References
- D. Burns, Congruences between derivatives of abelian L-functions at s = 0, Invent. Math. 169 (2007), no. 3, 451-499. https://doi.org/10.1007/s00222-007-0052-3
- B. H. Gross, On the values of abelian L-functions at s = 0, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 35 (1988), no. 1, 177-197.
- J. Lee, Congruences of L-values for cyclic extensions, Honam Math. J. 32 (2010), no. 4, 791-795. https://doi.org/10.5831/HMJ.2010.32.4.791
- B. Mazur and J. Tate, Refined conjectures of the "Birch and Swinnerton-Dyer type", Duke Math. J. 54 (1987), no. 2, 711-750. https://doi.org/10.1215/S0012-7094-87-05431-7
- K. Rubin, A Stark conjecture "over Z" for abelian L-functions with multiple zeros, Ann. Inst. Fourier (Grenoble) 46 (1996), no. 1, 33-62. https://doi.org/10.5802/aif.1505
Cited by
- POWERS OF THE AUGMENTATION IDEAL OF A CYCLIC GROUP RING vol.37, pp.2, 2015, https://doi.org/10.5831/HMJ.2015.37.2.265