참고문헌
- Alfredsson, K. and Stigh, U. (2004), "Continuum damage mechanics revised: A principle for mechanical and thermal equivalence", Int. J. Solids Struct., 41(15), 4025-4045. https://doi.org/10.1016/j.ijsolstr.2004.02.052
- Barbero, E.J., Greco, F. and Lonetti, P. (2005), "Continuum damage-healing mechanics with application to self-healing composites", Int. J. Damage Mech., 14(1), 51-81. https://doi.org/10.1177/1056789505045928
- Brown, E.N., White, S.R. and Sottos, N.R. (2005a), "Retardation and repair of fatigue cracks in a microcapsule toughened epoxy composite-part I: manual infiltration", Compos. Sci. Technol., 65(15), 2466-2473. https://doi.org/10.1016/j.compscitech.2005.04.020
- Brown, E.N., White, S.R. and Sottos, N.R. (2005b), "Retardation and repair of fatigue cracks in a microcapsule toughened epoxy composite-part II: in situ self-healing", Compos. Sci. Technol., 65(15), 2474-2480. https://doi.org/10.1016/j.compscitech.2005.04.053
- Brown, E.N., Sottos, N.R., and White, S.R. (2002), "Fracture testing of a self-healing polymer composite", Exp. Mech., 42(4), 372-379. https://doi.org/10.1007/BF02412141
- Darabi, M.K., Abu Al-Rub, R.K. and Little, D.N. (2012), "A continuum damage mechanics framework for modeling micro-damage healing", Int. J. Solids Struct., 49(3), 492-513. https://doi.org/10.1016/j.ijsolstr.2011.10.017
- Dry, C. and McMillan, W. (1996), "Three-part methylmethacrylate adhesive system as an internal delivery system for smart responsive concrete", Smart Mater. Struct., 5(3), 297-300. https://doi.org/10.1088/0964-1726/5/3/007
- Dry, C.M. (2001), "Design of self-growing, self-sensing, and self-repairing materials for engineering applications", Proc. SPIE, Melbourne, Australia, December.
- Herbst, O. and Luding, S. (2008), "Modeling particulate self-healing materials and application to uni-axial compression", Int. J. Fracture, 154(1-2), 87-103. https://doi.org/10.1007/s10704-008-9299-y
- Jang, S.Y., Kim, B.S. and Oh, B.H. (2011), "Effect of crack width on chloride diffusion coefficients of concrete by steady-state migration tests", Cement Concr. Res., 41(1), 9-19. https://doi.org/10.1016/j.cemconres.2010.08.018
- Ju, J.W. (1989), "On energy-based coupled elastoplastic damage theories: constitutive modeling and computational aspects", Int. J. Solids Struct., 25(7), 803-833. https://doi.org/10.1016/0020-7683(89)90015-2
- Ju, J.W. (1990), "Isotropic and anisotropic damage variables in continuum damage mechanics", J. Eng. Mech., 116(12), 2764-2770. https://doi.org/10.1061/(ASCE)0733-9399(1990)116:12(2764)
- Ju, J.W., Monteiro, P.J. and Rashed, A.I. (1989), "Continuum damage of cement paste and mortar as affected by porosity and sand concentration", J. Eng. Mech., 115(1), 105-130. https://doi.org/10.1061/(ASCE)0733-9399(1989)115:1(105)
- Ju, J.W.,Yuan, K.Y. and Kuo, A. (2012), "Novel strain energy based coupled elastoplastic damage and healing models for geomaterials-Part I: Formulations", Int. J. Damage Mech., 21(4), 525-549. https://doi.org/10.1177/1056789511407359
- Ju, J.W. (1991), "On two-dimensinal self-consistent micromechanical damage models for brittle solids", Int. J. Solids Struct., 27(2), 227-258. https://doi.org/10.1016/0020-7683(91)90230-D
- Ju, J.W. and Chen, T. M. (1994a), "Effective elastic moduli of two-dimensional brittle solids with interacting microcracks. I:basic formulations", J. Appl. Mech., 61(2), 349-357. https://doi.org/10.1115/1.2901451
- Ju, J.W. and Chen, T. M. (1994b), "Effective elastic moduli of two-dimensional brittle solids with interacting microcracks. II: evolutionary damage models", J. Appl. Mech., 61(2), 358-366. https://doi.org/10.1115/1.2901452
- Ju, J.W. and Lee, X. (1991), "Micromechanical damage models for brittle solids. Part I: tensile loadings", J. Eng. Mech., 117(7), 1495-1514. https://doi.org/10.1061/(ASCE)0733-9399(1991)117:7(1495)
- Ju, J.W. and Tseng, K.H. (1992), "A three-dimensional statistical micromechanical theory for brittle solids with interacting microcracks", Int. J. Damage Mech., 1(1), 102-131. https://doi.org/10.1177/105678959200100106
- Ju, J.W. and Tseng, K.H. (1995), "An improved two-dimensional micromechanical theory for brittle solids with randomly located interacting microcracks", Int. J. Damage Mech., 4(1), 23-57. https://doi.org/10.1177/105678959500400103
- Ju, J.W. and Yuan, K.Y. (2012), "New strain-energy-based coupled elastoplastic two-parameter damage and healing models for earth-moving processes", Int. J. Damage Mech., 21(7), 989-1019. https://doi.org/10.1177/1056789511425395
- Li, V.C.,Lim, Y.M. and Chan, Y.W. (1998), "Feasibility study of a passive smart self-healing cementitious composite", Compos. Part B-Eng., 29(6), 819-827. https://doi.org/10.1016/S1359-8368(98)00034-1
- Li, W.T., Jiang, Z.W., Yang, Z.H., Zhao, N. and Yuan, W.Z. (2013), "Self-healing efficiency of cementitious materials containing microcapsules filled with healing adhesive: mechanical restoration and healing process monitored by water absorption", PloS one, 8(11), e81616. https://doi.org/10.1371/journal.pone.0081616
- Marigo, J. (1985), "Modelling of brittle and fatigue damage for elastic material by growth of microvoids", Eng. Fracture Mech., 21(4), 861-874. https://doi.org/10.1016/0013-7944(85)90093-1
- Mehta, P.K. (1997), "Durability-critical issues for the future", Concr. Int., 19(7), 27-33.
- Mookhoek, S.D., Fischer, H.R. and Zwaag, S.v.d. (2009), "A numerical study into the effects of elongated capsules on the healing efficiency of liquid-based systems", Comput. Mater. Sci., 47(2), 506-511. https://doi.org/10.1016/j.commatsci.2009.09.017
- Nishiwaki, T., Mihashi, H.,Jang, B.K. and Miura, K. (2006), "Development of self-healing system for concrete with selective heating around crack", J. Adv. Concr. Technol., 4(2), 267-275. https://doi.org/10.3151/jact.4.267
- Simo, J.C. and Ju, J.W. (1987a), "Strain-and stress-based continuum damage models-I. Formulation", Int. J. Solids Struct., 23(7), 821-840. https://doi.org/10.1016/0020-7683(87)90083-7
- Simo, J.C. and Ju, J.W. (1987b), "Strain-and stress-based continuum damage models-II. Computational aspects", Int. J. Solids Struct., 23(7), 841-869. https://doi.org/10.1016/0020-7683(87)90084-9
- Thao, T.D.P., Johnson, T.J.S., Tong, Q.S. and Dai, P.S. (2009), "Implementation of self-healing in concrete-Proof of concept", IES J.Part A, 2(2), 116-125.
- Van Tittelboom, K., De Belie, N., Lehmann, F. and Grosse, C.U. (2012), "Acoustic emission analysis for the quantification of autonomous crack healing in concrete", Constr. Build. Mater., 28(1), 333-341. https://doi.org/10.1016/j.conbuildmat.2011.08.079
- Van Tittelboom, K., De Belie, N., Van Loo, D. and Jacobs, P. (2011), "Self-healing efficiency of cementitious materials containing tubular capsules filled with healing agent", Cement Concrete Compos., 33(4), 497-505. https://doi.org/10.1016/j.cemconcomp.2011.01.004
- Voyiadjis, G.Z., Shojaei, A. and Li, G. (2011), "A thermodynamic consistent damage and healing model for self healing materials", Int. J. Plast., 27(7), 1025-1044. https://doi.org/10.1016/j.ijplas.2010.11.002
- White, S.R., Sottos, N., Geubelle, P., Moore, J., Kessler, M.R., Sriram, S., Brown, E. and Viswanathan, S. (2001), "Autonomic healing of polymer composites", Nat., 409(6822), 794-797. https://doi.org/10.1038/35057232
- Yang, Z.X., Hollar, J., He, X.D. and Shi, X.M. (2010), "Laboratory assessment of a self-healing cementitious composite", Transport. Res. Rec., 2142(1), 9-17. https://doi.org/10.3141/2142-02
- Yang, Z.X., Hollar, J., He, X.D. and Shi, X.M. (2011), "A self-healing cementitious composite using oil core/silica gel shell microcapsules", Cement Concr. Compos., 33(4), 506-512. https://doi.org/10.1016/j.cemconcomp.2011.01.010
- Yuan, K.Y. and Ju, J.W. (2013), "New strain energy-based coupled elastoplastic damage-healing formulations accounting for effect of matric suction during earth-moving processes", J. Eng. Mech., 139(2), 188-199. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000474
- Yuan, H.F. and Chen, H.S. (2013), "Quantitative solution of size and dosage of capsules for self-healing of cracks in cementitious composites", Comput. Concr., 11(3), 223-236. https://doi.org/10.12989/cac.2013.11.3.223
- Zemskov, S.V., Jonkers, H.M. and Vermolen, F.J. (2010), "An analytical model for the probability characteristics of a crack hitting an encapsulated self-healing agent in concrete", Proceeding of the 12th Int. Conf. on Computer algebra in scientific computing, Springer-Verlag, Berlin, 280-292.
- Zemskov, S.V., Jonkers, H.M. and Vermolen, F.J. (2011), "Two analytical models for the probability characteristics of a crack hitting encapsulated particles: Application to self-healing materials", Comput. Mater. Sci., 50(12), 3323-3333. https://doi.org/10.1016/j.commatsci.2011.06.024
- Zhu, H.H., Zhou, S., Yan, Z.G., Ju, J.W. and Chen, Q. (2014), "A two-dimensional micromechanical damage-healing model on microcrack-induced damage for microcapsule-enabled self-healing cementitious composites under tensile loading", Int. J. Damage Mech., DOI: 10.1177/1056789514522503.
피인용 문헌
- A micromechanical study of the breakage mechanism of microcapsules in concrete using PFC2D vol.115, 2016, https://doi.org/10.1016/j.conbuildmat.2016.04.067
- Experimental and numerical study of crack behaviour for capsule-based self-healing cementitious materials vol.156, 2017, https://doi.org/10.1016/j.conbuildmat.2017.08.157
- Modeling microcapsule-enabled self-healing cementitious composite materials using discrete element method vol.26, pp.2, 2017, https://doi.org/10.1177/1056789516688835
- Research Progress on Numerical Models for Self-Healing Cementitious Materials vol.5, pp.17, 2018, https://doi.org/10.1002/admi.201701378
- Study on Progressive Damage and Failure of Sandstone Samples subjected to Cyclic Disturbance Loads using a Modified Triaxial Test System vol.23, pp.5, 2015, https://doi.org/10.1007/s12205-019-2047-1
- Insight into the inherent randomness of concrete properties using the stochastic micromechanics vol.61, pp.None, 2015, https://doi.org/10.1016/j.probengmech.2020.103064
- Global Sensitivity Analysis for the Polymeric Microcapsules in Self-Healing Cementitious Composites vol.12, pp.12, 2020, https://doi.org/10.3390/polym12122990
- Mechanical responses of microencapsulated self-healing cementitious composites under compressive loading based on a micromechanical damage-healing model vol.30, pp.10, 2015, https://doi.org/10.1177/10567895211011239