Advances in Functional Connectomics in Neuroscience : A Focus on Post-Traumatic Stress Disorder

뇌과학 분야 기능적 연결체학의 발전 : 외상후스트레스장애를 중심으로

  • Park, Shinwon (Department of Psychology, Ewha Womans University) ;
  • Jeong, Hyeonseok S. (Department of Radiology, Incheon St. Mary's Hospital, The Catholic University of Korea) ;
  • Lyoo, In Kyoon (Department of Brain and Cognitive Sciences and Ewha Brain Institute, Ewha Womans University)
  • 박신원 (이화여자대학교 심리학과) ;
  • 정현석 (가톨릭대학교 인천성모병원 영상의학과) ;
  • 류인균 (이화여자대학교 뇌.인지과학과, 뇌융합과학연구원)
  • Received : 2015.06.16
  • Accepted : 2015.06.26
  • Published : 2015.08.31

Abstract

Recent breakthroughs in functional neuroimaging techniques have launched the quest of mapping the connections of the human brain, otherwise known as the human connectome. Imaging connectomics is an umbrella term that refers to the neuroimaging techniques used to generate these maps, which recently has enabled comprehensive brain mapping of network connectivity combined with graph theoretic methods. In this review, we present an overview of the key concepts in functional connectomics. Furthermore, we discuss articles that applied task-based and/or resting-state functional magnetic resonance imaging to examine network deficits in post-traumatic stress disorder (PTSD). These studies have provided important insights regarding the etiology of PTSD, as well as the overall organization of the brain network. Advances in functional connectomics are expected to provide insight into the pathophysiology and the development of biomarkers for diagnosis and treatment of PTSD.

Keywords

References

  1. Boehnlein JK. The process of research in posttraumatic stress disorder. Perspect Biol Med 1989;32:455-465. https://doi.org/10.1353/pbm.1989.0032
  2. Norris FH, Slone LB. The epidemiology of trauma and PTSD. In: Friedman MJ, Keane TM, Resick PA, editors. Handbook of PTSD. Science and practice. New York: Guilford Press;2007. p.78-98.
  3. Kessler RC, Berglund P, Demler O, Jin R, Merikangas KR, Walters EE. Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the National Comorbidity Survey Replication. Arch Gen Psychiatry 2005;62:593-602. https://doi.org/10.1001/archpsyc.62.6.593
  4. Gilboa A, Shalev AY, Laor L, Lester H, Louzoun Y, Chisin R, et al. Functional connectivity of the prefrontal cortex and the amygdala in posttraumatic stress disorder. Biol Psychiatry 2004;55:263-272. https://doi.org/10.1016/j.biopsych.2003.08.004
  5. Lanius RA, Williamson PC, Bluhm RL, Densmore M, Boksman K, Neufeld RW, et al. Functional connectivity of dissociative responses in posttraumatic stress disorder: a functional magnetic resonance imaging investigation. Biol Psychiatry 2005;57:873-884. https://doi.org/10.1016/j.biopsych.2005.01.011
  6. Simmons AN, Paulus MP, Thorp SR, Matthews SC, Norman SB, Stein MB. Functional activation and neural networks in women with posttraumatic stress disorder related to intimate partner violence. Biol Psychiatry 2008;64:681-690. https://doi.org/10.1016/j.biopsych.2008.05.027
  7. Bluhm RL, Williamson PC, Osuch EA, Frewen PA, Stevens TK, Boksman K, et al. Alterations in default network connectivity in posttraumatic stress disorder related to early-life trauma. J Psychiatry Neurosci 2009:187-194.
  8. Daniels JK, McFarlane AC, Bluhm RL, Moores KA, Clark CR, Shaw ME, et al. Switching between executive and default mode networks in posttraumatic stress disorder: alterations in functional connectivity. J Psychiatry Neurosci 2010;35:258-266. https://doi.org/10.1503/jpn.090010
  9. Rauch SL, Shin LM. Functional neuroimaging studies in posttraumatic stress disorder. Ann N Y Acad Sci 1997;821:83-98. https://doi.org/10.1111/j.1749-6632.1997.tb48271.x
  10. Pitman RK, Shin LM, Rauch SL. Investigating the pathogenesis of posttraumatic stress disorder with neuroimaging. J Clin Psychiatry 2001;62 Suppl 17:47-54.
  11. Nemeroff CB, Bremner JD, Foa EB, Mayberg HS, North CS, Stein MB. Posttraumatic stress disorder: a state-of-the-science review. J Psychiatr Res 2006;40:1-21. https://doi.org/10.1016/j.jpsychires.2005.07.005
  12. Rauch SL, Shin LM, Phelps EA. Neurocircuitry models of posttraumatic stress disorder and extinction: human neuroimaging research--past, present, and future. Biol Psychiatry 2006;60:376-382. https://doi.org/10.1016/j.biopsych.2006.06.004
  13. Liberzon I, Sripada CS. The functional neuroanatomy of PTSD: a critical review. Prog Brain Res 2008;167:151-169.
  14. Shin LM, Liberzon I. The neurocircuitry of fear, stress, and anxiety disorders. Neuropsychopharmacology 2010;35:169-191. https://doi.org/10.1038/npp.2009.83
  15. Shin LM. The amygdala in post-traumatic stress disorder. In: Shiromani P, Keane T, LeDoux JE, editors. Post-Traumatic Stress Disorder: Basic Science and Clinical Practice. New York: Springer Science & Business Media;2009. p.319-334.
  16. Anderson AK, Phelps EA. Lesions of the human amygdala impair enhanced perception of emotionally salient events. Nature 2001;411:305-309. https://doi.org/10.1038/35077083
  17. Shin LM, Handwerger K. Is posttraumatic stress disorder a stressinduced fear circuitry disorder? J Trauma Stress 2009;22:409-415. https://doi.org/10.1002/jts.20442
  18. Phillips RG, LeDoux JE. Differential contribution of amygdala and hippocampus to cued and contextual fear conditioning. Behav Neurosci 1992;106:274-285. https://doi.org/10.1037/0735-7044.106.2.274
  19. Wilker S, Kolassa IT. The formation of a neural fear network in posttraumatic stress disorder: insights from molecular genetics. Clin Psychol Sci 2013;1:452-469. https://doi.org/10.1177/2167702613479583
  20. Sadeh N, Spielberg JM, Warren SL, Miller GA, Heller W. Aberrant Neural Connectivity during Emotional Processing Associated with Posttraumatic Stress. Clin Psychol Sci 2014;2:748-755. https://doi.org/10.1177/2167702614530113
  21. Sporns O, Tononi G, Kotter R. The human connectome: a structural description of the human brain. PLoS Comput Biol 2005;1:e42. https://doi.org/10.1371/journal.pcbi.0010042
  22. Biswal BB, Mennes M, Zuo XN, Gohel S, Kelly C, Smith SM, et al. Toward discovery science of human brain function. Proc Natl Acad Sci U S A 2010;107:4734-4739. https://doi.org/10.1073/pnas.0911855107
  23. Aertsen AM, Gerstein GL, Habib MK, Palm G. Dynamics of neuronal firing correlation: modulation of "effective connectivity". J Neurophysiol 1989;61:900-917. https://doi.org/10.1152/jn.1989.61.5.900
  24. Friston KJ, Frith CD, Liddle PF, Frackowiak RS. Functional connectivity: the principal-component analysis of large (PET) data sets. J Cereb Blood Flow Metab 1993;13:5-14. https://doi.org/10.1038/jcbfm.1993.4
  25. Lowe MJ, Dzemidzic M, Lurito JT, Mathews VP, Phillips MD. Correlations in low-frequency BOLD fluctuations reflect cortico-cortical connections. Neuroimage 2000;12:582-587. https://doi.org/10.1006/nimg.2000.0654
  26. Andrews-Hanna JR, Snyder AZ, Vincent JL, Lustig C, Head D, Raichle ME, et al. Disruption of large-scale brain systems in advanced aging. Neuron 2007;56:924-935. https://doi.org/10.1016/j.neuron.2007.10.038
  27. Biswal B, Yetkin FZ, Haughton VM, Hyde JS. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 1995;34:537-541. https://doi.org/10.1002/mrm.1910340409
  28. Cordes D, Haughton VM, Arfanakis K, Wendt GJ, Turski PA, Moritz CH, et al. Mapping functionally related regions of brain with functional connectivity MR imaging. AJNR Am J Neuroradiol 2000;21:1636-1644.
  29. Fransson P. Spontaneous low-frequency BOLD signal fluctuations: an fMRI investigation of the resting-state default mode of brain function hypothesis. Hum Brain Mapp 2005;26:15-29. https://doi.org/10.1002/hbm.20113
  30. Larson-Prior LJ, Zempel JM, Nolan TS, Prior FW, Snyder AZ, Raichle ME. Cortical network functional connectivity in the descent to sleep. Proc Natl Acad Sci U S A 2009;106:4489-4494. https://doi.org/10.1073/pnas.0900924106
  31. Song M, Zhou Y, Li J, Liu Y, Tian L, Yu C, et al. Brain spontaneous functional connectivity and intelligence. Neuroimage 2008;41:1168-1176. https://doi.org/10.1016/j.neuroimage.2008.02.036
  32. Biswal BB, Van Kylen J, Hyde JS. Simultaneous assessment of flow and BOLD signals in resting-state functional connectivity maps. NMR Biomed 1997;10:165-170.
  33. Jiang T, He Y, Zang Y, Weng X. Modulation of functional connectivity during the resting state and the motor task. Hum Brain Mapp 2004;22:63-71. https://doi.org/10.1002/hbm.20012
  34. Beckmann CF, DeLuca M, Devlin JT, Smith SM. Investigations into resting-state connectivity using independent component analysis. Philos Trans R Soc Lond B Biol Sci 2005;360:1001-1013. https://doi.org/10.1098/rstb.2005.1634
  35. Calhoun VD, Adali T, Pearlson GD, Pekar JJ. A method for making group inferences from functional MRI data using independent component analysis. Hum Brain Mapp 2001;14:140-151. https://doi.org/10.1002/hbm.1048
  36. van de Ven VG, Formisano E, Prvulovic D, Roeder CH, Linden DE. Functional connectivity as revealed by spatial independent component analysis of fMRI measurements during rest. Hum Brain Mapp 2004;22:165-178. https://doi.org/10.1002/hbm.20022
  37. Damoiseaux JS, Rombouts SA, Barkhof F, Scheltens P, Stam CJ, Smith SM, et al. Consistent resting-state networks across healthy subjects. Proc Natl Acad Sci U S A 2006;103:13848-13853. https://doi.org/10.1073/pnas.0601417103
  38. Sporns O. Networks of the Brain. Cambridge: MIT Press;2010.
  39. Rubinov M, Sporns O. Complex network measures of brain connectivity: uses and interpretations. Neuroimage 2010;52:1059-1069. https://doi.org/10.1016/j.neuroimage.2009.10.003
  40. Bullmore E, Sporns O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 2009;10:186-198. https://doi.org/10.1038/nrn2575
  41. Sporns O. Discovering the Human Connectome. Cambridge: MIT Press;2012.
  42. Stam CJ, Reijneveld JC. Graph theoretical analysis of complex networks in the brain. Nonlinear Biomed Phys 2007;1:3. https://doi.org/10.1186/1753-4631-1-3
  43. Bassett DS, Meyer-Lindenberg A, Achard S, Duke T, Bullmore E. Adaptive reconfiguration of fractal small-world human brain functional networks. Proc Natl Acad Sci U S A 2006;103:19518-19523. https://doi.org/10.1073/pnas.0606005103
  44. Breakspear M, Stam CJ. Dynamics of a neural system with a multiscale architecture. Philos Trans R Soc Lond B Biol Sci 2005;360:1051-1074. https://doi.org/10.1098/rstb.2005.1643
  45. Buzsáki G, Draguhn A. Neuronal oscillations in cortical networks. Science 2004;304:1926-1929. https://doi.org/10.1126/science.1099745
  46. Meunier D, Lambiotte R, Fornito A, Ersche KD, Bullmore ET. Hierarchical modularity in human brain functional networks. Front Neuroinform 2009;3:37.
  47. Shin LM, Rauch SL, Pitman RK. Amygdala, medial prefrontal cortex, and hippocampal function in PTSD. Ann N Y Acad Sci 2006;1071:67-79. https://doi.org/10.1196/annals.1364.007
  48. Bush G, Whalen PJ, Rosen BR, Jenike MA, McInerney SC, Rauch SL. The counting Stroop: an interference task specialized for functional neuroimaging--validation study with functional MRI. Hum Brain Mapp 1998;6:270-282. https://doi.org/10.1002/(SICI)1097-0193(1998)6:4<270::AID-HBM6>3.0.CO;2-0
  49. Shin LM, Wright CI, Cannistraro PA, Wedig MM, McMullin K, Martis B, et al. A functional magnetic resonance imaging study of amygdala and medial prefrontal cortex responses to overtly presented fearful faces in posttraumatic stress disorder. Arch Gen Psychiatry 2005;62:273-281. https://doi.org/10.1001/archpsyc.62.3.273
  50. Rabinak CA, Angstadt M, Welsh RC, Kenndy AE, Lyubkin M, Martis B, et al. Altered amygdala resting-state functional connectivity in post-traumatic stress disorder. Front Psychiatry 2011;2:62.
  51. Sripada RK, King AP, Garfinkel SN, Wang X, Sripada CS, Welsh RC, et al. Altered resting-state amygdala functional connectivity in men with posttraumatic stress disorder. J Psychiatry Neurosci 2012;37:241-249. https://doi.org/10.1503/jpn.110069
  52. Britton JC, Phan KL, Taylor SF, Welsh RC, Berridge KC, Liberzon I. Neural correlates of social and nonsocial emotions: an fMRI study. Neuroimage 2006;31:397-409. https://doi.org/10.1016/j.neuroimage.2005.11.027
  53. Fonzo GA, Simmons AN, Thorp SR, Norman SB, Paulus MP, Stein MB. Exaggerated and disconnected insular-amygdalar blood oxygenation level-dependent response to threat-related emotional faces in women with intimate-partner violence posttraumatic stress disorder. Biol Psychiatry 2010;68:433-441. https://doi.org/10.1016/j.biopsych.2010.04.028
  54. Morgan MA, Romanski LM, LeDoux JE. Extinction of emotional learning: contribution of medial prefrontal cortex. Neurosci Lett 1993;163:109-113. https://doi.org/10.1016/0304-3940(93)90241-C
  55. Phelps EA, Delgado MR, Nearing KI, LeDoux JE. Extinction learning in humans: role of the amygdala and vmPFC. Neuron 2004;43:897-905. https://doi.org/10.1016/j.neuron.2004.08.042
  56. Etkin A, Wager TD. Functional neuroimaging of anxiety: a metaanalysis of emotional processing in PTSD, social anxiety disorder, and specific phobia. Am J Psychiatry 2007;164:1476-1488. https://doi.org/10.1176/appi.ajp.2007.07030504
  57. Yan X, Lazar M, Shalev AY, Neylan TC, Wolkowitz OM, Brown AD, et al. WITHDRAWN: Precuneal and amygdala spontaneous activity and functional connectivity in war-zone-related PTSD. Psychiatry Res 2014 Dec 13 [Epub]. http://dx.doi.org/10.1016/j.pscychresns. 2014.12.001.
  58. Brown VM, LaBar KS, Haswell CC, Gold AL; Mid-Atlantic MIRECC Workgroup, McCarthy G, et al. Altered resting-state functional connectivity of basolateral and centromedial amygdala complexes in posttraumatic stress disorder. Neuropsychopharmacology 2014;39:351-359. https://doi.org/10.1038/npp.2013.197
  59. Milad MR, Pitman RK, Ellis CB, Gold AL, Shin LM, Lasko NB, et al. Neurobiological basis of failure to recall extinction memory in posttraumatic stress disorder. Biol Psychiatry 2009;66:1075-1082. https://doi.org/10.1016/j.biopsych.2009.06.026
  60. St Jacques PL, Botzung A, Miles A, Rubin DC. Functional neuroimaging of emotionally intense autobiographical memories in posttraumatic stress disorder. J Psychiatr Res. 2011;45:630-637. https://doi.org/10.1016/j.jpsychires.2010.10.011
  61. Brohawn KH, Offringa R, Pfaff DL, Hughes KC, Shin LM. The neural correlates of emotional memory in posttraumatic stress disorder. Biol Psychiatry 2010;68:1023-1030. https://doi.org/10.1016/j.biopsych.2010.07.018
  62. Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL. A default mode of brain function. Proc Natl Acad Sci U S A 2001;98:676-682. https://doi.org/10.1073/pnas.98.2.676
  63. Buckner RL, Andrews-Hanna JR, Schacter DL. The brain’s default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci 2008;1124:1-38. https://doi.org/10.1196/annals.1440.011
  64. Broyd SJ, Demanuele C, Debener S, Helps SK, James CJ, Sonuga-Barke EJ. Default-mode brain dysfunction in mental disorders: a systematic review. Neurosci Biobehav Rev 2009;33:279-296. https://doi.org/10.1016/j.neubiorev.2008.09.002
  65. Nielsen FA, Balslev D, Hansen LK. Mining the posterior cingulate: segregation between memory and pain components. Neuroimage 2005;27:520-532. https://doi.org/10.1016/j.neuroimage.2005.04.034
  66. Moore SA. Cognitive abnormalities in posttraumatic stress disorder. Curr Opin Psychiatry 2009;22:19-24. https://doi.org/10.1097/YCO.0b013e328314e3bb
  67. Jelinek L, Moritz S, Randjbar S, Sommerfeldt D, Puschel K, Seifert D. Does the evocation of traumatic memories confound subsequent working memory performance in posttraumatic stress disorder (PTSD)? Depress Anxiety 2008;25:175-179. https://doi.org/10.1002/da.20300
  68. McKiernan KA, Kaufman JN, Kucera-Thompson J, Binder JR. A parametric manipulation of factors affecting task-induced deactivation in functional neuroimaging. J Cogn Neurosci 2003;15:394-408. https://doi.org/10.1162/089892903321593117
  69. Fransson P. How default is the default mode of brain function? Further evidence from intrinsic BOLD signal fluctuations. Neuropsychologia 2006;44:2836-2845. https://doi.org/10.1016/j.neuropsychologia.2006.06.017
  70. Sripada RK, King AP, Welsh RC, Garfinkel SN, Wang X, Sripada CS, et al. Neural dysregulation in posttraumatic stress disorder: evidence for disrupted equilibrium between salience and default mode brain networks. Psychosom Med 2012;74:904-911. https://doi.org/10.1097/PSY.0b013e318273bf33
  71. Greicius MD, Supekar K, Menon V, Dougherty RF. Resting-state functional connectivity reflects structural connectivity in the default mode network. Cereb Cortex 2009;19:72-78. https://doi.org/10.1093/cercor/bhn059
  72. van den Heuvel MP, Mandl RC, Kahn RS, Hulshoff Pol HE. Functionally linked resting-state networks reflect the underlying structural connectivity architecture of the human brain. Hum Brain Mapp 2009;30:3127-3141. https://doi.org/10.1002/hbm.20737
  73. Senju A, Johnson MH. The eye contact effect: mechanisms and development. Trends Cogn Sci 2009;13:127-134. https://doi.org/10.1016/j.tics.2008.11.009
  74. Steuwe C, Daniels JK, Frewen PA, Densmore M, Theberge J, Lanius RA. Effect of direct eye contact in women with PTSD related to interpersonal trauma: psychophysiological interaction analysis of connectivity of an innate alarm system. Psychiatry Res 2015;232:162-167. https://doi.org/10.1016/j.pscychresns.2015.02.010
  75. Yin Y, Jin C, Hu X, Duan L, Li Z, Song M, et al. Altered resting-state functional connectivity of thalamus in earthquake-induced posttraumatic stress disorder: a functional magnetic resonance imaging study. Brain Res 2011;1411:98-107. https://doi.org/10.1016/j.brainres.2011.07.016
  76. Tulving E, Kapur S, Craik FI, Moscovitch M, Houle S. Hemispheric encoding/retrieval asymmetry in episodic memory: positron emission tomography findings. Proc Natl Acad Sci U S A 1994;91:2016-2020. https://doi.org/10.1073/pnas.91.6.2016
  77. Heilman KM. The neurobiology of emotional experience. J Neuropsychiatry Clin Neurosci 1997;9:439-448. https://doi.org/10.1176/jnp.9.3.439
  78. Nardo D, Högberg G, Looi JC, Larsson S, Hällström T, Pagani M. Gray matter density in limbic and paralimbic cortices is associated with trauma load and EMDR outcome in PTSD patients. J Psychiatr Res 2010;44:477-485. https://doi.org/10.1016/j.jpsychires.2009.10.014
  79. Parsons RG, Ressler KJ. Implications of memory modulation for post-traumatic stress and fear disorders. Nat Neurosci 2013;16:146-153. https://doi.org/10.1038/nn.3296
  80. Yehuda R, LeDoux J. Response variation following trauma: a translational neuroscience approach to understanding PTSD. Neuron 2007;56:19-32. https://doi.org/10.1016/j.neuron.2007.09.006
  81. Koenigs M, Grafman J. Posttraumatic stress disorder: the role of medial prefrontal cortex and amygdala. Neuroscientist 2009;15:540-548. https://doi.org/10.1177/1073858409333072
  82. Etkin A, Prater KE, Schatzberg AF, Menon V, Greicius MD. Disrupted amygdalar subregion functional connectivity and evidence of a compensatory network in generalized anxiety disorder. Arch Gen Psychiatry 2009;66:1361-1372. https://doi.org/10.1001/archgenpsychiatry.2009.104