DOI QR코드

DOI QR Code

목재 내 Copper Azole 보유량이 목재부후에 미치는 영향

Influence of Copper Azole Retention Level to Wood Decay

  • 이현미 (국립산림과학원 임산공학부 목재가공과) ;
  • 손동원 (국립산림과학원 임산공학부 목재가공과) ;
  • 이한솔 (국립산림과학원 임산공학부 목재가공과) ;
  • 황원중 (국립산림과학원 임산공학부 목재가공과)
  • Lee, Hyun-Mi (Department of Forest Products, Korea Forest Research Institute) ;
  • Son, Dong-Won (Department of Forest Products, Korea Forest Research Institute) ;
  • Lee, Han-Sol (Department of Forest Products, Korea Forest Research Institute) ;
  • Hwang, Won-Joung (Department of Forest Products, Korea Forest Research Institute)
  • 투고 : 2014.07.17
  • 심사 : 2014.10.22
  • 발행 : 2015.01.25

초록

국내에서 사용되고 있는 가압주입 처리용 구리 붕소 아졸화합물계의 목재 방부제 Copper Azole (CuAz)의 목재내 주입량별 부후 특성을 조사하였다. 여러 가지 주입량으로 CuAz-2 방부제를 가압주입한 시편을 이용하여 갈색부후균인 부후개떡버섯에 의한 방부효력시험을 실시한 후 질량감소율을 측정하였다. 또한, CuAz-2 처리 시편을 부후개떡 버섯으로 부후시킨 후 광학현미경과 전자현미경으로 부후 특성을 관찰하였다. 그 결과, 부후개떡버섯에 의한 무처리재는 40% 이상의 질량감소율을 보여주었고 실내 부후에 의한 CuAz-2 약제의 방부효력을 나타내는 값은 $1.79{\sim}3.32kg/m^3$이었다. CuAz-2의 주입량에 따라 횡단면, 방사단면, 접선단면에서의 목재조직은 무처리 시편과 비교하여 부후 정도가 다르게 나타났다. 횡단면에서는 조재와 만재부분에서 수직수지구, 방사조직의 부후가 많이 관찰되었고, 방사단면에서는 방사가도관, 방사유세포, 벽공 부분이 부후되어 파괴되었고, 접선단면에서는 방사조직, 수평수지구가 심하게 부후되었다. 따라서 본 연구에서 주입량에 따른 부후 현상이 크게 차이가 난 점 등을 고려하여, 현재의 CuAz-2 주입량에 대한 적정성 검토가 국내 환경에 대해서 이루어져야 할 것으로 생각된다.

In this study, Copper Azole (CuAz), a domestically available wood preservative for pressure treatment, was employed to perform an experimental research on its infiltration and decay properties in Japanese Red Pine. Test specimens were pressure-injected with CuAz-2 preservative to measure its preservative effectiveness, and then its impact on weight and mass losses. Furthermore, wood specimens were treated with CuAz-2 preservatives of various concentration levels before they were decayed with brown-rot-fungi in order to observe decay properties on light microscope (LM) and field emission scanning electron microscope (FE-SEM). As a result, untreated specimen by Fomitopsis palustris showed the mass loss of more than 40%, and the value of preservative effectiveness of CuAz-2 by indoor decay was $1,73-3.32kg/m^3$. The concentration levels of CuAz-2 preservative were shown to cause significant variations in terms of decay progresses in the cross section, radial section, and tangential section. By contrast, untreated specimens had underwent serious decays in early wood, late wood, longitudinal resin canals, and ray, which led to vertical destruction of wood texture. As for the radial section, ray tracheid, ray parenchyma cell, and window like pits were decayed and destroyed. In the case of tangential section, uniseriate rays and vertical resin canals were seriously decayed. In conclusion, this study indicates that the adequacy of the current CuAz injection amount should be reviewed in the domestic environment because there are significantly different decays at different decay conditions.

키워드

참고문헌

  1. Bravery, A.F. 1971. The application of the scanning electron microscopy in the study of wood decay. Journal of the Institute of Wood Science 5: 13-19.
  2. Choi, Y.S., Kim, M.J., Kim, J.J., Kim, G.H. 2009a. Drawback of the use of a brown-rot fungus Formitopsis palustris의 as a testing fungus for Korea Industrial Standard (KS) and suggestion of alternative testing fungi. 2009 Procedings of the Korean Society of Wood Science and Technology Annual Meeting 103-104.
  3. Choi, Y.S., Kim, G.H., Lim, Y.W., Kim, S.H., Imamura, Y., Yoshimura, T., Kim, J.-J. 2009b. Characterization of a strong CCA-treated wood degrader, unknown Crustoderma species. Antonie van Leeuwenhoek 95(3): 285-293. https://doi.org/10.1007/s10482-009-9311-1
  4. Choi, Y.S., Kim, J.J., Kim, M.J., Imamura, Y., Yoshimura, T., Kim, G.H. 2012 Fungal biodegradation of CCA-treated wood and removal of its metal components. Chemosphere 88(6): 725-729. https://doi.org/10.1016/j.chemosphere.2012.03.062
  5. Cowling, E.B. 1961. Comparative biochemistry of the decay of sweetgum by white and brown rot fungi. USDA Tech, Bull. 1258, Washington, DC.
  6. Green, F. III., Larsen, M.J., Murmanis L., Highley, T.L. 1992. Immuno-scanning electron microscopic localization of extracellular polysaccharidases within the fibrillar sheath of the brown-rot fungus Postia placenta. Canadian Journal of Botany 38: 898-904.
  7. Green, F.G., Highley, T. L. 1997. Mechanisms of brown rot decay: paradigm of paradox. Biodeterioration & Biodegradation 39(2-3): 113-124. https://doi.org/10.1016/S0964-8305(96)00063-7
  8. Hastrup, A.C.S., Green III, F. Clausen, C.A., Jensen, B. 2005. Tolerance of Serpula lacrymans to Copper-based wood preservatives. International Biodeterioration and Biodegradation 56: 173-177. https://doi.org/10.1016/j.ibiod.2005.06.008
  9. Kear, G. 2007. Use stainless steel with new timber treatments. Research. Build. pp: 68-70.
  10. Kear, G., Wú, H., Jones, M.S. 2009. Weight loss studies of fastener materials corrosion in contact with timbers treated with copper azole alkaline copper quaternary compounds. Corrosion Science 51: 252-262. https://doi.org/10.1016/j.corsci.2008.11.012
  11. Kim, H.Y., Jeong, H., Min, S.B.C., Ahn, S.H., Oh, S.C., Yoon, Y.H., Choi, I.C., Yang, I. 2011. Antifungal efficacy of environmentally friendly wood preservatives formulated with enzymatic- hydrolyzed Okara, copper, or boron salts. Environmental Toxicology and Chemistry 30(6): 1297-1305. https://doi.org/10.1002/etc.515
  12. Kim, H.S., Eon, Y.G. 2006. Microscopic patterns of decay caused by Tyromyces palustris and Gloeophyllum trabeum in Korean Red Pine and Radiata Pine woods. Mokchae Konghak 34(5): 1-10.
  13. Kim, Y.S. 2012. Study on improvement of the test methods and a use control scheme of treated wood and wood preservatives(II). pp: 267-269.
  14. Lee, H.M., Lee, D.H., Hwang, W.J. 2013. Penetration of ACQ treatment and its effect of degradation on wood tissues (structure). Journal of The Korean Wood Science and Technology 41(6): 578-582.
  15. Lee, K.H. 2002. Ligninolytic enzyme production and micromorphological characteristics of wood decayed by brown-rot fungus Coniophora puteana. Master Thesis.
  16. Nicholas, D.D., Highley, T.L. 1997. Comparative performance of several ammoniacal copper preservative systems. International Research Group on Wood Preservation, IRG/WP. 97-30151.
  17. Preston, A.F., Jin, L., Nicholas, D., Zahora, A., Walcheski, P., Archer, K., Schultz, T. 2008. Field stake tests with copper-based preservatives. IRG/WP 08-30259. International Research Group on Wood Preservation, IRG Secretariat, Stockholm.
  18. Tsunoda, K., Nagashima, K., Takahashi, M. 1997. High tolerance of wood-destroying brownn-rot fungi to copper-based fungicides. Material und organismen 31(1): 31-44.
  19. Wilcox, W.W. 1968. Changes in wood microstructure through progressive stages of decay. USDA Forest Service Research Paper FPL-70.