DOI QR코드

DOI QR Code

Effect of Different Delignification Degrees of Korean White Pine Wood on Fibrillation Efficiency and Tensile Properties of Nanopaper

잣나무의 탈리그닌 정도가 습식 해섬처리 효율 및 나노종이 인장 특성에 미치는 영향

  • Park, Chan-Woo (Department of Forest Biomaterials Engineering, College of Forest and Environmental Sciences, Kangwon National University) ;
  • Lee, Seo-Ho (Department of Forest Biomaterials Engineering, College of Forest and Environmental Sciences, Kangwon National University) ;
  • Han, Song-Yi (Department of Forest Biomaterials Engineering, College of Forest and Environmental Sciences, Kangwon National University) ;
  • Kim, Bo-Yeon (Department of Forest Biomaterials Engineering, College of Forest and Environmental Sciences, Kangwon National University) ;
  • Jang, Jae-Hyuk (Department of Forest Biomaterials Engineering, College of Forest and Environmental Sciences, Kangwon National University) ;
  • Kim, Nam-Hun (Department of Forest Biomaterials Engineering, College of Forest and Environmental Sciences, Kangwon National University) ;
  • Lee, Seung-Hwan (Department of Forest Biomaterials Engineering, College of Forest and Environmental Sciences, Kangwon National University)
  • 박찬우 (강원대학교 산림환경과학대학 산림바이오소재공학과) ;
  • 이서호 (강원대학교 산림환경과학대학 산림바이오소재공학과) ;
  • 한송이 (강원대학교 산림환경과학대학 산림바이오소재공학과) ;
  • 김보연 (강원대학교 산림환경과학대학 산림바이오소재공학과) ;
  • 장재혁 (강원대학교 산림환경과학대학 산림바이오소재공학과) ;
  • 김남훈 (강원대학교 산림환경과학대학 산림바이오소재공학과) ;
  • 이승환 (강원대학교 산림환경과학대학 산림바이오소재공학과)
  • Received : 2014.07.08
  • Accepted : 2014.09.16
  • Published : 2015.01.25

Abstract

In this study, the effect of delignification degree of Korean white pine wood on fibrillation efficiency by wet disk-milling (WDM) and the properties of thus-obtained microfibrillated cellulose (MFC) were investigated. The effect on the tensile properties of nanopaper was also investigated. The delignification degree was adjusted by repeating 'Wise' method using sodium chlorite and acetic acid. The increase in delignification degree improved fibrillation efficiency, showing the smaller nanofiber dimension at the shorter WDM time. The filtration time of MFC water suspension was increased by the increase of WDM cycles. Tensile strength and elastic modulus of the nanopaper were increased by increasing delignification degree and disk-milling cycles.

본 연구에서는 잣나무 목분의 탈리그닌 정도가 습식디스크밀을 이용한 해섬처리의 효율에 미치는 영향과 얻어진 해섬물의 성질을 조사하였다. 또한, 탈리그닌 정도가 종이의 인장강도 특성에 미치는 영향도 조사하였다. 탈리그닌의 정도는 아염소산나트륨과 초산을 사용하는 Wise법의 처리횟수를 달리함으로서 조절하였다. 탈리그닌 정도가 증가함에 따라 해섬효율은 향상되었으며, 디스크밀 처리횟수가 증가함으로서 섬유직경은 감소, 여수시간은 증가하였다. 또한 종이의 인장강도 및 탄성률도 탈리그닌 정도 및 디스크밀 처리횟수가 증가할수록 증가하였다.

Keywords

References

  1. Abe, K., Iwamoto, S., Yano, H. 2007. Obtaining Cellulose Nanofibers with a Uniform Width of 15 nm from Wood. Biomacromolecules 8(10): 3276-3278. https://doi.org/10.1021/bm700624p
  2. Agoda-Tandjawa, G., Durand, S., Berot, S., Blassel, C., Gaillard, C., Garnier, C., Doublier, J.-L. 2010. Rheological characterization of microfibrillated cellulose suspensions after freezin. Carbohydrate Polymers 80(3): 677-686. https://doi.org/10.1016/j.carbpol.2009.11.045
  3. Bhatnagar, A., Sain, M. 2005. Processing of Cellulose Nanofiber-reinforced Composites. Journal of reinforced plastics and composites 24(12): 1259-1268. https://doi.org/10.1177/0731684405049864
  4. Chakraborty, A., Sain, M., Kortschot, M. 2005. Cellulose microfibrils: A novel method of preparation using high shear refining and cryocrushing. Holzforschung 59(1): 102-107. https://doi.org/10.1515/HF.2005.016
  5. Chun, S.J., Lee, S.Y., Doh, G.H., Lee, S., Kim, J.H. 2011. Preparation of ultrastrength nanopapers using cellulose nanofibrils. Journal of Industrial and Engineering Chemistry 17(3): 521-526. https://doi.org/10.1016/j.jiec.2010.10.022
  6. Gross, R.A., Kalra, B. 2002. Biodegradable Polymers for the Environment. Science 297(5582): 803-807. https://doi.org/10.1126/science.297.5582.803
  7. Habibi, Y., Lucia, L.A., Rojas, O.J. 2010. Cellulose Nanocrystals: Chemistry, Self-Assembly, and Applications. Chemical Reviews 110(6): 3479-3500. https://doi.org/10.1021/cr900339w
  8. Hassan, M.L., Mathew, A.P., Hassan, E.A., Oksman, K. 2010. Effect of pretreatment of bagasse pulp on properties of isolated nanofibers and nanopaper sheets. Wood and Fiber Science 42(3): 362-376.
  9. Hon, D.N.S. 1994. Cellulose: A random-walk along its historical path. Cellulose 1(1): 1-25. https://doi.org/10.1007/BF00818796
  10. Iwamoto, S., Nakagaito, A. N., Yano, H. 2007. Nano-fibrillation of pulp fibers for the processing of transparent nanocomposites. Applied Physics A: Materials Science & Processing 89(2): 461-466. https://doi.org/10.1007/s00339-007-4175-6
  11. Jang, J.H., Lee, S.H., Endo,T., Kim, N.H. 2013. Characteristics of microfibrillated cellulosic fibers and paper sheets from Korean white pine. Wood Science and Technology 47(5): 925-937. https://doi.org/10.1007/s00226-013-0543-x
  12. Kalia, S., Boufi, S., Celli, A., Kango, S. 2014. Nanofibrillated cellulose: surface modification and potential applications. Colloid and Polymer Science 292(1): 5-31. https://doi.org/10.1007/s00396-013-3112-9
  13. Lee, S.H., Chang, F., Inoue, S., Endo, T. 2010. Increase in enzyme accessibility by generation of nanospace in cell wall supramolecular structure. Bioresource Technology 101(19): 7218-7223. https://doi.org/10.1016/j.biortech.2010.04.069
  14. Lee, S.Y., Chun, S.J., Doh, G.H., Lee, S., Kim, B.H., Min, K.S., Kim, S.C., Huh, Y.S. 2011. Preparation of cellulose Nanofibrils and Their Applications: High strength Nanopapers and Polymer Composite Films. Journal of The Korean Wood Science and Technology 39(3): 197-205. https://doi.org/10.5658/WOOD.2011.39.3.197
  15. Okahisa, Y., Abe, K., Nogi, M., Nakagaito, A.N., Nakatani, T., Yano, H. 2011. Effects of delignification in the production of plant-based cellulose nanofibers for optically transparent nanocomposites. Composites science and technology 71(10): 1342-1347. https://doi.org/10.1016/j.compscitech.2011.05.006
  16. Siqueira, G., Bras, J., Dufresne, A. 2010. Luffa cylindrica as a lignocellulosic source of fiber, microfibrillated cellulose, and cellulose nanocrystals. BioResources 5(2): 727-740.
  17. Wise, L.E., Murphy, M., Addieco, A.A. 1946. Isolation of holocellulose from wood. Paper Trade Journal 122: 35-43.
  18. Yang, H., Yan, R., Chen, H., Lee, D.H., Zheng, C. 2007. Characteristics of hemicellulose. cellulose and lignin pyrolysis 86(12-13): 1781-1788.

Cited by

  1. Effect of The Addition of Various Cellulose Nanofibers on The Properties of Sheet of Paper Mulberry Bast Fiber vol.43, pp.6, 2015, https://doi.org/10.5658/WOOD.2015.43.6.730
  2. Size Fractionation of Cellulose Nanofibers by Settling Method and Their Morphology vol.44, pp.3, 2016, https://doi.org/10.5658/WOOD.2016.44.3.398