R347C Polymorphisms in ADRA1A Genes and Mirtazapine Treatment Response in Koreans with Major Depression

  • Koo, Jahyun (Department of Psychiatry, College of Medicine, Korea University) ;
  • Lee, Min-Soo (Department of Psychiatry, College of Medicine, Korea University) ;
  • Ham, Byungju (Department of Psychiatry, College of Medicine, Korea University) ;
  • Won, Eun-Soo (Department of Psychiatry, College of Medicine, Korea University)
  • Received : 2015.08.06
  • Accepted : 2015.09.14
  • Published : 2015.11.30

Abstract

Objectives Adrenergic alpha 1 and 2 receptors work as pathways to control the serotonergic neuron moderation and mirtazapine acts as antagonist of these receptors. The adrenoreceptor alpha 1a (ADRA1A) gene, which encodes adrenergic alpha 1 receptor, has Arg-347Cys genetic polymorphism and the polymorphism has strong relationship with many neuro-psychiatric diseases. In this study, we explored the relationship between ADRA1A R347C polymorphism and mirtazapine treatment response in Koreans with major depression. Methods 352 patients enrolled in this study, and the symptoms were evaluated by 17-item Hamilton Depression Rating (HAMD-17) scale. After 1, 2, 4, 8, and 12 weeks of mirtazapine treatment, the association between ADRA1A R347C polymorphism and remission/response outcomes was evaluated. Results Treatment response to mirtazapine was significantly better in T allele carriers than C allele homozygotes after 12 weeks of mirtazapine monotherapy. The percentile decline of HAMD-17 score in T allele carriers was larger than that of C allele homozygotes. ADRA1A R347C genotypes were not significantly associated with remission. Conclusions The result showed that treatment response to mirtazapine was significantly associated with ADRA1A R347C genetic polymorphism. T allele carriers showed better treatment response than C allele homozygotes. It can be supposed that T allele carriers have a trend of better treatment response to mirtazapine monotherapy.

Keywords

References

  1. Alonso J, Angermeyer MC, Bernert S, Bruffaerts R, Brugha TS, Bryson H, et al. Prevalence of mental disorders in Europe: results from the European Study of the Epidemiology of Mental Disorders (ESEMeD) project. Acta Psychiatr Scand Suppl 2004;(420):21-27.
  2. Duffy A, Grof P, Robertson C, Alda M. The implications of genetics studies of major mood disorders for clinical practice. J Clin Psychiatry 2000;61:630-637. https://doi.org/10.4088/JCP.v61n0906
  3. Fava M. The role of the serotonergic and noradrenergic neurotransmitter systems in the treatment of psychological and physical symptoms of depression. J Clin Psychiatry 2003;64 Suppl 13:26-29.
  4. Fabbri C, Di Girolamo G, Serretti A. Pharmacogenetics of antidepressant drugs: an update after almost 20 years of research. Am J Med Genet B Neuropsychiatr Genet 2013;162B:487-520.
  5. Stone EA, Lin Y, Rosengarten H, Kramer HK, Quartermain D. Emerging evidence for a central epinephrine-innervated alpha 1-adrenergic system that regulates behavioral activation and is impaired in depression. Neuropsychopharmacology 2003;28:1387-1399. https://doi.org/10.1038/sj.npp.1300222
  6. Huang K, Shi Y, Tang W, Tang R, Guo S, Xu Y, et al. No association found between the promoter variants of ADRA1A and schizophrenia in the Chinese population. J Psychiatr Res 2008;42:384-388. https://doi.org/10.1016/j.jpsychires.2007.02.008
  7. Kasper S. Efficacy of antidepressants in the treatment of severe depression: the place of mirtazapine. J Clin Psychopharmacol 1997;17 Suppl 1:19S-28S. https://doi.org/10.1097/00004714-199704001-00003
  8. Kent JM. SNaRIs, NaSSAs, and NaRIs: new agents for the treatment of depression. Lancet 2000;355:911-918. https://doi.org/10.1016/S0140-6736(99)11381-3
  9. Rogoz Z, Wrobel A, Dlaboga D, Maj J, Dziedzicka-Wasylewska M. Effect of repeated treatment with mirtazapine on the central alpha1- adrenergic receptors. J Physiol Pharmacol 2002;53:105-116.
  10. Rogoz Z, Skuza G, Legutko B. Repeated treatment with mirtazepine induces brain-derived neurotrophic factor gene expression in rats. J Physiol Pharmacol 2005;56:661-671.
  11. Kakui N, Yokoyama F, Yamauchi M, Kitamura K, Imanishi T, Inoue T, et al. Anxiolytic-like profile of mirtazapine in rat conditioned fear stress model: Functional significance of 5-hydroxytryptamine 1A receptor and alpha1-adrenergic receptor. Pharmacol Biochem Behav 2009;92:393-398. https://doi.org/10.1016/j.pbb.2008.12.022
  12. Freitas SR, Pereira AC, Floriano MS, Mill JG, Krieger JE. Association of alpha1a-adrenergic receptor polymorphism and blood pressure phenotypes in the Brazilian population. BMC Cardiovasc Disord 2008;8:40. https://doi.org/10.1186/1471-2261-8-40
  13. Ncbi.org [homepage on Internet]. USA: National Center for Biotechnology Information, U.S. National Library of Medicine. Available from: http://www.ncbi.nlm.nih.gov/gene/148#referencesequences.
  14. Shibata K, Hirasawa A, Moriyama N, Kawabe K, Ogawa S, Tsujimoto G. Alpha 1a-adrenoceptor polymorphism: pharmacological characterization and association with benign prostatic hypertrophy. Br J Pharmacol 1996;118:1403-1408. https://doi.org/10.1111/j.1476-5381.1996.tb15552.x
  15. Liu YR, Loh EW, Lan TH, Chen SF, Yu YH, Chang YH, et al. ADRA1A gene is associated with BMI in chronic schizophrenia patients exposed to antipsychotics. Pharmacogenomics J 2010;10:30-39. https://doi.org/10.1038/tpj.2009.55
  16. Klotsman M, Weinberg CR, Davis K, Binnie CG, Hartmann KE. A case-based evaluation of SRD5A1, SRD5A2, AR, and ADRA1A as candidate genes for severity of BPH. Pharmacogenomics J 2004;4:251-259. https://doi.org/10.1038/sj.tpj.6500248
  17. Clark DA, Mancama D, Kerwin RW, Arranz MJ. Expression of the alpha1A-adrenergic receptor in schizophrenia. Neurosci Lett 2006;401:248-251. https://doi.org/10.1016/j.neulet.2006.03.025
  18. Elia J, Capasso M, Zaheer Z, Lantieri F, Ambrosini P, Berrettini W, et al. Candidate gene analysis in an on-going genome-wide association study of attention-deficit hyperactivity disorder: suggestive association signals in ADRA1A. Psychiatr Genet 2009;19:134-141. https://doi.org/10.1097/YPG.0b013e32832a5043
  19. Vargas-Alarcon G, Fragoso JM, Cruz-Robles D, Vargas A, Martinez A, Lao-Villadoniga JI, et al. Association of adrenergic receptor gene polymorphisms with different fibromyalgia syndrome domains. Arthritis Rheum 2009;60:2169-2173. https://doi.org/10.1002/art.24655
  20. Burcescu I, Wigg K, Gomez L, King N, Vetro A, Kiss E, et al. Association study of the adrenergic receptors and childhood-onset mood disorders in Hungarian families. Am J Med Genet B Neuropsychiatr Genet 2006;141B:227-233. https://doi.org/10.1002/ajmg.b.30292
  21. Lario S, Calls J, Cases A, Oriola J, Torras A, Rivera F. MspI identifies a biallelic polymorphism in the promoter region of the alpha 2A-adrenergic receptor gene. Clin Genet 1997;51:129-130.
  22. Small KM, Brown KM, Seman CA, Theiss CT, Liggett SB. Complex haplotypes derived from noncoding polymorphisms of the intronless alpha2A-adrenergic gene diversify receptor expression. Proc Natl Acad Sci U S A 2006;103:5472-5477. https://doi.org/10.1073/pnas.0601345103
  23. Yoshida K, Naito S, Takahashi H, Sato K, Ito K, Kamata M, et al. Monoamine oxidase: A gene polymorphism, tryptophan hydroxylase gene polymorphism and antidepressant response to fluvoxamine in Japanese patients with major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry 2002;26:1279-1283. https://doi.org/10.1016/S0278-5846(02)00267-1
  24. Shorter D, Nielsen DA, Huang W, Harding MJ, Hamon SC, Kosten TR. Pharmacogenetic randomized trial for cocaine abuse: disulfiram and ${\alpha}1A$-adrenoceptor gene variation. Eur Neuropsychopharmacol 2013;23:1401-1407. https://doi.org/10.1016/j.euroneuro.2013.05.014
  25. Keller MB. Past, present, and future directions for defining optimal treatment outcome in depression: remission and beyond. JAMA 2003;289:3152-3160. https://doi.org/10.1001/jama.289.23.3152
  26. Clark DA, Arranz MJ, Mata I, Lopez-Ilundain J, Perez-Nievas F, Kerwin RW. Polymorphisms in the promoter region of the alpha1A-adrenoceptor gene are associated with schizophrenia/schizoaffective disorder in a Spanish isolate population. Biol Psychiatry 2005;58:435-439. https://doi.org/10.1016/j.biopsych.2005.04.051
  27. Arnsten AF. Adrenergic targets for the treatment of cognitive deficits in schizophrenia. Psychopharmacology (Berl) 2004;174:25-31.
  28. Fallin MD, Lasseter VK, Liu Y, Avramopoulos D, McGrath J, Wolyniec PS, et al. Linkage and association on 8p21.2-p21.1 in schizophrenia. Am J Med Genet B Neuropsychiatr Genet 2011;156:188-197. https://doi.org/10.1002/ajmg.b.31154
  29. Birnbaum SG, Yuan PX, Wang M, Vijayraghavan S, Bloom AK, Davis DJ, et al. Protein kinase C overactivity impairs prefrontal cortical regulation of working memory. Science 2004;306:882-884. https://doi.org/10.1126/science.1100021
  30. Siris SG. Depression in schizophrenia: perspective in the era of "Atypical" antipsychotic agents. Am J Psychiatry 2000;157:1379-1389. https://doi.org/10.1176/appi.ajp.157.9.1379
  31. de Figueiredo JM. Depression and demoralization: phenomenologic differences and research perspectives. Compr Psychiatry 1993;34:308-311. https://doi.org/10.1016/0010-440X(93)90016-W