References
- Alsbeih G, El-Sebaie M, Al-Harbi N, et al (2013). SNPs in genes implicated in radiation response are associated with radiotoxicity and evoke roles as predictive and prognostic biomarkers. Radiat Oncol, 8, 125. https://doi.org/10.1186/1748-717X-8-125
- Andreassen CN, Overgaard J, Alsner J, et al (2006). ATM sequence variants and risk of radiation-induced subcutaneous fibrosis after postmastectomy radiotherapy. Int J Radiat Oncol Biol Phys, 64, 776-83. https://doi.org/10.1016/j.ijrobp.2005.09.014
- Angele S, Romestaing P, Moullan N, et al (2003). ATM haplotypes and cellular response to DNA damage: association with breast cancer risk and clinical radiosensitivity. Cancer Res, 63, 8717-25.
- Azria D, Ozsahin M, Kramar A, et al (2008). Single nucleotide polymorphisms, apoptosis, and the development of severe late adverse effects after radiotherapy. Clin Cancer Res, 14, 6284-8. https://doi.org/10.1158/1078-0432.CCR-08-0700
- Badie C, Dziwura S, Raffy C, et al (2008). Aberrant CDKN1A transcriptional response associates with abnormal sensitivity to radiation treatment. Br J Cancer, 98, 1845-51. https://doi.org/10.1038/sj.bjc.6604381
- Cesaretti JA, Stock RG, Lehrer S, et al (2005). ATM sequence variants are predictive of adverse radiotherapy response among patients treated for prostate cancer. Intern J Radiat Oncol Biol Phys, 61, 196-202. https://doi.org/10.1016/j.ijrobp.2004.09.031
- Chang-Claude J, Ambrosone CB, Lilla C, et al (2009). Genetic polymorphisms in DNA repair and damage response genes and late normal tissue complications of radiotherapy for breast cancer. Br J Cancer, 100, 1680-6. https://doi.org/10.1038/sj.bjc.6605036
- Edvardsen H, Tefre T, Jansen L, et al (2007). Linkage disequilibrium pattern of the ATM gene in breast cancer patients and controls; association of SNPs and haplotypes to radio-sensitivity and post-lumpectomy local recurrence. Radiat Oncol, 2, 25. https://doi.org/10.1186/1748-717X-2-25
- Fachal L, Gomez-Caamano A, Peleteiro P, et al (2012). Association of a XRCC3 polymorphism and rectum mean dose with the risk of acute radio-induced gastrointestinal toxicity in prostate cancer patients. Radiother Oncol, 105, 321-8. https://doi.org/10.1016/j.radonc.2012.09.013
- Gotoff SP, Amirmokri E, Liebner EJ (1967). Ataxia telangiectasia. Neoplasia, untoward response to x-irradiation, and tuberous sclerosis. Am J Dis Child, 114, 617-25. https://doi.org/10.1001/archpedi.1967.02090270073006
- Ho AY, Fan G, Atencio DP, et al (2007). Possession of ATM sequence variants as predictor for late normal tissue responses in breast cancer patients treated with radiotherapy. Intern J Radiat Oncol Biol Phys, 69, 677-84. https://doi.org/10.1016/j.ijrobp.2007.04.012
- Ishikawa A, Suga T, Shoji Y, et al (2011). Genetic variants of NPAT-ATM and AURKA are associated with an early adverse reaction in the gastrointestinal tract of patients with cervical cancer treated with pelvic radiation therapy. Intern J Radiat Oncol Biol Phys, 81, 1144-52. https://doi.org/10.1016/j.ijrobp.2010.09.012
- Kastan MB, Bartek J (2004). Cell-cycle checkpoints and cancer. Nature, 432, 316-23. https://doi.org/10.1038/nature03097
- Kastan MB, Derheimer FA (2010). Multiple roles of ATM in monitoring and maintaining DNA integrity. Febs Letters, 584, 3675-81. https://doi.org/10.1016/j.febslet.2010.05.031
- Kastan MB, Lim DS (2000). The many substrates and functions of ATM. Nat Rev Mol Cell Biol, 1, 179-86. https://doi.org/10.1038/35043058
- Kurz EU, Lees-Miller SP (2004). DNA damage-induced activation of ATM and ATM-dependent signaling pathways. DNA Repair, 3, 889-900. https://doi.org/10.1016/j.dnarep.2004.03.029
- Lavin MF, Kozlov S (2007). ATM activation and DNA damage response. Cell Cycle, 6, 931-42. https://doi.org/10.4161/cc.6.8.4180
- Morgan JL, Holcomb TM, Morrissey RW (1968). Radiation reaction in ataxia telangiectasia. Am J Dis Child, 116, 557-8.
- Pugh TJ, Keyes M, Barclay L, et al (2009). Sequence variant discovery in DNA repair genes from radiosensitive and radiotolerant prostate brachytherapy patients. Clin Cancer Res, 15, 5008-16. https://doi.org/10.1158/1078-0432.CCR-08-3357
- Raabe A, Derda K, Reuther S, et al (2012). Association of single nucleotide polymorphisms in the genes ATM, GSTP1, SOD2, TGFB1, XPD and XRCC1 with risk of severe erythema after breast conserving radiotherapy. Radiat Oncol, 7, 65. https://doi.org/10.1186/1748-717X-7-65
- Savitsky K, Platzer M, Uziel T, et al (1997). Ataxia-telangiectasia: structural diversity of untranslated sequences suggests complex post-transcriptional regulation of ATM gene expression. Nucleic Acids Res, 25, 1678-84. https://doi.org/10.1093/nar/25.9.1678
- Stone HB, Coleman CN, Anscher MS, et al (2003). Effects of radiation on normal tissue: consequences and mechanisms. Lancet Oncol, 4, 529-36. https://doi.org/10.1016/S1470-2045(03)01191-4
- Tan XL, Popanda O, Ambrosone CB, et al (2006). Association between TP53 and p21 genetic polymorphisms and acute side effects of radiotherapy in breast cancer patients. Breast Cancer Res Treatment, 97, 255-62. https://doi.org/10.1007/s10549-005-9119-2
- Taylor AM, Harnden DG, Arlett CF, et al (1975). Ataxia telangiectasia: a human mutation with abnormal radiation sensitivity. Nature, 258, 427-9. https://doi.org/10.1038/258427a0
- Terrazzino S, La Mattina P, Gambaro G, et al (2012a). Common variants of GSTP1, GSTA1, and TGF beta 1 are associated with the risk of radiation-induced fibrosis in breast cancer patients. Intern J Radiation Oncol Biol Phys, 83, 504-11. https://doi.org/10.1016/j.ijrobp.2011.06.2012
- Terrazzino S, La Mattina P, Masini L, et al (2012b). Common variants of eNOS and XRCC1 genes may predict acute skin toxicity in breast cancer patients receiving radiotherapy after breast conserving surgery. Radiotherapy Oncol, 103, 199-205. https://doi.org/10.1016/j.radonc.2011.12.002
- Thames HD, Withers HR, Peters LJ, et al (1982). Changes in early and late radiation responses with altered dose fractionation: implications for dose-survival relationships. Intern J Radiat Oncol Biol Phys, 8, 219-26. https://doi.org/10.1016/0360-3016(82)90517-X
- Turesson I, Nyman J, Holmberg E, et al (1996). Prognostic factors for acute and late skin reactions in radiotherapy patients. Intern J Radiat Oncol Biol Phys, 36, 1065-75. https://doi.org/10.1016/S0360-3016(96)00426-9
- Uziel T, Savitsky K, Platzer M, et al (1996). Genomic Organization of the ATM gene. Genomics, 33, 317-20. https://doi.org/10.1006/geno.1996.0201
- Wang C, Xiao S, Zhang S (2007). Relation between radiotherapy-induced acute injury of mucosa of nasopharyngeal carcinoma and p53 polymorphisms. Suzhou Univers J Med Sci, 27, 875-77.
- Xiong H, Liao Z, Liu Z, et al (2013). ATM Polymorphisms Predict Severe Radiation Pneumonitis in Patients With Non-Small Cell Lung Cancer Treated With Definitive Radiation Therapy. Intern J Radiat Oncol Biol Phys, 85, 1066-73. https://doi.org/10.1016/j.ijrobp.2012.09.024
- Yang M, Zhang L, Bi N, et al (2011). Association of P53 and ATM polymorphisms with risk of radiation-induced pneumonitis in lung cancer patients treated with radiotherapy. Int J Radiat Oncol Biol Phys, 79, 1402-7. https://doi.org/10.1016/j.ijrobp.2009.12.042
- Zschenker O, Raabe A, Boeckelmann IK, et al (2010). Association of single nucleotide polymorphisms in ATM, GSTP1, SOD2, TGFB1, XPD and XRCC1 with clinical and cellular radiosensitivity. Radiother Oncol, 97, 26-32. https://doi.org/10.1016/j.radonc.2010.01.016
Cited by
- Genetic susceptibility to cutaneous radiation injury vol.309, pp.1, 2017, https://doi.org/10.1007/s00403-016-1702-3