DOI QR코드

DOI QR Code

A Numerical Study on Behavior of Fresh Water Body between Injection and Production Wells with Variation of Fresh Water Injection Rate in a Saline Aquifer

염수 대수층 내 담수 주입양 변화에 따른 주입정과 양수정 사이의 담수체 거동에 관한 수치적 연구

  • 정우창 (경남대학교 공과대학 토목공학과)
  • Received : 2014.10.16
  • Accepted : 2014.12.15
  • Published : 2015.01.31

Abstract

In this study, the behavior of fresh water body between the injection and production wells with the fresh water injection rate in a saline aquifer is numerically analyzed by using a three-dimensional numerical model. 8 injection wells are arranged at equidistant intervals on a concentric circle and one production well is located at the center of this circle. In the case that the fresh water injection rate is relatively small, the fresh water body around a injection well screen is not mixed with neighboring ones and is independently distributed. However, when the injection rate is increased, the size of the fresh water body is continuously increased, and the areas, where saline and fresh water among injection wells are mixed, are appeared. The mixed degree is increased as the injection rate is increased. This phenomenon is identically generated around the production well. Moreover, when the injection rate is increased, the ratio of saline water in and around the production well is decreased.

본 연구에서는 3차원 수치모형을 이용하여 염수 대수층 내 담수 주입량에 따른 주입정과 양수정 사이의 담수체의 거동을 수치적으로 분석하였다. 대수층 내에 8개의 주입정이 동심원 상에 등간격으로 배열되어 있으며, 동심원 중심에 한 개의 양수정이 위치해 있다. 주입량이 상대적으로 작은 경우 주입정 주변의 담수체는 인근의 주입정에서의 담수체와 서로 혼합되지 않고 독립적으로 분포한다. 그러나 주입량이 증가함에 따라 담수체의 크기는 점차적으로 증가하며, 주입정과 주입정 사이에 염수와 담수가 혼합되어 있는 영역이 나타난다. 혼합되는 정도는 주입량이 증가함에 따라 증가되며, 이러한 현상은 양수정 주변에서도 동일하게 나타난다. 또한주입량이 증가할수록 양수정 주변 및 내에서의 염수비율이 점차적으로 감소하는 경향을 나타내었다.

Keywords

References

  1. ANSYS Inc. (2010). ANSYS CFX-solver theory guide. Release 13.0, pp. 1-390.
  2. Cebeci, T. (2004). Analysis of Turbulent Flows, Elsevier, pp. 196-202.
  3. DeMarsily, G. (1986). Quantitative Hydrogeology, Academic Press, pp. 73-75.
  4. Dillon, P. (2011). Managed Aquifer Recharge and Stormwater Use Options Research Project. CSIRO and the Flagships program, pp. 1-4.
  5. Freeze R.A., and Cherry J.A. (1979). Groundwater, Prentice Hall, Englewood Cliffs, N.J., pp. 26-30.
  6. Huisman, L., and Olsthoorn, T.N. (1983). Artificial Groundwater Recharge, Pitman Press, pp. 1-320.
  7. KIGAM (2008). Application of analysis technique and modeling for coupled groundwater-surface water flow system: 2nd-year Report of sustainable water resources research program, Ministry of Education, Science & Technology, pp. 1-109.
  8. KIGAM (2013). Development of Integrated Core Technologies in Aquifer Recharge System for Groundwater Sustainability, Interim Research Report GP2012-0130-2013, pp. 1-270.
  9. Kim, H.S., Kim, M.I., Suk, H.J. (2005). "Assesment of storage property of fractured rock aquifer by the artificial recharge method." Journal of the Geological Society of Korea, Vol. 4, No. 3, pp. 415-426.
  10. Kim, Y.C., and Kim, Y.J. (2010). "A review on the state of the art in the management of aquifer recharge." Journal of the Geological Society of Korea, Vol. 46, No. 5, pp. 521-533.
  11. KIWE (2003). Sustainable Groundwater Development and Artificial Recharge, Interim Research Report of KIWE, KIWE-DRC-03-1, pp. 1-645.
  12. Pavelic, P., Dillon, P., and Robinson, N. (2004). Groundwater Modelling to Assist Well-Field Design and Operation for the ASTR Trial at Salisbury, South Australia, CSIRO Land and Water Technical Report No. 27/04, pp. 1-46.
  13. Pyne, R.D.G. (2005). Aquifer Storage Recovery: A Guide to Groundwater Recharge Through Wells (2nd ed.), ASR Systems, pp. 1-608.
  14. Seo, J.A., Kim, Y.C., Kim, J.S., and Kim, Y.J. (2011). "Site Prioritization for Artificial Recharge in Korea using GIS Mapping." Journal of Korean Society of Soil and Groundwater Environment, Vol. 16, No. 6, pp. 66-78. https://doi.org/10.7857/JSGE.2011.16.6.066
  15. Son, M.W., Lee, G.H., Lee K.S., and Lee, D.H. (2011). "Comparative Study on ${\kappa}-{\varepsilon}$ and ${\kappa}-{\omega}$ Closures under the Condition of Turbulent Oscillatory Boundary Layer Flow at High Reynolds Number." Journal of Korea Water Resources Association, Vol. 44, No. 3, pp. 189-198. https://doi.org/10.3741/JKWRA.2011.44.3.189
  16. UNESCO IHP (2005). Strategies for Managed Aquifer Recharge (MAR) in Semi-arid Area, UNESCO, pp. 1-30.