Journal of Environmental Science International 24(1); 65~71; January 2015

ORIGINAL ARTICLE

활성탄 흡착공정에서의 요오드계 트리할로메탄 흡착 특성

손희종^{*} · 염훈식 · 김경아 · 송미정 · 류동춘

부산광역시 상수도사업본부 수질연구소

Adsorption Characteristics of Iodo-Trihalomethanes (I-THMs) in Granular Activated Carbon (GAC) Adsorption Process

Hee–Jong Son^{*}, Hoon–Sik Yoom, Kyung–A Kim, Mi–Jung Song, Dong–Choon Ryu, *Water Quality Institute, Busan Water Authority, Gimhae* 621-813, Korea

Abstract

This study accessed the adsorption characteristics of the 9 trihalomethanes (THMs) on coal-based granular activated carbon (GAC). The breakthrough appeared first for CHCl₃ and sequentially for CHBr₂Cl, CHBr₃, CHCl₂I, CHBrClI, CHBr₂I, CHClI₂, CHBrI₂, and CHI₃. The maximum adsorption capacity (X/M) for the 9 THMs with apparent breakthrough points ranged from 1,175 μ g/g (for CHCl₃) to 11,087 μ g/g (for CHI₃). Carbon usage rate (CUR) for CHCl₃ was 0.149 g/day, 5.5 times higher than for CHI₃ (0.027 g/day).

Key words : Iodo-Trihalomethanes (I-THMs), Disinfection By-Products (DBPs), Granualr Activated Carbon (GAC), Adsorption.

1. 서 론

정수처리 공정에서 소독 및 살균의 목적으로 사용되는 염소는 발암성 및 돌연변이성을 나타내는 다양한 소 독부산물들을 생성시킨다. 특히, 트리할로메탄류(trihalo -methanes, THMs)는 할로아세틱엑시드류(haloacetic acids, HAAs)나 할로아세트니트릴류(haloacetonitriles, HANs)에 비해 비교적 높은 농도로 생성되며, 이들은 활 성탄 흡착이나 생물분해와 같은 정수처리 공정에서 쉽게 제거하기 어려운 물질들이다(Son 등, 2005).

최근에는 요오드계 THMs (I-THMs)에 대한 관심이 고조되고 있다. I-THMs는 요오드 이온(I)이 함유된 물 을 염소 또는 오존처리시 생성이 되며(Bichsel과 von Gunten, 2000; Hua 등, 2006), 염소계나 브롬계 THMs 보다 생체독성과 발암성이 강한 것으로 알려져 있다 (Plewa 등, 2004; Richardson 등, 2008). 특히, iodoform 이 함유된 물은 심한 약품취를 유발하여 먹는물에 대한 불신을 초래한다(Hansson 등, 1987). I-THMs의 역취농 도 범위는 물질별로 0.03~8.9 µg/L 정도로 알려져 있으 며, iodoform의 역취농도가 가장 낮아서 미량의 iodoform이 함유된 물에서도 약품취를 유발한다 (Cancho 등, 2001).

I-THMs의 생성기작은 수중의 요오드 이온(Г)이 염소 나 오존과 같은 산화제와 중성 pH 부근에서 반응하면

Received 13 November, 2014; Revised 10 December, 2014; Accepted 15 December, 2014

^{*}Coresponding author : Hee-Jong Son, Water Quality Institute, Busan Water Authority, Gimhae 621-813, Korea Phone: ???

E-mail: ???

The Korean Environmental Sciences Society. All rights reserved.
 This is an Open-Access article distributed under the terms of the
 Creative Commons Attribution Non-Commercial License (http://
 creativecommons.org/licenses/by-nc/3.0) which permits unrestricted
 non-commercial use, distribution, and reproduction in any medium,
 provided the original work is properly cited.

hypoiodous (HOI)가 생성되며, 생성된 HOI는 수중에 존재하는 천연유기물질(natural organic matter, NOM) 등과 같은 유기물질과 반응하여 I-THMs와 같은 요오드 계 소독부산물을 생성한다(Bichsel과 von Gunten, 2000). 특히, I-THMs의 경우는 암모니아성 질소가 존재 하는 물에 염소소독을 할 경우 클로라민이 생성되어 I-THMs의 생성농도가 급격히 증가하는 것으로 알려져 있으며(Hua와 Reckhow, 2007; Krasner 등, 2006), 수 중의 요오드 이온농도가 0.4 μg/L 이상에서 I-THMs가 발생되는 것으로 보고되었다(Richardson 등, 2008).

최근에는 분석기술의 발달로 인해 수돗물에서의 I-THMs 검출에 대한 연구결과들이 증가하고 있으며, 영 국의 수돗물에서 두 종(CHCl₂I와 CHBrClI)의 I-THMs 에 대해 모니터링한 연구결과에서는 하절기에 가장 높은 3.7 µg/L로 검출되었다고 보고하고 있으며(Goslan 등, 2009), 미국의 경우는 I-THMs 6종에 대해 최대 검출농 도가 19 µg/L로 보고되었다(Krasner 등, 2006).

THMs류들은 저분자 난분해성 물질들이기 때문에 응집-침전-여과공정과 같은 재래식(conventional) 정수 처리공정에서는 제거가 어렵다(Son 등, 2005). 따라서 고도(advanced) 정수처리공정의 일종인 입상활성탄 (granular activated carbon, GAC) 흡착이 정수처리 공 정에서의 유일한 THMs류들의 제거 메케니즘으로 보고 되고 있다(Son 등, 2005).

본 연구에서는 GAC 흡착공정에서 6종의 I-THMs류 의 흡착 특성을 평가하기 위해 실험실 스케일의 활성탄 흡착컬럼을 이용하여 정수장과 동일한 수질 및 운전조건

Lable Ly I hybred energies properties of y I him	Table 1.	Physico-chemica	al properties	of 9	THMs
---	----------	-----------------	---------------	------	------

에서 활성탄의 최대흡착량(X/M)과 활성탄 사용율 (carbon usage rate, CUR) 등을 구하였으며, 법적으로 규제대상인 4종의 THMs (regulated-THMs, R-THMs) 과 6종의 I-THMs와의 흡착 특성도 함께 비교하여 정수 장의 활성탄 흡착공정의 설계 및 운전에 기초자료로 활 용하고자 하였다.

2. 실험재료 및 방법

2.1. 실험재료

2.1.1. I-THMs 및 활성탄

실험에 사용된 I-THMs 6종은 iodoform (CHI₃), bromodiiodomethane (CHBrI₂), bromochloroiodomethane (CHBrI), chlorodiiodomethane (CHCI₂), dibromoiodomethane (CHBr₂I) 및 dichloroiodomethane (CHCl₂I)은 Orchid Cellmark사(Canada)에서 구입하였다. 또한, 법적으로 규제되는 THMs (regulated THMs, R-THMs)와I-THMs 와의 활성탄에서의 흡착능을 비교·평가하기 위하여 chloroform (CHCl₃), dibromochloromethane (CHBr₂Cl) 및 bromoform (CHBr₃)을 Sigma-Aldrich사(USA)에 서 구입하여 실험에 사용하였다.

I-THMs 6종과 R-THMs 3종의 흡착실험에 사용된 활성탄은 석탄계 재질의 F-400 (Calgon, USA) 신탄을 사용하였다. 실험에 사용된 F-400의 비표면적(specific surface area)은 1070 m²/g이었으며, 총 세공용적(total pore volume)은 0.61 cm³/g이었다.

Compound	CAS No.	M.W.	$\log K_{w}$
CHCl ₃	67-66-3	119.4	1.97 ^a
CHBr ₂ Cl	124-48-1	208.3	2.23 ^b
CHBr ₃	75-25-2	252.7	2.37 ^b
CHCl ₂ I	594-04-7	210.8	2.78 ^c
CHBrClI	34970-00-8	254	2.99 ^c
CHBr ₂ I	593-94-2	299.7	3.20 ^c
CHClI ₂	638-73-3	302.3	3.31 ^c
CHBrI ₂	557-95-9	346.7	3.52 ^c
CHI ₃	75-47-8	393.7	3.83 ^c
$^{\rm a}$ WHO, 2004; $^{\rm b}$ US EPA, 2005; $^{\rm c}$ Canch	o et al., 2001		

Parameter	pH (-)	Turbidity (NTU)	DOC (mg/L)	Temp. (°C)
Value	6.7-7.5	0.04~0.08	1.24~1.52	13~24

2.1.2. 유입수

유입수는 전염소 처리가 배제된 300 m³/일 처리규모 의 파일롯트 플랜트의 후오존 처리수를 사용하였으며, 후오존 처리수에 9종의 THMs를 각각 80 µg/L의 농도 로 희석하여 실험에 사용하였다. 후오존 처리수를 유입 수로 사용한 이유는 실제 정수장의 활성탄 흡착지와 동 일한 수질 조건을 만들기 위해서이며, 실험기간 동안 유 입수로 사용된 후오존 처리수의 성상을 Table 2에 나타 내었다.

2.2. 실험방법

2.2.1. 흡착컬럼의 운전

실험에 사용된 흡착컬럼은 내경 20 mm의 아크릴 재 질로 컬럼 내부에 활성탄 신탄을 40 mL 충진한 후 정량 펌프로 흡착컬럼으로 유입되는 유량을 4 mL/min으로 조절하여 공탑 체류시간(empty bed contact time, EBCT)이 10분이 되도록 운전하였다. 또한, 수류흐름은 하향류식으로 운전하였고, 역세척은 주 1회 실시하였다. 흡착컬럼 세트의 모식도를 Fig. 1에 나타내었다.

Fig. 1. Schematic diagram of adsorption column system.

2.2.2. I-THMs 분석(Son 등, 2014)

I-THMs 6종을 포함한 9종의 THMs 분석은 headspace (HS) 전처리 장치(7697A headspace sampler, Agilent, USA)가 부착된 GC/ECD (7890A, Agilent, USA)를 사용하였으며, 9종의 THMs 분석을 위한 기본 적인 GC/ECD 조건을 Table 3에 나타내었다. 실험에 사 용된 GC/ECD에 장착된 컬럼은 HP-5MS (Agilent, 30 m (L) × 0.25 mm (ID) × 0.25 μm (film thickness))를 사용하였다.

3. 결과 및 고찰

3.1. 9종의 THMs 파과 특성

석탄계 재질의 신탄(F-400)에서의 THMs 9에 대한 파과 특성을 Fig. 2에 나타내었다. Fig. 2에 나타난 바와 같이 CHCl₃의 경우는 bed volume (BV) 15510 부근에 서 파과(breakthrough)에 도달하였고, 다음으로 CHBr₂Cl 의 파과시점은 BV 24150 부근으로 나타났으며, CHBr₃ 가 BV 39990, CHCl₂I가 BV 48630, CHBrClI가 BV 52950, CHBr₂I가 BV 57270, CHClI₂가 BV 64470, CHBrI₂가 BV 70230 및 CHI₃가 BV 86070 부근에서 파과에 도달하였다. CHCl₃, CHBr₃ 및 CHI₃의 파과에 도달하는 BV (BV_{breakthrough})를 비교해 보면 파과에 도달 하는 순서는 CHCl₃, CHBr₃, CHI₃ 순으로 나타나 THMs를 구성하는 할로겐족 원소가 요오드일 때가 가장 늦은 BV_{breakthrough}를 나타내었으며, 다음으로 브롬, 염소 순으로 나타났다. 또한, 9중의 THMs 에 대해 파과에 도 달한 운전일수(Bed life)를 Table 4에 나타내었다.

3.2. 9종의 THMs 흡착능 평가

석탄계 재질의 GAC 신탄(F-400)에서의 9종의 THMs 에 대한 흡착능을 평가하기 위하여 THMs 9종에 대한 파 과시점(BV)까지의 유입농도와 유출농도를 이용하여 식 (1)에 나타낸 Freundlich 등온흡착식을 이용하여 X/M 과 Ce를 구하여 그 결과를 Fig. 3에 나타내었고, 이를 회

Headspace sampler									
Vial size	20 mL (sam	20 mL (sample volume: 13 mL)							
Oven (vial equilibration) temp.	85℃ (loop t	$35 ^{\circ}$ (loop temp. = 95 $^{\circ}$, transfer line temp. = 105 $^{\circ}$ C)							
Vial equilibration time	45 min.	45 min.							
Shaking mode	100 shakes/1	nin.							
GC-ECD									
Injection volume	Headspace 1	Headspace loop volume = 3 mL, (split ratio = 2:1)							
Inlet temp.	250℃	250°C							
Column flow	0.6 mL/min	0.6 mL/min (constant)							
		Rate (°C/min)	Value (°C)	Hold time (min.)	Run time (min.)				
	Initial	-	40	2	2				
	Ramp 1	10	80	4	10				
Oven temp.	Ramp 2	10	100	4	16				
	Ramp 3	10	220	1	29				
	Ramp 4	50	300	3	33.6				
	Post run	-	310	2	35.6				

Table 3. Analytical conditions of the headspace sampler and GC-ECD

Fig. 2. Breakthrough curves of 9 THMs for coal-based GAC.

Table 4. BV _{breakthrough} and	bed life for 9	THMs for	coal-based	GAC
---	----------------	----------	------------	-----

Item	Unit	R-THMs				I-THMs					
Item	CHCl ₃ CHBrCl ₂ CHBr ₃	CHCl ₂ I	CHBrClI	CHBr ₂ I	CHClI ₂	CHBrI ₂	CHI ₃				
$\mathrm{BV}_{\mathrm{breakthrough}}$	(-)	15,510	24,150	39,990		48,630	52,950	57,270	64,470	70,230	86,070
Bed life(Y)	(day)	108	168	278		338	368	398	448	488	598

귀분석하여 k와 1/n을 구하였다. Fig. 3에는 THMs 9종 중 CHCl₃, CHBr₃, CHBr₂I 및 CHI₃ 종만 나타내었다.

$$X/M = k \cdot C_e^{1/n} \tag{1}$$

X = the amount of solute adsorbed (μg)

M = the weight of adsorbent (g)

 C_e = the solute equilibrium concentration ($\mu g/L$)

k, 1/n = constants characteristic of the system

Fig. 3. Adsorption isotherm of 4 THMs for coal-based GAC.

9종의 THMs에 대하여 실험에 사용된 석탄계 신탄 의 흡착용량(adsorption capacity)을 평가하기 위하여 Snoeyink 등(1990)이 사용한 활성탄 사용율(carbon usage rate: CUR)과 활성탄 수명(bed life: Y)에 관한 식 (2)와 식 (3)을 사용하였다.

$$CUR(g/day) = \frac{(C_0 - C_1)F}{(q_e)_0}$$
(2)

$$C_e$$
 = equilibrium concentration ($\mu g/L$)

 $C_o = influent \text{ concentration } (\mu g/L)$

- C_1 = desired effluent concentration ($\mu g/L$)
- F = volumetric flowrate of contaminated liquid

treated(L/day)

 $(q_e)_0 =$ amount adsorbed per unit mass of carbon at C_0

$$Y(day) = (V) \cdot \rho_{GAC} \frac{(q_e)_0}{(C_0 - C_1)F} = \frac{(V) \cdot \rho_{GAC}}{CUR}$$
(3)
V = volume of adsorber (L)

 ρ_{GAC} = apparent density (g/L)

식 (3)은 C_e=C_o를 가정할 때 구해지며, (q_e)o를 구하기 위해서 식 (1)에서 구한 9종의 THMs 각각에 대한 석탄 계 재질 신탄의 k와 1/n을 적용하였다. 일반적으로 평형 흡착실험은 분말활성탄(powder activated carbon, PAC) 을 이용하여 batch식으로 수행하지만 이러한 조건은 실 제 정수장의 활성탄 흡착조에서 활성탄과 물과의 접촉면 적과 흡착시간과 같은 흡착조건이 크게 바뀐 상태이고, 또한 모든 활성탄이 평형상태를 이루지 않는 실제 정수 장에서 그 값의 적용은 큰 차이가 있을 수 있다. 따라서 본 연구에서는 식 (2)를 연속 흡착칼럼에서의 파라미터 를 적용하기 위하여 식 (4)로 변형하였다(Choi 등, 2005).

$$CUR(g/day) = \frac{\rho_{GAC} \cdot F}{BV_{breakthrough}}$$
(4)

F = volumetric flowrate of contaminated liquid treated (L/day)

 $BV_{breakthrough} = bed$ volumes to breakthrough ([-]

CUR의 계산은 식(2)와 식 (4) 모두 사용이 가능하며, (qe)0 또는 BVbreakthrough 값은 연속 흡착컬럼 실험에서 파 과 직전까지의 결과를 사용하여 k와 1/n을 도출하였고, CUR과 bed life는 파과시점의 BV를 이용하여 식 (4)에 서 도출하였다. 이렇게 도출된 최대흡착량(X/M), 활성 탄 사용율(CUR), k 및 1/n과 같은 흡착특성을 파악할 수 있는 지표들을 Table 5에 나타내었다.

석탄계 재질의 신탄에서 9종의 THMs에 대한 최대흡 착량(X/M)은 CHCl₃가 1,175 µg/g으로 가장 낮게 나타 났으며, CHI₃가 11,087 µg/g으로 가장 높게 나타났다. 따라서 CHI₃의 경우는 CHCl₃에 비해 석탄계 재질 활 성탄의 단위 g당 흡착량(X/M)이 약 9.4배 정도 높았으

Itom	T T !4		R-THMs		I-THMs					
nem	Ullit -	CHCl ₃	$CHBrCl_2$	CHBr ₃	CHCl ₂ I	CHBrClI	CHBr ₂ I	$CHClI_2$	$CHBrI_2$	CHI ₃
Max. adsorption (X/M)	(µg/g)	1,175	2,899	4,263	5,269	5,936	6,546	7,614	8,276	11,087
CUR	(g/day)	0.149	0.095	0.058	0.047	0.044	0.040	0.036	0.033	0.027
k	$(\mu g/g)(L/\mu g)^{1/n}$	47.23	102.37	161.78	169.66	208.90	256.57	284.14	333.29	385.78
1/n	(-)	0.7389	0.8006	0.8452	0.8261	0.9472	0.7768	0.7884	0.7679	0.8320

Table 5. Adsorption capacity data of 9 THMs for coal-based GACs

며, CHBr₃에 비해서는 약 2.6배 정도 높은 것으로 조사 되었다.

석탄계 재질의 신탄에서 9종의 THMs에 대한 활성탄 사용율(CUR)은 CHCl₃가 0.149 g/day로 나타났으며, CHI₃의 경우는 0.027 g/day로 나타났으며, 본 실험에 사 용된 흡착컬럼을 10,000 m³/day 처리용량 정수장의 활 성탄 흡착지로 가정하였을 경우 CHCl₃가 0.259 톤/일의 CUR을 나타내었으며, CHI₃의 CUR은 0.047 톤/일로 나타났다.

Table 5에서 볼 수 있듯이 본 실험에 사용된 9종의 THMs의 최대 흡착량(X/M)을 조사한 결과, 앞에서도 언급한 바와 같이 THMs 구성원소들 중 할로겐 원소가 Cl 보다는 Br, Br 보다는 I의 구성비율이 높을수록 최대 흡착량(X/M)이 큰 것으로 나타났다. CHCl₃, CHBr₃ 및 CHI₃의 최대 흡착량(X/M)을 비교해 보면 각각 1,175 µ g/g, 4,263 µg/g 및 11,087 µg/g으로 나타나 CHBr₃와 CHI₃의 최대 흡착량(X/M)은 CHCl₃에 비해 각각 3.6배 및 9.4배 정도 큰 것으로 조사되었다.

4. 결론

석탄계 재질의 입상활성탄 신탄을 이용하여 9종의 THMs에 대한 연속 흡착컬럼 실험을 수행하여 흡착 특 성을 조사한 결과, 다음과 같은 결론을 얻을 수 있었다.

1. 입상활성탄 흡착공정에서의 THMs 9종의 파과 도 달 순서는 CHCl₃, CHBrCl₂, CHBr₃, CHCl₂I, CHBrClI, CHBr₂I, CHClI₂, CHBrI₂, CHI₃ 순으로 나타났다.

2. THMs 9종의 최대 흡착량(X/M)은 CHCl₃가 1,175 µg/g으로 가장 낮게 나타났으며, CHI₃가 11,087 µg/g으 로 가장 높은 최대 흡착량(X/M)을 나타내었다.

3. 활성탄 사용율(CUR)은 CHCl₃가 0.149 g/day로 나타나 CHBr₃와 CHI₃의 0.058 g/day와 0.027 g/day에 비해 활성탄 사용율이 각각 2.6배 및 5.5배 정도 높은 것으로 나타났다.

REFERENCE

- Bichsel, Y., von Gunten, U., 2000, Formation of iodo -trihalomethanes during disinfection and oxidation of iodide containing waters, Environ. Sci. Technol., 34, 2784-2791.
- Cancho, B., Fabrellas, C., Diaz, A., Ventura, F., 2001, Determination of the odor threshold concentrations of iodinated trhalomethanes in drinking water, J. Agric. Food Chem., 49, 1881-1884.
- Choi, K. J., Kim, S. G., Kim, C. W., Kim, S. H., 2005, Effects of activated carbon types and services life on removal of endocrine disrupting chemicals: amitrol, nonylphenol, and bisphenol-A, Chemosphere, 58(11), 1535-1545.
- Goslan, E. H., Krasner, S. W., Bower, M., Rocks, S. A., Holmes, P., Levy, L., Parsons, S. A., 2009, A comparison of disinfection by-products found in chlorinated and chloraminated drinking water in Scotland, Water Res., 43, 4698-4706.
- Hansson, R. C., Henderson, M. J., Jack, P., Taylor, R. D., 1987, Iodoform taste complaints in chloramination, Water Res., 21(10), 1265-1271.
- Hua, G., Reckhow, D. A., 2007, DBP formation during chlorination and chloramination: effect of reaction time, pH, dosage, and temperature, J. AWWA, 100, 82-95.
- Hua, G., Reckhow, D. A., Kim, J., 2006, Effect of bromide and iodide ions on the formation and speciation of disinfection by-products during chlorination, Environ. Sci. Technol., 40, 3050-3056.
- Krasner, S. W., Weinberg, H. S., Richardson, S. D.,

Pastor, S. J., Chinn, R., Sclimenti, M. J., Onstad, G. D., Thruston, A. D., 2006, Occurrence of new generation of disinfection by-products, Environ. Sci. Technol., 40, 7175-7185.

- Plewa, M. J., Wagner, E. D., Richardson, S. D., Thruston, A. D., Woo, Y. T., Mckague, A. B., 2004, Chemical and biological characterization of newly discovered iodoacetic drinking water disinfection by-products, Environ. Sci. Technol., 38, 4713-4722.
- Richardson, S. D., Fasano, F., Ellington, J. J., Crumley,
 G. F., Buettner, K. M., Evans, J. J., Blount, B. C.,
 Silva, L. K., Waite, T. J., Luther, G. W., McKague,
 B. A., Miltner, R. J., Wagner, E. D., Plewa, M. J.,
 2008, Occurrence and mammalian cell toxicity of
 iodinated disinfection by-products in drinking water,
 Environ. Sci. Technol., 42, 8330-8338.
- Snoeyink, V. L., 1990, Adsorption of organic compounds, In Water Quality and Treatment: a Handbook of Community Water Supplies, 4th Ed., Edited by Pontius, F. W., McGraw-Hill Inc., New York, pp. 781-855.
- Son, H. J., Roh, J. S., Kim, S. G., Bae, S. M., Kang, L. S., 2005, Removal characteristics of chlorination disinfection by-products by activated carbons, J. Kor. Soc. Envir. Eng., 27(7), 762-770.
- Son, H. J., Song, M. J., Kim, K. A., Yoom, H. S. Choi, J. T., 2014, Analysis of trace levels of Iodinated trihalomethanes in water using headspace-GC/ECD, J. Kor. Soc. Environ. Eng., 36(1), 35-41.
- US EPA, 2005, Drinking Water Criteria Document for Brominated Trihalomethanes, EPA-882-R-05-011, Washing, D.C.
- WHO, 2004, Chloroform, Geneva.