DOI QR코드

DOI QR Code

Synthesis of Aligned Porous Sn by Freeze-Drying of Tin Chloride/camphene Slurry

염화주석/camphene 슬러리의 동결건조에 의한 방향성 기공구조의 Sn 다공체 제조

  • Bang, Su-Ryong (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Oh, Sung-Tag (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
  • 방수룡 (서울과학기술대학교 신소재공학과) ;
  • 오승탁 (서울과학기술대학교 신소재공학과)
  • Received : 2014.12.05
  • Accepted : 2014.12.10
  • Published : 2015.01.27

Abstract

This paper proposes a novel way of fabricating aligned porous Sn by freeze-drying of camphene slurry with stannic oxide ($SnO_2$) coated Sn powders. The $SnO_2$ coated Sn powders were prepared by surface oxidation of the initial and ball-milled Sn powders, as well as heat treatment of tin chloride coated Cu powders. Camphene slurries with 10 vol% solid powders were prepared by mixing at $50^{\circ}C$ with a small amount of oligomeric polyester dispersant. Freezing the slurry was done in a Teflon cylinder attached to a copper bottom plate cooled at $-25^{\circ}C$. Improved dispersion stability of camphene slurry and the homogeneous frozen body was achieved using the oxidized Sn powder at $670^{\circ}C$ in air after ball milling. The porous Sn specimen, prepared by freeze-drying of the camphene slurry with oxidized Sn powder from the heat-treated Sn/tin chloride mixture and sintering at $1100^{\circ}C$ for 1 h in a hydrogen atmosphere, showed large pores of about $200{\mu}m$, which were aligned parallel to the camphene growth direction, and small pores in their internal walls. However, $100{\mu}m$ spherical particles were observed in the bottom part of the specimen due to the melting of the Sn powder during sintering of the green compact.

Keywords

References

  1. S. Deville, Adv. Eng. Mater., 10(3), 155 (2008). https://doi.org/10.1002/adem.200700270
  2. T. Fukasawa, M. Ando, T. Ohji and S. Kanzaki, J. Am. Ceram. Soc., 84(1), 230 (2001). https://doi.org/10.1111/j.1151-2916.2001.tb00638.x
  3. T. Fukasawa, Z. -Y. Deng, M. Ando, T. Ohji and Y. Goto, J. Mater. Sci., 36(10), 2523 (2001). https://doi.org/10.1023/A:1017946518955
  4. S. Deville, E. Maire, G. Bernard-Granger, A. Lasalle, A. Bogner, C. Gauthier, J. Leloup and C. Guizard, Nature Mater., 8(12), 966 (2009). https://doi.org/10.1038/nmat2571
  5. K. Araki and J. W. Halloran, J. Am. Ceram. Soc., 87(10), 1859 (2004). https://doi.org/10.1111/j.1151-2916.2004.tb06331.x
  6. H. J. Hwang and J. -W. Moon, J. Korean Ceram. Soc., 41(3), 229 (2004) (in Korean). https://doi.org/10.4191/KCERS.2004.41.3.229
  7. B. -H. Yoon, E. -J. Lee, H. -E. Kim and Y. -H. Koh, J. Am. Ceram. Soc., 90(6), 1753 (2007). https://doi.org/10.1111/j.1551-2916.2007.01703.x
  8. S. -T. Oh, S. -Y. Chang and M. -J. Suk, Trans. Nonferrous Met. Soc. China, 22(S3), s688 (2012). https://doi.org/10.1016/S1003-6326(12)61787-7
  9. N. -Y. Kwon and S. -T. Oh, J. Kor. Powd. Met. Inst., 19(4), 259 (2012) (in Korean). https://doi.org/10.4150/KPMI.2012.19.4.259
  10. S. -T. Oh, W. Lee, S. -Y. Chang and M. -J. Suk, Res. Chem. Interm., 40(7), 2495 (2014). https://doi.org/10.1007/s11164-014-1659-9
  11. S. -R. Bang and S. -T. Oh, J. Kor. Powd. Met. Inst., 21(3), 191 (2014) (in Korean). https://doi.org/10.4150/KPMI.2014.21.3.191
  12. O. Mengual, G. Meunier, I. Cayre, K. Puech and P. Snabre, Talanta, 50(2), 445 (1999). https://doi.org/10.1016/S0039-9140(99)00129-0
  13. N. O. Shanti, K. Araki and J. W. Halloran: J. Am. Ceram. Soc., 89(8), 2444 (2006). https://doi.org/10.1111/j.1551-2916.2006.01094.x
  14. B. S. Kim, S. -T. Oh, M. J. Suk and S. Y. Chang, Rev. Adv. Mater. Sci., 28(2), 130 (2011).
  15. R. F. Smart and E. C. Ellwood, Nature, 181(4612), 833 (1958). https://doi.org/10.1038/181833a0
  16. M. E. Alam and M. Gupta, Powder Metall., 52(2), 105(2009). https://doi.org/10.1179/174329008X284895
  17. T. Kimura, S. Inada and T. Yamaguchi, J. Mater. Sci., 24(1), 220 (1989). https://doi.org/10.1007/BF00660957