove the estimate s̃1(f) ≤

Cs̃2(f). We choose f ∈ A1,∞
δ and ǫ > 0 such that the integral in (9) is finite.

Set L = Lǫ,δ(f) and use the same decomposition f(z) = f1(z)+ f2(z) as in the
proof of Theorem 2. Again we have to prove estimates (6) and (7).

We fix 0 < R < r0 and obtain, for z ∈ ∂DR:

|f2(z)| ≤ C

∫ r0

0

[1− χL(r)]

∫

∂Dr

|f(ζ)||K(z, ζ)|dσrdr.

Integration over ∂DR yields, with help of Lemma 2 and Fubini’s theorem:
∫

∂DR

|f2(z)|dσR(z)
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≤ C

∫ r0

0

[1− χL(r)]r
t

∫

∂Dr

|f(ζ)|

∫

∂DR

|K(z, ζ)|dσR(z)dσrdr

≤

∫ r0

0

[1− χL(r)]r
t

∫

∂Dr

|f(ζ)|

(R + r)t+1
dσrdr

≤ ǫ

∫ r0

0

rt−δ

(R+ r)t+1

≤ CǫR−δ,

where we also used definition of the set L = Lǫ,δ(f). This proves estimate (7).
Finally we prove (6), again using Fubini’s theorem and Lemma 2:

‖f1‖
p
1,p,δ

=

∫ r0

0

rδp−1

(∫

∂Dr

|f1|dσr

)p

dr

≤ C

∫ r0

0

rδp−1

(
∫

∂Dr

∫

D

χL(ρ(ζ))ρ(ζ)
t |f(ζ)||K(z, ζ)|dV (ζ)dσr

)p

dr

≤ C

∫ r0

0

(
∫ r0

0

χL(R)Rt

∫

∂DR

|f(ζ)|

∫

∂Dr

|K(z, ζ)|dσr(z)dσr(ζ)dR

)p

dr

≤ C

∫ r0

0

rδp−1

(∫ r0

0

χL(R)Rt(r +R)−t−1

∫

∂DR

|f(ζ)|dσR(ζ)dR

)p

dr

≤ C‖f‖p1,∞,δ

∫ r0

0

(∫ r0

0

χL(R)
Rt−δ

(R+ r)t+1
dR

)p

rδp−1dr

≤ Cǫ‖f‖
p
1,∞,δ. �

Proposition 3. If 0 < p < ∞ and δ > 0, then A∞,p
δ →֒ A∞

δ .

This is a well known result, a simple proof can be based on monotonicity of
M∞(f, r) = sup∂Dr

|f | on r ∈ (0, r0).
Again, in order to formulate the corresponding distance result we need the

following notation:

L̃ǫ,δ(f) =

{

0 < r < r0 : rδ sup
∂Dr

|f | ≥ ǫ

}

.

Theorem 4. Let δ > 0, 1 ≤ p < ∞ and f ∈ A∞
δ . Set

(10) l1(f) = distA∞

δ
(f,A∞,p

δ )

and

(11) l2(f) = inf

{

ǫ > 0 :

∫ r0

0

χL̃ǫ,δ(f)
(r)

dr

r
< ∞

}

.

Then l1(f) ≍ l2(f).
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Proof. Let us assume l1(f) < l2(f). Then there are 0 < ǫ1 < ǫ and f1 ∈ A∞,p
δ

such that ‖f − f1‖A∞

δ
≤ ǫ1 and

(12)

∫ 1

0

χL̃ǫ,δ(f)
(r)

dr

r
= ∞.

Next we obtain, using ‖f − f1‖A∞

δ
≤ ǫ1 the following inequality:

rδ|f1(z)| = |rδf(z)− rδ[f(z)− f1(z)]| ≥ rδ|f(z)| − ǫ, z ∈ ∂Dr.

Hence, for r ∈ L̃ǫ,δ(f) we have

rδ sup
∂Dr

|f1| ≥ rδ sup
∂Dr

|f | − ǫ1 ≥ ǫ− ǫ1,

or, equivalently,

χL̃ǫ,δ(f)
(r) ≤

rδ sup∂Dr
|f1|

ǫ− ǫ1
.

But this combined with (12) leads to a contradiction with f1 ∈ A∞,p
δ : it suffices

to raise both sides of the above inequality to p-th power and integrate over
0 < r < r0 with respect to the measure dr/r.

Next we prove l2(f) ≤ Cl1(f). We fix f ∈ A∞
δ and choose ǫ > 0 such

that the integral appearing in (11) is finite. Since A∞
δ →֒ A1

δ, we can use
representation formula (1) as in the proof of Theorem 2:

f(z) =

∫

D

f(ζ)K(z, ζ)ρt(ζ)χL̃ǫ,δ(f)
(ρ(ζ))dV (ζ)

+

∫

D

f(ζ)K(z, ζ)ρt(ζ)[1 − χL̃ǫ,δ(f)
(ρ(ζ))]dV (ζ)

= f1(z) + f2(z).

Again, it suffices to prove the following two estimates:

(13) ‖f2‖A∞

δ
≤ Cǫ,

and

(14) ‖f1‖A∞,p

δ
≤ C‖f‖A∞

δ
.

Let us choose z ∈ ∂Dr, 0 < r < r0. Set L̃ = L̃ǫ,δ(f). Then we have, using
Fubini’s theorem and Lemma 2:

|f2(z)| ≤

∫

D

|f(ζ)K(z, ζ)|ρt(ζ)[1 − χL̃(ρ(ζ))]dV (ζ)

≤ C

∫ r0

0

∫

∂DR

|f(ζ)K(z, ζ)|Rt[1− χL̃(R)]dσR(ζ)dR

≤ ǫC

∫ r0

0

Rt−δ

∫

∂DR

|K(z, ζ)|dσRdR

≤ ǫC

∫ r0

0

Rt−δ

(r +R)t+1
dR
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≤ Cǫr−δ,

which proves estimate (13).

Due to embedding A∞,1
δ →֒ A∞,p

δ , p ≥ 1, in proving estimate (14) we can
assume that p = 1. Let us fix an 0 < R < r0 and z ∈ ∂DR. Using Fubini’s
theorem and Lemma 2 we obtain:

|f1(z)| ≤ C

∫ r0

0

∫

∂Dr

|f(ζ)||K(z, ζ)|dσr(ζ)r
tχL̃(R)dr

≤ C‖f‖A∞

δ

∫ r0

0

∫

∂Dr

|K(z, ζ)|dσr(ζ)r
t−δχL̃(r)dr

≤ C‖f‖A∞

δ

∫ r0

0

χL̃(r)dr

(R + r)δ+1
.

Hence we proved that

sup
z∈∂DR

|f1(z)| ≤ C‖f‖A∞

δ

∫ r0

0

χL̃(r)dr

(R + r)δ+1
.

Another application of Fubini’s theorem gives

‖f1‖A∞,1

δ
≤ C‖f‖A∞

δ

∫ r0

0

∫ r0

0

χL̃(r)dr

(R+ r)δ+1
Rδ−1dR

≤ C‖f‖A∞

δ

∫ r0

0

χL̃(r)
dr

r
,

and the proof is complete. �

Let us add two one-sided estimates of distances, both of them follow easily
from sharp results on distances from [18] and embedding results from [14], in
particular Corollary 2.8. Let us set, for ǫ > 0 and s > −1:

Ωǫ,s = Ωǫ,s(f) = {z ∈ D : |f(z)|ρ(z)s ≥ ǫ} .

Proposition 4. Let 0 < p ≤ q ≤ 1, sq > n, t0 = s+n+1
q and f ∈ A∞

s (D). Set

ω1 = distA∞

s
(f,Aq,p

sq−n)

and

ω2=inf

{

ǫ>0 :

∫

D

(

∫

Ωǫ,s

|K(z, ζ)|ρt−s(ζ)dV (ζ)

)q

ρ(z)sq−n−1(z)dV (z)<∞

}

,

where K is a Bergman kernel of type t, t > t0. Then ω2 ≤ Cω1.

Proposition 5. Let q > 1, p ≤ q ≤ ∞, sq > n and t0 = max(s, s+n+1
q ). Set,

for f ∈ A∞
s (D):

w1 = distA∞

s
(f,Aq,p

sq−n)

and

w2=inf

{

ǫ>0 :

∫

D

(

∫

Ωǫ,s

|K(z, ζ)|ρt−s(ζ)dV (ζ)

)q

ρ(z)sq−n−1(z)dV (z)<∞

}

,
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where K is a Bergman kernel of type t, t > t0. Then w2 ≤ Cw1.

We note that Aq,p
sq−n = Aq,p

sq−n+mq,mq , see [14].

3. Atomic decompositions and embeddings in multifunctional
spaces

In this section we obtain embedding results for multifunctional spaces and, as
corollaries, atomic decomposition results for such spaces. We need the following
lemma which is contained in Corollary 3.5 from [3].

Lemma 4 ([3]). Let 0 < p ≤ 1, s > −1, r > 0 and t = p(s+ n+ 1)− (n+ 1).
Then we have

∣

∣

∣

∣

∫

D

|f(ξ)||Φ̃(z, ξ)|rd(ξ)sdV (ξ)

∣

∣

∣

∣

p

≤ C

∫

D

|f(ξ)|p|Φ̃(z, ξ)|rpd(ξ)tdV (ξ).

Clearly this lemma is also valid if |Φ̃|r is replaced by K, where K is a kernel
of type r > 0. Also, d can be replaced by ρ since d(ξ) ≍ ρ(ξ).

Theorem 5. Let p̃ = (p, . . . , p) where 0 < p < ∞, βj ∈ R, αj > −1 and

fj ∈ H(D) for 1 ≤ j ≤ m. Assume (f1, . . . , fm) ∈ MAp̃,α̃(D),
∑m

j=1 βj > −1
and the following representation holds:

(15) f1(z1) · · · fm(zm) = C

∫

D

ρ(z)
1
m

∑m
j=1

βj

m
∏

j=1

fj(z)Kj(z, zj)dV (z),

for all zj ∈ D, 1 ≤ j ≤ m, where Kj is a kernel of type
n+1+βj

m − n − 1,

1 ≤ j ≤ m, holomorphic in z ∈ D. Set β = 1
m

∑m
j=1 βj. We also assume that

minjβj > m(n+ 1 +max
j

αj)/p− (n+ 1) for 0 < p ≤ 1,

minjβj > m(n+ 1 +max
j

αj)/p+ (β + n+ 1)/q − (n+ 1) for p > 1,

where q is the exponent conjugate to p. Then we have the following estimate:

(16)

m
∏

j=1

‖fj‖
p
Ap

αj

≤ C(f1, . . . , fm)p̃,α̃.

Proof. Let us assume 0 < p ≤ 1. We apply Lemma 4 to an analytic function
f(z) = f1(z) · · · fm(z) that appears in (15) and obtain:

m
∏

k=1

|fk(zk)|
p ≤ C

∫

D

m
∏

k=1

|fk(z)|
p|Kk(z, zk)|

pρτ (z)dV (z),

where τ = p(β + n+ 1)− (n+ 1). This estimate and Fubini’s theorem give

m
∏

k=1

∫

D

|fk(zk)|
pραk(zk)dV (zk)
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=

∫

D

· · ·

∫

D

m
∏

k=1

|fk(zk)|
p

m
∏

k=1

ραk(zk)dV (z1) · · · dV (zm)

≤ C

∫

D

· · ·

∫

D

∫

D

m
∏

k=1

|fk(z)|
p|Kk(z, zk)|

pρτ (z)dV (z)
m
∏

k=1

ραk(zk)dV (z1) · · · dV (zm)

= C

∫

D

m
∏

k=1

|fk(z)|
pρτ (z)

∫

D

· · ·

∫

D

|Kk(z, zk)|
p

m
∏

k=1

ραk(zk)dV (z1) · · · dV (zm)dV (z).

Note that |Kk(z, zk)|p is a kernel of type p(n+1+βk)
m − n − 1, therefore m-fold

application of Lemma 2 gives

m
∏

k=1

∫

D

|fk(zk)|
pραk(zk)dV (zk) ≤

∫

D

m
∏

k=1

|fk(z)|
pρ(m−1)(n+1)+

∑m
k=1

αk(z)dV (z),

which is (16).
Now we consider the case 1 < p < ∞. We again have, using assumption

(15) and Fubini’s theorem:

m
∏

k=1

∫

D

|fk(zk)|
pραk(zk)dV (zk)

=

∫

D

· · ·

∫

D

m
∏

k=1

|fk(zk)|
p

m
∏

k=1

ραk(zk)dV (z1) · · · dV (zm)

≤ C

m
∏

k=1

∫

D

|fk(zk)|
pραk(zk)dV (zk)

≤ C

∫

D

· · ·

∫

D

Ip(z1, . . . , zm)

m
∏

k=1

ραk(zk)dV (z1) · · · dV (zm),

where

I(z1, . . . , zm) =

∫

D

m
∏

k=1

|fk(z)|
m
∏

k=1

|Kk(z, zk)|ρ
β(z)dV (z), z1, . . . , zm ∈ D.

Let us set λk + µk = 1, 1 ≤ k ≤ m, where positive numbers λk and µk will
be chosen later. Using Holder inequality we get:

Ip(z1, . . . , zm) ≤

(

∫

D

m
∏

k=1

|Kqµk

k (z, zk)|ρ
β(z)dV (z)

)p/q

∫

D

m
∏

k=1

|fk(z)|
p

m
∏

k=1

|Kpλk

k (z, zk)|ρ
β(z)dV (z).
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Applying again Holder inequality form functions we obtain with help of Lemma
2:
∫

D

m
∏

k=1

|Kqµk

k (z, zk)|ρ
β(z)dV (z) ≤

m
∏

k=1

(∫

D

|Kmqµk

k (z, zk)|ρ
β(z)dV (z)

)1/m

≤ C
m
∏

k=1

ρ
n+1+β

m
−qµk

n+1+βk
m (zk).

Note that conditions n+1+β < qµk(n+1+βk), 1 ≤ k ≤ m, ensure applicability
of Lemma 2. Let us set

νk =
p

m

(

n+ 1 + β

q
− µk(n+ 1 + βk)

)

, k = 1, . . . ,m.

We combine the above estimates and use m times Lemma 2:
m
∏

k=1

∫

D

|fk(zk)|
pραk(zk)dV (zk)

≤ C

∫

D

· · ·

∫

D

m
∏

k=1

ρ(zk)
αk+νk

∫

D

m
∏

k=1

|fk(z)|
p

m
∏

k=1

|Kpλk

k (z, zk)|ρ
β(z)dV (z)

dV (z1) · · · dV (zm)

≤ C

∫

D

m
∏

k=1

|fk(z)|
pρ(z)θdV (z),

where

θ = β +

m
∑

k=1

(

αk + (n+ 1) + νk − pλk
n+1+βk

m

)

= β +

m
∑

k=1

(

αk + p
m

(

n+1+β
q − µk(n+ 1 + βk)

)

− pλk
n+1+βk

m + n+ 1
)

=

m
∑

k=1

αk,

as required. It is easily seen that all the applications of Lemma 2 can be
justified by a judicious choice of λk and µk. �

It is natural question to ask if an analogue of the estimate (16) is valid for
general p̃ = (p1, . . . , pm).

Using Theorem 1 we immediately obtain the first part of the following corol-
lary.

Corollary 1. Assume, in addition to the assumptions of Theorem 5, that none

of the functions fj is identically zero and assume

b >
nmax(p, 1) + maxαk + 1

p
.
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Let Kb,k be the Bergman kernel of type b for Ap
αk

. Then there is a sequence aj
of points in D such that each of the functions fk admits atomic decomposition:

(17) fk(z) =

∞
∑

j=1

c
(k)
j Kb,k(z, aj), k = 1, . . . ,m.

Moreover, ‖c(k)‖lp ≍ ‖fk‖Ap
αk
.

Conversely, if each of the functions f1, . . . , fm has representation as in (17),
then we have:

(f1, . . . , fm)p̃,α̃ ≤ C

m
∏

j=1

‖fj‖
p
Ap

αj

.

Proof. We prove the second statement by induction on m. The m = 1 case
follows from [14], Theorem 4.1. Let us assume the statement is true for m− 1
functions. Using the following well known estimate:

|f(z)| ≤ C‖f‖Ap
α
d(z)−

n+1+α
p , z ∈ D,

valid for α > −1 and 0 < p < ∞ we obtain, using inductive hypothesis, the
following estimate:

(f1, . . . , fm)pp̃,α̃ =

∫

D

∣

∣

∣

∣

∣

m
∏

k=1

fk(z)

∣

∣

∣

∣

∣

p

ρ(z)(m−1)(n+1)+
∑m

j=1
αjdV (z)

≤ C sup
z∈D

|fm(z)|pd(z)n+1+αm

∫

D

∣

∣

∣

∣

∣

m−1
∏

k=1

fk(z)

∣

∣

∣

∣

∣

p

ρ(z)(m−2)(n+1)+
∑m−1

j=1
αjdV (z)

≤ C‖fm‖p
Ap

αm

m−1
∏

k=1

‖fk‖
p
Ap

αk

.
�

Note that the above corollary is a direct generalization of Theorem 1 to the
multifunctional weighted Bergman space case.

Now we turn to atomic decomposition of multifunctional Bloch space.
Lemma 6 below is, in the case D = Bn ⊂ Cn contained in [11] and, for strictly
pseudoconvex domains but without logarithmic factor, in [1].

Lemma 5. Let α ≥ 0, t > s > 0 and A > 0. Then
∫ A

0

∫

R

(r + x+ |y|)−t−2xs logα
A

x
dydx ≤ Crs−t logα

A

r
, r > 0.

Proof. We integrate at first with respect to y ∈ R and obtain

I(A,α, t, s) =

∫ A

0

∫

R

(r + x+ |y|)−t−2xs logα
A

x
dydx
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≤ C

∫ A

0

(r + x)−t−1xs logα
A

x
dx

= Crs−t logα
A

r

∫ A/r

0

us

(1 + u)t+1

(

1 +
log A

u

log A
r

)α

du

≤ Crs−t logα
A

r

∫ ∞

0

us

(1 + u)t+1

(

1 + log
A

u

)α

du

= Crs−t logα
A

r
.

�

Lemma 6. Let K be a kernel of type t and let 0 < s < t. Set D0 = diam(D).
Then, for every k ∈ N we have the following estimate:

(18)

∫

D

|K(z, η)||d(η)s logk
D0

d(η)
dV (η) ≤

C

d(z)t−s
logk

D0

d(z)
, z ∈ D.

Proof. We follow the method used to prove Theorem 2.7 from [1], which is
closely related to arguments from [6] and we refer the reader to these two
papers for more details. First, for every z0 ∈ ∂D there is a neighborhood U of
z0 and a complex coordinate system φ = (φ1, . . . , φn) : U → Cn such that
(19)

|K(z, w)| ≤ C

(

ρ(z) + ρ(w) + |φ1(z)− φ1(w)|+
n
∑

k=2

|φk(z)− φk(w)|
2

)−(n+1+t)

for all z, w ∈ U . Using a standard compactness argument and smoothness of
the kernel K in both variables inside D, we can localize our problem near z0,
i.e., it suffices to prove that

(20)

∫

U∩D

|K(z, η)||d(η)s logk
D0

d(η)
dV (η) ≤

C

d(z)t−s
logk

D0

d(z)
.

Set Ũ = φ(U ∩ D). We use the coordinate system φ = (φ1, . . . , φn) in the
change of variables formula and (19) to obtain

∫

U∩D

|K(z, η)||d(η)s logk
D0

d(η)
dV (η)

≤ C

∫

U∩D

(

ρ(z) + ρ(η) + |φ1(z)− φ1(η)|+
n
∑

k=2

|φk(z)− φk(η)|
2

)−(n+1+t)

d(η)s logk
D0

d(η)
dV (η)

≤ C

∫

Ũ

(

ρ(z) + ρ̃(η) + |z1 − η1|+
n
∑

k=2

|zk − ηk|
2

)−n−1−t

d(η)s logk
D0

d(η)
dV (η),
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where ρ̃ = ρ ◦ φ−1. Using another change of variables, see [1], one estimates
the last integral by a constant multiple of

I =

∫

W

(

ρ(z) + x+ |y|+
n
∑

k=2

|wk|
2

)−(n+1+t)

xs logk
D0

x
dw2 · · · dwndxdy,

where W = [0, d0] × R × Cn−1. Using arguments from [1] and the previous
lemma one arrives at the desired estimate (18). �

Theorem 6. Let fk ∈ H(D), 1 ≤ k ≤ m, assume none of the functions fj is

identically zero in D and (f1, . . . , fm)MB(m) < ∞.

a) Assume there are constants βi,j > 0 and kernels Ki,j(ζ, z) of type
n+1+βi,j

m
−n − 1, 1 ≤ i, j ≤ m such that for all i = 1, . . . ,m we have an integral

representation:

(21)

∇fi(zi)
∏

j 6=i

fj(zj)

= Ci





∫

D

∇(f1 . . . fm)(z)ρ(z)
1
m

∑m
j=1

βi,j

m
∏

j=1

Kij(zj , z)dV (z)





m

,

where zj ∈ D for j = 1, . . . ,m. Then we have fj ∈ B(D) for each 1 ≤ j ≤ m.

b) Assume there are constants βi,j> 0 and kernels Ki,j(ζ, z) of type
n+m+βi,j

m
−n − 1, 1 ≤ i, j ≤ m such that for all i = 1, . . . ,m we have an integral

representation:
(22)

∇fi(zi)
∏

j 6=i

fj(zj) = Ci

∫

D

∇(f1 . . . fm)(z)ρ(z)
1
m

∑m
j=1

βi,j

m
∏

j=1

Kij(zj , z)dV (z),

where zj ∈ D for j = 1, . . . ,m. Then we have fj ∈ B(D) for each 1 ≤ j ≤ m.

We note that conditions (21) and (22) coincide for m = 1 and are satisfied
for any f ∈ B. Indeed, if f ∈ B(D), then ∇f ∈ A∞

1 (D) →֒ A1
1(D) and we can

use the Bergman representation formula for ∇f .

Proof. Let us prove that f1 ∈ B, under assumptions in a). Using (21) we
immediately obtain:

|∇f1(z1)|
n
∏

j=2

|fj(zj)|

≤ C(f1, . . . , fm)mMB

(

∫

D

logm−1 D0

d(z)
d(z)−1+

∑m
j=1

β1,j

m
∏

j=1

|K1,j(zj , z)|dV (z)

)m

.
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Using Hölder inequality for m functions and the previous lemma we obtain:

∣

∣

∣

∣

∣

∣

∇f1(z1)

m
∏

j=2

fj(zj)

∣

∣

∣

∣

∣

∣

1/m

≤ C

(∫

D

|K1,1(z, z1)|
md(z)β1,1−1dV (z)

)1/m

m
∏

j=2

(∫

D

logm
D0

d(z)
d(z)β1,j−1|K1,j(z, zj)|

mdV (z)

)1/m

≤ Cd(z1)
−1/m

m
∏

j=2

d(zj)
−1/m log

D0

d(zj)
,

and this clearly gives |∇f1(w)| ≤ Cd(w)−1, and therefore f1 ∈ B. Similarly
one proves fj ∈ B for all j ≥ 2.

Next, let us prove f1 ∈ B assuming (22). Now we have, using Fubini’s
theorem:

|∇f1(z1)|
n
∏

j=2

|fj(zj)|

≤ C(f1, . . . , fm)MB

∫

D

logm−1 D0

d(z)
d(z)−1+

∑m
j=1

β1,j

m
∏

j=1

|K1,j(zj , z)|dV (z)

≤ C

(
∫

D

|K1,1(z, z1)|
md(z)β1,1−1dV (z)

)1/m

m
∏

j=2

(∫

D

logm
D0

d(z)
d(z)β1,j−1|K1,j(z, zj)|

mdV (z)

)1/m

≤ Cd(z1)

m
∏

j=2

d(zj) log
D0

d(zj)
,

and this, as in part a), suffices. �

Atomic decomposition of B(D) was obtained in [5]. The first part of the
following corollary generalizes this result to the multifunctional Bloch space on
D and, moreover, follows immediately from it, in view of the above embedding
theorem.

Corollary 2. Assume, in addition to the assumptions of the above theorem,

that b > n and that {al,j} is an η0-η1 lattice in D. Then for every k = 1, . . . ,m
there is a bounded double sequence {ckl,j} such that

(23) fk(z) =
∑

l,j

ckl,j
d(akl,j)

b

K(akl,j, z)
, z ∈ D, 1 ≤ k ≤ m,
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where K is a kernel of type b − n − 1. Conversely, if fk ∈ H(D), 1 ≤ k ≤ m,

and every fk admits representation as in (23), with a bounded double sequence

{ckl,j}, then (f1, . . . , fm)MB(m) < ∞.

Proof. Let us prove the second statement. We have fk ∈ B for all k = 1, . . . ,m
and therefore we have the following growth estimate:

|fk(z)| ≤ C‖fk‖B log d(z)−1

for 0 < d(z) < 1. Hence

(f1, . . . , fm)MB(m) = sup
z∈D

|∇(f1 . . . fm)(z)|d(z) log1−m 1

d(z)

≤ C sup
z∈D

m
∑

k=1

|∇fk(z)|
∏

j 6=k

|fj(z)| log
1−m 1

d(z)

≤ C

m
∏

k=1

‖fk‖B.
�
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