References
- Alexandridis, A. Chondrodima, E. and Sarimveis, H. (2013), "Radial basis function network training using a nonsymmetric partition of the input space and particle swarm optimization", IEEE T. Neur. Networ., 24(2), 219-230.
- Alexandridis, A. Triantis, D. Stavrakas, I. and Stergiopoulos, C. (2012), "A neural network approach for compressive strength prediction in cement-based materials through the study of pressure-stimulated electrical signals", Construct. Build. Mater., 30(0), 294-300. https://doi.org/10.1016/j.conbuildmat.2011.11.036
- Amani, J. and Moeini, R. (2012), "Prediction of shear strength of reinforced concrete beams using adaptive neuro-fuzzy inference system and artificial neural network", Scientia Iranica, 19(2), 242-248. https://doi.org/10.1016/j.scient.2012.02.009
- Atici, U. (2011), "Prediction of the strength of mineral admixture concrete using multivariable regression analysis and an artificial neural network", Exp. Syst.Appl., 38(8), 9609-9618. https://doi.org/10.1016/j.eswa.2011.01.156
- Bagheri, M., Mirbagheri, S.A., Ehteshami, M. and Bagheri, Z. (2014), "Modeling of a sequencing batch reactor treating municipal wastewater using multi-layer perceptron and radial basis function artificial neural networks", Process Safety and Environmental Protection (In Press).
- Bal, L. and Buyle-Bodin, F. (2013), "Artificial neural network for predicting drying shrinkage of concrete", Construct. Build. Mater., 38(0), 248-254. https://doi.org/10.1016/j.conbuildmat.2012.08.043
- Basyigit, C., Akkurt, I., Kilincarslan, S. and Beycioglu, A. (2010), "Prediction of compressive strength of heavyweight concrete by ANN and FL models", Neural Comput., 19(4), 507-513. https://doi.org/10.1007/s00521-009-0292-9
- Benardos, P.G. and Vosniakos, G.C. (2007), "Optimizing feedforward artificial neural network architecture", Eng. Appl. Artif. Intel., 20(3), 365-382. https://doi.org/10.1016/j.engappai.2006.06.005
- Bilgehan, M. (2011), "A comparative study for the concrete compressive strength estimation using neural network and neuro-fuzzy modelling approaches", Nondestructive Testing Evaluation, 26(1), 35-55. https://doi.org/10.1080/10589751003770100
- Bilhan, O., Emiroglu, M.E. and Kisi, O. (2011), "Use of artificial neural networks for prediction of discharge coefficient of triangular labyrinth side weir in curved channels", Adv. Eng. Softw., 42(4), 208-214. https://doi.org/10.1016/j.advengsoft.2011.02.006
- Bilim C. (2011), "Properties of cement mortars containing clinoptilolite as a supplementary cementitious material", Construct. Build. Mater., 25(8), 3175-3180. https://doi.org/10.1016/j.conbuildmat.2011.02.006
- Boga, A.R., O zturk, M. and Topcu, I.B. (2013), "Using ANN and ANFIS to predict the mechanical and chloride permeability properties of concrete containing GGBFS and CNI", Compos. Part B: Eng., 45(1), 688-696. https://doi.org/10.1016/j.compositesb.2012.05.054
- Brant, R. (2007) Lecture notes http://stat.ubc.ca/rollin/teach/BiostatW07/reading/MLR.pdf
- Celik, I.B., Oner, M. and Can, N.M. (2007), "The influence of grinding technique on the liberation of clinker minerals and cement properties", Cement Concrete Res., 37(9), 1334-1340. https://doi.org/10.1016/j.cemconres.2007.06.004
- Dantas, ATA., Batista Leite, M. and de Jesus Nagahama, K. (2013), "Prediction of compressive strength of concrete containing construction and demolition waste using artificial neural networks", Construct.Build. Mater., 38(0), 717-722. https://doi.org/10.1016/j.conbuildmat.2012.09.026
- Duan, Z.H., Kou, S.C. and Poon, C.S. (2013), "Prediction of compressive strength of recycled aggregate concrete using artificial neural networks", Construct.Build. Mater., 40(0), 1200-1206. https://doi.org/10.1016/j.conbuildmat.2012.04.063
- Dunstetter, F., de Noirfontaine, M.N. and Courtial, M. (2006), ""Polymorphism of tricalcium silicate, the major compound of Portland cement clinker: 1. Structural data: review and unified analysis", Cement Concrete Res., 36(1), 39-53. https://doi.org/10.1016/j.cemconres.2004.12.003
- Erdem, H. (2010), "Prediction of the moment capacity of reinforced concrete slabs in fire using artificial neural networks", Adv. Eng. Softw., 41(2), 270-276. https://doi.org/10.1016/j.advengsoft.2009.07.006
- Gencel, O., Kocabas, F., Gok, M.S. and Koksal, F. (2011), "Comparison of artificial neural networks and general linear model approaches for the analysis of abrasive wear of concrete", Construct. Build. Mater., 25(8), 3486-3494. https://doi.org/10.1016/j.conbuildmat.2011.03.040
- Hou, T-H., Su, C-H. and Chang, H-Z. (2008), "Using neural networks and immune algorithms to find the optimal parameters for an IC wire bonding process", Exp. Syst. Appl., 34(1), 427-436. https://doi.org/10.1016/j.eswa.2006.09.024
- Kalayci, S. (2006), Multi varied statistical techniques and SPSS applications, Asil Publishing, Ankara (In Turkish).
- Karakurt, C. and Topcu, I.B. (2011), "Effect of blended cements produced with natural zeolite and industrial by-products on alkali-silica reaction and sulfate resistance of concrete", Construct. Build. Mater., 25(4), 1789-1795. https://doi.org/10.1016/j.conbuildmat.2010.11.087
- Khan, M.I. (2012), "Mix proportions for HPC incorporating multi-cementitious composites using artificial neural networks", Construct. Build. Mater., 28(1), 14-20. https://doi.org/10.1016/j.conbuildmat.2011.08.021
- Khan, M.I. (2012), "Predicting properties of high performance concrete containing composite cementitious materials using artificial neural networks", Auto. Construct., 22(0), 516-524. https://doi.org/10.1016/j.autcon.2011.11.011
- Khayet, M. and Cojocaru, C. (2012), "Artificial neural network modeling and optimization of desalination by air gap membrane distillation", Sep. Purif. Technol., 86(0), 171-182. https://doi.org/10.1016/j.seppur.2011.11.001
- Krishnamoorthy, C.S. and Rajeev, S. (1996), Artificial Intelligence and Expert Systems for Engineers, Taylor and Francis.
- Kyriazopoulos, A., Anastasiadis, C., Triantis, D. and Brown, C.J. (2011), "Non-destructive evaluation of cement-based materials from pressure-stimulated electrical emission-Preliminary results", Construct. Build. Mater., 25(4), 1980-1990. https://doi.org/10.1016/j.conbuildmat.2010.11.053
- Liang, X.B. and Wang, J. (2000), "A recurrent neural network for nonlinear optimization with a continuously differentiable objective function and bound constraints", IEEE T. Neur. Networ., 11(6), 1251-1262. https://doi.org/10.1109/72.883412
- Lim, S.P. and Haron, H. (2013), "Cube Kohonen Self-Organizing Map (CKSOM) Model With New Equations in Organizing Unstructured Data", IEEE T. Neur. Networ., 24(9), 1414-1424.
- Madandoust, R., Bungey, J.H. and Ghavidel, R. (2012), "Prediction of the concrete compressive strength by means of core testing using GMDH-type neural network and ANFIS models", Comput. Mat. Sci., 51(1), 261-272. https://doi.org/10.1016/j.commatsci.2011.07.053
- Mashrei, M.A., Seracino, R. and Rahman, M.S. (2013), "Application of artificial neural networks to predict the bond strength of FRP-to-concrete joints", Construct. Build. Mater., 40(0), 812-821. https://doi.org/10.1016/j.conbuildmat.2012.11.109
- Mohanraj, M., Jayaraj, S. and Muraleedharan, C. (2012), "Applications of artificial neural networks for refrigeration, air-conditioning and heat pump systems-A review", Renew. Sust. Energ. Rev., 16(2), 1340-1358. https://doi.org/10.1016/j.rser.2011.10.015
- Molero, M., Segura, I., Izquierdo, M.A., Fuente, J.V. and Anaya, J.J. (2009), "Sand/cement ratio evaluation on mortar using neural networks and ultrasonic transmission inspection", Ultrasonics, 49(2), 231-237. https://doi.org/10.1016/j.ultras.2008.08.006
-
Nazari, A. and Riahi, S. (2011), "Prediction split tensile strength and water permeability of high strength concrete containing
$TiO_2$ nanoparticles by artificial neural network and genetic programming", Compos.Part B: Eng., 42(3), 473-488. https://doi.org/10.1016/j.compositesb.2010.12.004 - Neville, A.M. (2006), Properties of concrete: Pearson Education limited, England.
- Onal, O. and Ozturk, A.U. (2010), "Artificial neural network application on microstructure-compressive strength relationship of cement mortar", Adv. Eng. Softw., 41(2), 165-169. https://doi.org/10.1016/j.advengsoft.2009.09.004
- Ozturk, A.U. and Turan, M.E. (2012), "Prediction of effects of microstructural phases using generalized regression neural network", Construct. Build. Mater., 29(0), 279-283. https://doi.org/10.1016/j.conbuildmat.2011.10.015
- Ozcan, F. Atis, C.D. Karahan, O., Uncuoglu, E. and Tanyildizi, H. (2009), "Comparison of artificial neural network and fuzzy logic models for prediction of long-term compressive strength of silica fume concrete", Adv. Eng. Softw., 40(9), 856-863. https://doi.org/10.1016/j.advengsoft.2009.01.005
- Pinter, J.D. (2012), "Calibrating artificial neural networks by global optimization", Exp. Syst.Appl., 39(1), 25-32. https://doi.org/10.1016/j.eswa.2011.06.050
- Sahoo, A.K., Zuo, M.J. and Tiwari, M.K. (2012), "A data clustering algorithm for stratified data partitioning in artificial neural network", Exp. Syst. Appl., 39(8), 7004-7014. https://doi.org/10.1016/j.eswa.2012.01.047
- Saridemir, M. (2009), "Predicting the compressive strength of mortars containing metakaolin by artificial neural networks and fuzzy logic", Adv. Eng. Softw., 40(9), 920-927. https://doi.org/10.1016/j.advengsoft.2008.12.008
- Saridemir, M., Topcu I.B., Ozcan, F. and Severcan, M.H. (2009), "Prediction of long-term effects of GGBFS on compressive strength of concrete by artificial neural networks and fuzzy logic", Construct. Buildi. Mater., 23(3), 1279-1286. https://doi.org/10.1016/j.conbuildmat.2008.07.021
- Schneider, M., Romer, M., Tschudin, M. and Bolio, H. (2011), "Sustainable cement production-present and future", Cement Concrete Res., 41(7), 642-650. https://doi.org/10.1016/j.cemconres.2011.03.019
- Shah A.A., Alsayed S.H., Abbas, H. and Al-Salloum, Y.A. (2012), "Predicting residual strength of nonlinear ultrasonically evaluated damaged concrete using artificial neural network", Construct. Build. Mater., 29(0), 42-50. https://doi.org/10.1016/j.conbuildmat.2011.10.038
- Siddique, R., Aggarwal, P. and Aggarwal, Y. (2011), "Prediction of compressive strength of self-compacting concrete containing bottom ash using artificial neural networks", Adv. Eng.Softw., 42(10), 780-786. https://doi.org/10.1016/j.advengsoft.2011.05.016
- Slonski, M. (2010), "A comparison of model selection methods for compressive strength prediction of highperformance concrete using neural networks", Comput. Struct., 88(21-22), 1248-1253. https://doi.org/10.1016/j.compstruc.2010.07.003
- Subasi, S. (2009), "Prediction of mechanical properties of cement containing class C fly ash by using artificial neural network and regression technique", Scientific Research Essays, 4(4) 289:297.
- Terzi, S. (2007), "Modeling the pavement serviceability ratio of flexible highway pavements by artificial neural networks", Construct. Build. Mater., 21(3), 590-593. https://doi.org/10.1016/j.conbuildmat.2005.11.001
- Topcu, I.B. and Saridemir, M. (2008), "Prediction of rubberized mortar properties using artificial neural network and fuzzy logic", J.Mater. Process. Technol., 199(1-3), 108-118. https://doi.org/10.1016/j.jmatprotec.2007.08.042
- Triantis, D., Stavrakas, I., Kyriazopoulos, A., Hloupis, G. and Agioutantis, Z. (2012), "Pressure stimulated electrical emissions from cement mortar used as failure predictors", Int. J. Fracture, 175(1), 53-61. https://doi.org/10.1007/s10704-012-9701-7
- Uysal, M. and Tanyildizi, H. (2012), "Estimation of compressive strength of self compacting concrete containing polypropylene fiber and mineral additives exposed to high temperature using artificial neural network", Construct. Build.Mater., 27(1), 404-414. https://doi.org/10.1016/j.conbuildmat.2011.07.028
Cited by
- Application of expert systems in prediction of flexural strength of cement mortars vol.18, pp.1, 2016, https://doi.org/10.12989/cac.2016.18.1.001
- Usability of Fuzzy Logic Modeling for Prediction of Fresh Properties of Self-Compacting Concrete vol.132, pp.3-II, 2017, https://doi.org/10.12693/APhysPolA.132.1140
- Torsional parameters importance in the structural response of multiscale asymmetric-plan buildings vol.1, pp.4, 2016, https://doi.org/10.12989/mmm.2016.1.4.285
- Non-destructive assessment of the three-point-bending strength of mortar beams using radial basis function neural networks vol.16, pp.6, 2015, https://doi.org/10.12989/cac.2015.16.6.919
- Shear forces amplification due to torsion, explicit reliance on structural topology. Theoretical and numerical proofs using the Ratio of Torsion (ROT) concept vol.61, pp.1, 2015, https://doi.org/10.12989/sem.2017.61.1.015
- Estimation of compressive strength of BFS and WTRP blended cement mortars with machine learning models vol.19, pp.3, 2015, https://doi.org/10.12989/cac.2017.19.3.275
- Torsional parameters importance in the structural response of multiscale asymmetric-plan buildings vol.6, pp.1, 2015, https://doi.org/10.12989/csm.2017.6.1.055
- Modeling of mechanical properties of roller compacted concrete containing RHA using ANFIS vol.19, pp.4, 2015, https://doi.org/10.12989/cac.2017.19.4.435
- Effect of Shrinkage Reducing Admixture on Drying Shrinkage of Concrete with Different w/c Ratios vol.13, pp.24, 2015, https://doi.org/10.3390/ma13245721