DOI QR코드

DOI QR Code

The Mitochondrial Fusion-Related Proteins Mfn2 and OPA1 are Transcriptionally Induced during Differentiation of Bone Marrow Progenitors to Immature Dendritic Cells

  • Ryu, Seung-Wook (Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology) ;
  • Han, Eun Chun (Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology) ;
  • Yoon, Jonghee (Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology) ;
  • Choi, Chulhee (Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology)
  • Received : 2014.10.27
  • Accepted : 2014.11.04
  • Published : 2015.01.31

Abstract

The shape and activity of mitochondria are tightly regulated by fusion and fission processes that are essential for maintaining normal cellular function. However, little is known about the involvement of mitochondrial dynamics in the development of the immune system. In this study, we demonstrate that mitochondrial dynamics play a role in the differentiation and migration of immature dendritic cells (imDCs). We show that mitochondrial elongation is induced during GM-CSF-stimulated differentiation of bone marrow progenitors to imDCs accompanied by upregulation of mitochondrial fusion proteins. These processes precede the changes in mitochondrial morphology and connectivity that occur during differentiation. Mfn2 and OPA1, but not Mfn1, are transcriptionally upregulated during differentiation; however, knockdown of Mfn2 and OPA1 does not induce any change in expression of CD11c, CDC80, or CD86. Notably, knockdown of Mfn2 or OPA1 by siRNA in imDCs significantly reduces CCR7 expression and CCL19-mediated migration. These results suggest that the mitochondrial fusion-related proteins Mfn2 and OPA1 are upregulated during bone marrow progenitor differentiation and promote the migration of imDCs by regulating the expression of CCR7.

Keywords

References

  1. Aihara, T., Nakamura, N., Honda, S., and Hirose, S. (2009). A novel potential role for gametogenetin-binding protein 1 (GGNBP1) in mitochondrial morphogenesis during spermatogenesis in mice. Biol. Reprod. 80, 762-770. https://doi.org/10.1095/biolreprod.108.074013
  2. Bach, D., Pich, S., Soriano, F.X., Vega, N., Baumgartner, B., Oriola, J., Daugaard, J.R., Lloberas, J., Camps, M., Zierath, J.R., et al. (2003). Mitofusin-2 determines mitochondrial network architecture and mitochondrial metabolism. A novel regulatory mechanism altered in obesity. J. Biol. Chem. 278, 17190-17197. https://doi.org/10.1074/jbc.M212754200
  3. Banchereau, J., and Steinman, R.M. (1998). Dendritic cells and the control of immunity. Nature 392, 245-252. https://doi.org/10.1038/32588
  4. Barbieri, E., Battistelli, M., Casadei, L., Vallorani, L., Piccoli, G., Guescini, M., Gioacchini, A.M., Polidori, E., Zeppa, S., Ceccaroli, P., et al. (2011). Morphofunctional and biochemical approaches for studying mitochondrial changes during myoblasts differentiation. J. Aging Res. 2011, 845379.
  5. Bustos, R.I., Jensen, E.L., Ruiz, L.M., Rivera, S., Ruiz, S., Simon, F., Riedel, C., Ferrick, D., and Elorza, A.A. (2013). Copper deficiency alters cell bioenergetics and induces mitochondrial fusion through up-regulation of MFN2 and OPA1 in erythropoietic cells. Biochem. Biophys. Res. Commun. 437, 426-432. https://doi.org/10.1016/j.bbrc.2013.06.095
  6. Caffin, F., Prola, A., Piquereau, J., Novotova, M., David, D.J., Garnier, A., Fortin, D., Alavi, M.V., Veksler, V., Ventura-Clapier, R., et al. (2013). Altered skeletal muscle mitochondrial biogenesis but improved endurance capacity in trained OPA1-deficient mice. J. Physiol. 591, 6017-6037. https://doi.org/10.1113/jphysiol.2013.263079
  7. Campello, S., Lacalle, R.A., Bettella, M., Manes, S., Scorrano, L., and Viola, A. (2006). Orchestration of lymphocyte chemotaxis by mitochondrial dynamics. J. Exp. Med. 203, 2879-2886. https://doi.org/10.1084/jem.20061877
  8. Dallman, P.R., and Goodman, J.R. (1970). Enlargement of mitochondrial compartment in iron and copper deficiency. Blood 35, 496-505.
  9. Del Prete, A., Zaccagnino, P., Di Paola, M., Saltarella, M., Oliveros Celis, C., Nico, B., Santoro, G., and Lorusso, M. (2008). Role of mitochondria and reactive oxygen species in dendritic cell differentiation and functions. Free Radic. Biol. Med. 44, 1443-1451. https://doi.org/10.1016/j.freeradbiomed.2007.12.037
  10. Detmer, S.A., and Chan, D.C. (2007). Functions and dysfunctions of mitochondrial dynamics. Nat. Rev. Mol. Cell. Biol. 8, 870-879. https://doi.org/10.1038/nrm2275
  11. Favre, C., Zhdanov, A., Leahy, M., Papkovsky, D., and O'Connor, R. (2010). Mitochondrial pyrimidine nucleotide carrier (PNC1) regulates mitochondrial biogenesis and the invasive phenotype of cancer cells. Oncogene 29, 3964-3976. https://doi.org/10.1038/onc.2010.146
  12. Geissmann, F., Dieu-Nosjean, M.C., Dezutter, C., Valladeau, J., Kayal, S., Leborgne, M., Brousse, N., Saeland, S., and Davoust, J. (2002). Accumulation of immature Langerhans cells in human lymph nodes draining chronically inflamed skin. J. Exp. Med. 196, 417-430. https://doi.org/10.1084/jem.20020018
  13. Kraft, C.S., LeMoine, C.M., Lyons, C.N., Michaud, D., Mueller, C.R., and Moyes, C.D. (2006). Control of mitochondrial biogenesis during myogenesis. Am. J. Physiol. Cell Physiol. 290, C1119-1127. https://doi.org/10.1152/ajpcell.00463.2005
  14. Liesa, M., Borda-d'Agua, B., Medina-Gomez, G., Lelliott, C.J., Paz, J.C., Rojo, M., Palacin, M., Vidal-Puig, A., and Zorzano, A. (2008). Mitochondrial fusion is increased by the nuclear coactivator PGC- 1beta. PLoS One 3, e3613. https://doi.org/10.1371/journal.pone.0003613
  15. Liesa, M., Palacin, M., and Zorzano, A. (2009). Mitochondrial dynamics in mammalian health and disease. Physiol. Rev. 89, 799-845. https://doi.org/10.1152/physrev.00030.2008
  16. Otera, H., Wang, C., Cleland, M.M., Setoguchi, K., Yokota, S., Youle, R.J., and Mihara, K. (2010). Mff is an essential factor for mitochondrial recruitment of Drp1 during mitochondrial fission in mammalian cells. J. Cell Biol. 191, 1141-1158. https://doi.org/10.1083/jcb.201007152
  17. Pich, S., Bach, D., Briones, P., Liesa, M., Camps, M., Testar, X., Palacin, M., and Zorzano, A. (2005). The Charcot-Marie-Tooth type 2A gene product, Mfn2, up-regulates fuel oxidation through expression of OXPHOS system. Hum. Mol. Genet. 14, 1405-1415. https://doi.org/10.1093/hmg/ddi149
  18. Ryu, S.W., Yoon, J., Yim, N., Choi, K., and Choi, C. (2013). Downregulation of OPA3 is responsible for transforming growth factor-beta-induced mitochondrial elongation and F-actin rearrangement in retinal pigment epithelial ARPE-19 cells. PLoS One 8, e63495. https://doi.org/10.1371/journal.pone.0063495
  19. Sallusto, F., Mackay, C.R., and Lanzavecchia, A. (2000). The role of chemokine receptors in primary, effector, and memory immune responses. Annu. Rev. Immunol. 18, 593-620. https://doi.org/10.1146/annurev.immunol.18.1.593
  20. Santel, A., and Fuller, M.T. (2001). Control of mitochondrial morphology by a human mitofusin. J. Cell Sci. 114, 867-874.
  21. Shen, J., Liu, X., Yu, W.M., Liu, J., Nibbelink, M.G., Guo, C., Finkel, T., and Qu, C.K. (2011). A critical role of mitochondrial phosphatase Ptpmt1 in embryogenesis reveals a mitochondrial metabolic stress-induced differentiation checkpoint in embryonic stem cells. Mol. Cell Biol. 31, 4902-4916. https://doi.org/10.1128/MCB.05629-11
  22. Thundathil, J., Filion, F., and Smith, L.C. (2005). Molecular control of mitochondrial function in preimplantation mouse embryos. Mol. Reprod. Dev. 71, 405-413. https://doi.org/10.1002/mrd.20260
  23. Toki, S., Goleniewska, K., Huckabee, M.M., Zhou, W., Newcomb, D.C., Fitzgerald, G.A., Lawson, W.E., and Peebles, R.S., Jr. (2013). PGI(2) signaling inhibits antigen uptake and increases migration of immature dendritic cells. J. Leukoc. Biol. 94, 77-88. https://doi.org/10.1189/jlb.1112559
  24. Vafai, S.B., and Mootha, V.K. (2012). Mitochondrial disorders as windows into an ancient organelle. Nature 491, 374-383. https://doi.org/10.1038/nature11707
  25. Wasilewski, M., Semenzato, M., Rafelski, S.M., Robbins, J., Bakardjiev, A.I., and Scorrano, L. (2012). Optic atrophy 1- dependent mitochondrial remodeling controls steroidogenesis in trophoblasts. Curr. Biol. 22, 1228-1234. https://doi.org/10.1016/j.cub.2012.04.054
  26. Wong, E.D., Wagner, J.A., Gorsich, S.W., McCaffery, J.M., Shaw, J.M., and Nunnari, J. (2000). The dynamin-related GTPase, Mgm1p, is an intermembrane space protein required for maintenance of fusion competent mitochondria. J. Cell Biol. 151, 341-352. https://doi.org/10.1083/jcb.151.2.341
  27. Zaccagnino, P., Saltarella, M., Maiorano, S., Gaballo, A., Santoro, G., Nico, B., Lorusso, M., and Del Prete, A. (2012). An active mitochondrial biogenesis occurs during dendritic cell differentiation. Int. J. Biochem. Cell Biol. 44, 1962-1969. https://doi.org/10.1016/j.biocel.2012.07.024
  28. Zhao, J., Zhang, J., Yu, M., Xie, Y., Huang, Y., Wolff, D.W., Abel, P.W., and Tu, Y. (2013). Mitochondrial dynamics regulates migration and invasion of breast cancer cells. Oncogene 32, 4814-4824. https://doi.org/10.1038/onc.2012.494
  29. Zorzano, A., Hernandez-Alvarez, M.I., Palacin, M., and Mingrone, G. (2010). Alterations in the mitochondrial regulatory pathways constituted by the nuclear co-factors PGC-1alpha or PGC-1beta and mitofusin 2 in skeletal muscle in type 2 diabetes. Biochim. Biophys. Acta 1797, 1028-1033. https://doi.org/10.1016/j.bbabio.2010.02.017

Cited by

  1. Human Dendritic Cell Subsets Undergo Distinct Metabolic Reprogramming for Immune Response vol.9, pp.1664-3224, 2018, https://doi.org/10.3389/fimmu.2018.02489
  2. Transient Cerebral Ischemia Promotes Brain Mitochondrial Dysfunction and Exacerbates Cognitive Impairments in Young 5xFAD Mice vol.10, pp.12, 2015, https://doi.org/10.1371/journal.pone.0144068
  3. Culture and Identification of Mouse Bone Marrow-Derived Dendritic Cells and Their Capability to Induce T Lymphocyte Proliferation vol.22, pp.None, 2016, https://doi.org/10.12659/msm.896951
  4. The emerging role of immune dysfunction in mitochondrial diseases as a paradigm for understanding immunometabolism vol.81, pp.None, 2015, https://doi.org/10.1016/j.metabol.2017.11.010
  5. Metabolic Regulation of Dendritic Cell Differentiation vol.10, pp.None, 2015, https://doi.org/10.3389/fimmu.2019.00410
  6. Molecular Biomarkers of the Mitochondrial Quality Control Are Differently Affected by Hypoxia-Reoxygenation Stress in Marine Bivalves Crassostrea gigas and Mytilus edulis vol.7, pp.None, 2015, https://doi.org/10.3389/fmars.2020.604411
  7. Glycolysis – a key player in the inflammatory response vol.287, pp.16, 2015, https://doi.org/10.1111/febs.15327
  8. Mitophagy impairment in neurodegenerative diseases: Pathogenesis and therapeutic interventions vol.57, pp.None, 2021, https://doi.org/10.1016/j.mito.2021.01.001