DOI QR코드

DOI QR Code

Analyzing the compressive strength of clinker mortars using approximate reasoning approaches - ANN vs MLR

  • Beycioglu, Ahmet (Civil Engineering Department, Technology Faculty, Duzce University) ;
  • Emiroglu, Mehmet (Civil Engineering Department, Technology Faculty, Duzce University) ;
  • Kocak, Yilmaz (Department of Construction, Vocational School of Technical Sciences, Dumlupinar University) ;
  • Subasi, Serkan (Civil Engineering Department, Technology Faculty, Duzce University)
  • Received : 2014.02.03
  • Accepted : 2014.11.03
  • Published : 2015.01.25

Abstract

In this paper, Artificial Neural Networks (ANN) and Multiple Linear Regression (MLR) models were discussed to determine the compressive strength of clinker mortars cured for 1, 2, 7 and 28 days. In the experimental stage, 1288 mortar samples were produced from 322 different clinker specimens and compressive strength tests were performed on these samples. Chemical properties of the clinker samples were also determined. In the modeling stage, these experimental results were used to construct the models. In the models tricalcium silicate ($C_3S$), dicalcium silicate ($C_2S$), tricalcium aluminate ($C_3A$), tetracalcium alumina ferrite ($C_4AF$), blaine values, specific gravity and age of samples were used as inputs and the compressive strength of clinker samples was used as output. The approximate reasoning ability of the models compared using some statistical parameters. As a result, ANN has shown satisfying relation with experimental results and suggests an alternative approach to evaluate compressive strength estimation of clinker mortars using related inputs. Furthermore MLR model showed a poor ability to predict.

Keywords

References

  1. Alexandridis, A. Chondrodima, E. and Sarimveis, H. (2013), "Radial basis function network training using a nonsymmetric partition of the input space and particle swarm optimization", IEEE T. Neur. Networ., 24(2), 219-230.
  2. Alexandridis, A. Triantis, D. Stavrakas, I. and Stergiopoulos, C. (2012), "A neural network approach for compressive strength prediction in cement-based materials through the study of pressure-stimulated electrical signals", Construct. Build. Mater., 30(0), 294-300. https://doi.org/10.1016/j.conbuildmat.2011.11.036
  3. Amani, J. and Moeini, R. (2012), "Prediction of shear strength of reinforced concrete beams using adaptive neuro-fuzzy inference system and artificial neural network", Scientia Iranica, 19(2), 242-248. https://doi.org/10.1016/j.scient.2012.02.009
  4. Atici, U. (2011), "Prediction of the strength of mineral admixture concrete using multivariable regression analysis and an artificial neural network", Exp. Syst.Appl., 38(8), 9609-9618. https://doi.org/10.1016/j.eswa.2011.01.156
  5. Bagheri, M., Mirbagheri, S.A., Ehteshami, M. and Bagheri, Z. (2014), "Modeling of a sequencing batch reactor treating municipal wastewater using multi-layer perceptron and radial basis function artificial neural networks", Process Safety and Environmental Protection (In Press).
  6. Bal, L. and Buyle-Bodin, F. (2013), "Artificial neural network for predicting drying shrinkage of concrete", Construct. Build. Mater., 38(0), 248-254. https://doi.org/10.1016/j.conbuildmat.2012.08.043
  7. Basyigit, C., Akkurt, I., Kilincarslan, S. and Beycioglu, A. (2010), "Prediction of compressive strength of heavyweight concrete by ANN and FL models", Neural Comput., 19(4), 507-513. https://doi.org/10.1007/s00521-009-0292-9
  8. Benardos, P.G. and Vosniakos, G.C. (2007), "Optimizing feedforward artificial neural network architecture", Eng. Appl. Artif. Intel., 20(3), 365-382. https://doi.org/10.1016/j.engappai.2006.06.005
  9. Bilgehan, M. (2011), "A comparative study for the concrete compressive strength estimation using neural network and neuro-fuzzy modelling approaches", Nondestructive Testing Evaluation, 26(1), 35-55. https://doi.org/10.1080/10589751003770100
  10. Bilhan, O., Emiroglu, M.E. and Kisi, O. (2011), "Use of artificial neural networks for prediction of discharge coefficient of triangular labyrinth side weir in curved channels", Adv. Eng. Softw., 42(4), 208-214. https://doi.org/10.1016/j.advengsoft.2011.02.006
  11. Bilim C. (2011), "Properties of cement mortars containing clinoptilolite as a supplementary cementitious material", Construct. Build. Mater., 25(8), 3175-3180. https://doi.org/10.1016/j.conbuildmat.2011.02.006
  12. Boga, A.R., O zturk, M. and Topcu, I.B. (2013), "Using ANN and ANFIS to predict the mechanical and chloride permeability properties of concrete containing GGBFS and CNI", Compos. Part B: Eng., 45(1), 688-696. https://doi.org/10.1016/j.compositesb.2012.05.054
  13. Brant, R. (2007) Lecture notes http://stat.ubc.ca/rollin/teach/BiostatW07/reading/MLR.pdf
  14. Celik, I.B., Oner, M. and Can, N.M. (2007), "The influence of grinding technique on the liberation of clinker minerals and cement properties", Cement Concrete Res., 37(9), 1334-1340. https://doi.org/10.1016/j.cemconres.2007.06.004
  15. Dantas, ATA., Batista Leite, M. and de Jesus Nagahama, K. (2013), "Prediction of compressive strength of concrete containing construction and demolition waste using artificial neural networks", Construct.Build. Mater., 38(0), 717-722. https://doi.org/10.1016/j.conbuildmat.2012.09.026
  16. Duan, Z.H., Kou, S.C. and Poon, C.S. (2013), "Prediction of compressive strength of recycled aggregate concrete using artificial neural networks", Construct.Build. Mater., 40(0), 1200-1206. https://doi.org/10.1016/j.conbuildmat.2012.04.063
  17. Dunstetter, F., de Noirfontaine, M.N. and Courtial, M. (2006), ""Polymorphism of tricalcium silicate, the major compound of Portland cement clinker: 1. Structural data: review and unified analysis", Cement Concrete Res., 36(1), 39-53. https://doi.org/10.1016/j.cemconres.2004.12.003
  18. Erdem, H. (2010), "Prediction of the moment capacity of reinforced concrete slabs in fire using artificial neural networks", Adv. Eng. Softw., 41(2), 270-276. https://doi.org/10.1016/j.advengsoft.2009.07.006
  19. Gencel, O., Kocabas, F., Gok, M.S. and Koksal, F. (2011), "Comparison of artificial neural networks and general linear model approaches for the analysis of abrasive wear of concrete", Construct. Build. Mater., 25(8), 3486-3494. https://doi.org/10.1016/j.conbuildmat.2011.03.040
  20. Hou, T-H., Su, C-H. and Chang, H-Z. (2008), "Using neural networks and immune algorithms to find the optimal parameters for an IC wire bonding process", Exp. Syst. Appl., 34(1), 427-436. https://doi.org/10.1016/j.eswa.2006.09.024
  21. Kalayci, S. (2006), Multi varied statistical techniques and SPSS applications, Asil Publishing, Ankara (In Turkish).
  22. Karakurt, C. and Topcu, I.B. (2011), "Effect of blended cements produced with natural zeolite and industrial by-products on alkali-silica reaction and sulfate resistance of concrete", Construct. Build. Mater., 25(4), 1789-1795. https://doi.org/10.1016/j.conbuildmat.2010.11.087
  23. Khan, M.I. (2012), "Mix proportions for HPC incorporating multi-cementitious composites using artificial neural networks", Construct. Build. Mater., 28(1), 14-20. https://doi.org/10.1016/j.conbuildmat.2011.08.021
  24. Khan, M.I. (2012), "Predicting properties of high performance concrete containing composite cementitious materials using artificial neural networks", Auto. Construct., 22(0), 516-524. https://doi.org/10.1016/j.autcon.2011.11.011
  25. Khayet, M. and Cojocaru, C. (2012), "Artificial neural network modeling and optimization of desalination by air gap membrane distillation", Sep. Purif. Technol., 86(0), 171-182. https://doi.org/10.1016/j.seppur.2011.11.001
  26. Krishnamoorthy, C.S. and Rajeev, S. (1996), Artificial Intelligence and Expert Systems for Engineers, Taylor and Francis.
  27. Kyriazopoulos, A., Anastasiadis, C., Triantis, D. and Brown, C.J. (2011), "Non-destructive evaluation of cement-based materials from pressure-stimulated electrical emission-Preliminary results", Construct. Build. Mater., 25(4), 1980-1990. https://doi.org/10.1016/j.conbuildmat.2010.11.053
  28. Liang, X.B. and Wang, J. (2000), "A recurrent neural network for nonlinear optimization with a continuously differentiable objective function and bound constraints", IEEE T. Neur. Networ., 11(6), 1251-1262. https://doi.org/10.1109/72.883412
  29. Lim, S.P. and Haron, H. (2013), "Cube Kohonen Self-Organizing Map (CKSOM) Model With New Equations in Organizing Unstructured Data", IEEE T. Neur. Networ., 24(9), 1414-1424.
  30. Madandoust, R., Bungey, J.H. and Ghavidel, R. (2012), "Prediction of the concrete compressive strength by means of core testing using GMDH-type neural network and ANFIS models", Comput. Mat. Sci., 51(1), 261-272. https://doi.org/10.1016/j.commatsci.2011.07.053
  31. Mashrei, M.A., Seracino, R. and Rahman, M.S. (2013), "Application of artificial neural networks to predict the bond strength of FRP-to-concrete joints", Construct. Build. Mater., 40(0), 812-821. https://doi.org/10.1016/j.conbuildmat.2012.11.109
  32. Mohanraj, M., Jayaraj, S. and Muraleedharan, C. (2012), "Applications of artificial neural networks for refrigeration, air-conditioning and heat pump systems-A review", Renew. Sust. Energ. Rev., 16(2), 1340-1358. https://doi.org/10.1016/j.rser.2011.10.015
  33. Molero, M., Segura, I., Izquierdo, M.A., Fuente, J.V. and Anaya, J.J. (2009), "Sand/cement ratio evaluation on mortar using neural networks and ultrasonic transmission inspection", Ultrasonics, 49(2), 231-237. https://doi.org/10.1016/j.ultras.2008.08.006
  34. Nazari, A. and Riahi, S. (2011), "Prediction split tensile strength and water permeability of high strength concrete containing $TiO_2$ nanoparticles by artificial neural network and genetic programming", Compos.Part B: Eng., 42(3), 473-488. https://doi.org/10.1016/j.compositesb.2010.12.004
  35. Neville, A.M. (2006), Properties of concrete: Pearson Education limited, England.
  36. Onal, O. and Ozturk, A.U. (2010), "Artificial neural network application on microstructure-compressive strength relationship of cement mortar", Adv. Eng. Softw., 41(2), 165-169. https://doi.org/10.1016/j.advengsoft.2009.09.004
  37. Ozturk, A.U. and Turan, M.E. (2012), "Prediction of effects of microstructural phases using generalized regression neural network", Construct. Build. Mater., 29(0), 279-283. https://doi.org/10.1016/j.conbuildmat.2011.10.015
  38. Ozcan, F. Atis, C.D. Karahan, O., Uncuoglu, E. and Tanyildizi, H. (2009), "Comparison of artificial neural network and fuzzy logic models for prediction of long-term compressive strength of silica fume concrete", Adv. Eng. Softw., 40(9), 856-863. https://doi.org/10.1016/j.advengsoft.2009.01.005
  39. Pinter, J.D. (2012), "Calibrating artificial neural networks by global optimization", Exp. Syst.Appl., 39(1), 25-32. https://doi.org/10.1016/j.eswa.2011.06.050
  40. Sahoo, A.K., Zuo, M.J. and Tiwari, M.K. (2012), "A data clustering algorithm for stratified data partitioning in artificial neural network", Exp. Syst. Appl., 39(8), 7004-7014. https://doi.org/10.1016/j.eswa.2012.01.047
  41. Saridemir, M. (2009), "Predicting the compressive strength of mortars containing metakaolin by artificial neural networks and fuzzy logic", Adv. Eng. Softw., 40(9), 920-927. https://doi.org/10.1016/j.advengsoft.2008.12.008
  42. Saridemir, M., Topcu I.B., Ozcan, F. and Severcan, M.H. (2009), "Prediction of long-term effects of GGBFS on compressive strength of concrete by artificial neural networks and fuzzy logic", Construct. Buildi. Mater., 23(3), 1279-1286. https://doi.org/10.1016/j.conbuildmat.2008.07.021
  43. Schneider, M., Romer, M., Tschudin, M. and Bolio, H. (2011), "Sustainable cement production-present and future", Cement Concrete Res., 41(7), 642-650. https://doi.org/10.1016/j.cemconres.2011.03.019
  44. Shah A.A., Alsayed S.H., Abbas, H. and Al-Salloum, Y.A. (2012), "Predicting residual strength of nonlinear ultrasonically evaluated damaged concrete using artificial neural network", Construct. Build. Mater., 29(0), 42-50. https://doi.org/10.1016/j.conbuildmat.2011.10.038
  45. Siddique, R., Aggarwal, P. and Aggarwal, Y. (2011), "Prediction of compressive strength of self-compacting concrete containing bottom ash using artificial neural networks", Adv. Eng.Softw., 42(10), 780-786. https://doi.org/10.1016/j.advengsoft.2011.05.016
  46. Slonski, M. (2010), "A comparison of model selection methods for compressive strength prediction of highperformance concrete using neural networks", Comput. Struct., 88(21-22), 1248-1253. https://doi.org/10.1016/j.compstruc.2010.07.003
  47. Subasi, S. (2009), "Prediction of mechanical properties of cement containing class C fly ash by using artificial neural network and regression technique", Scientific Research Essays, 4(4) 289:297.
  48. Terzi, S. (2007), "Modeling the pavement serviceability ratio of flexible highway pavements by artificial neural networks", Construct. Build. Mater., 21(3), 590-593. https://doi.org/10.1016/j.conbuildmat.2005.11.001
  49. Topcu, I.B. and Saridemir, M. (2008), "Prediction of rubberized mortar properties using artificial neural network and fuzzy logic", J.Mater. Process. Technol., 199(1-3), 108-118. https://doi.org/10.1016/j.jmatprotec.2007.08.042
  50. Triantis, D., Stavrakas, I., Kyriazopoulos, A., Hloupis, G. and Agioutantis, Z. (2012), "Pressure stimulated electrical emissions from cement mortar used as failure predictors", Int. J. Fracture, 175(1), 53-61. https://doi.org/10.1007/s10704-012-9701-7
  51. Uysal, M. and Tanyildizi, H. (2012), "Estimation of compressive strength of self compacting concrete containing polypropylene fiber and mineral additives exposed to high temperature using artificial neural network", Construct. Build.Mater., 27(1), 404-414. https://doi.org/10.1016/j.conbuildmat.2011.07.028

Cited by

  1. Application of expert systems in prediction of flexural strength of cement mortars vol.18, pp.1, 2016, https://doi.org/10.12989/cac.2016.18.1.001
  2. Usability of Fuzzy Logic Modeling for Prediction of Fresh Properties of Self-Compacting Concrete vol.132, pp.3-II, 2017, https://doi.org/10.12693/APhysPolA.132.1140
  3. Torsional parameters importance in the structural response of multiscale asymmetric-plan buildings vol.1, pp.4, 2016, https://doi.org/10.12989/mmm.2016.1.4.285
  4. Non-destructive assessment of the three-point-bending strength of mortar beams using radial basis function neural networks vol.16, pp.6, 2015, https://doi.org/10.12989/cac.2015.16.6.919
  5. Shear forces amplification due to torsion, explicit reliance on structural topology. Theoretical and numerical proofs using the Ratio of Torsion (ROT) concept vol.61, pp.1, 2015, https://doi.org/10.12989/sem.2017.61.1.015
  6. Estimation of compressive strength of BFS and WTRP blended cement mortars with machine learning models vol.19, pp.3, 2015, https://doi.org/10.12989/cac.2017.19.3.275
  7. Torsional parameters importance in the structural response of multiscale asymmetric-plan buildings vol.6, pp.1, 2015, https://doi.org/10.12989/csm.2017.6.1.055
  8. Modeling of mechanical properties of roller compacted concrete containing RHA using ANFIS vol.19, pp.4, 2015, https://doi.org/10.12989/cac.2017.19.4.435
  9. Effect of Shrinkage Reducing Admixture on Drying Shrinkage of Concrete with Different w/c Ratios vol.13, pp.24, 2015, https://doi.org/10.3390/ma13245721