DOI QR코드

DOI QR Code

Vicarious Radiometric Calibration of RapidEye Satellite Image Using CASI Hyperspectral Data

CASI 초분광 영상을 이용한 RapidEye 위성영상의 대리복사보정

  • Chang, An Jin (Texas A&M University Corpus Christi) ;
  • Choi, Jae Wan (School of Civil Engineering, Chungbuk National University) ;
  • Song, Ah Ram (Department of Civil and Environmental Engineering, Seoul National University) ;
  • Kim, Ye Ji (Department of Civil and Environmental Engineering, Seoul National University) ;
  • Jung, Jin Ha (Texas A&M University Corpus Christi)
  • Received : 2015.05.18
  • Accepted : 2015.08.04
  • Published : 2015.09.30

Abstract

All kinds of objects on the ground have inherent spectral reflectance curves, which can be used to classify the ground objects and to detect the target. Remotely sensed data have to be transferred to spectral reflectance for accurate analysis. There are formula methods provided by the institution, mathematical model method and ground-data-based method. In this study, RapidEye satellite image was converted to reflectance data using spectral reflectance of a CASI hyperspectral image by using vicarious radiometric calibration. The results were compared with those of the other calibration methods and ground data. The proposed method was closer to the ground data than ATCOR and New Kurucz 2005 method and equal with ELM method.

지상의 모든 물체는 고유의 분광 반사율을 갖고 있으며, 이러한 특성을 이용하여 지상 물체의 분류와 목표물 탐지 등이 가능하다. 정확한 분석을 위해서는 취득된 원격탐사 자료를 분광 반사율로 변환해야 한다. 이를 위한 절대복사보정 기법으로는 자료 제공 기관에서 명시한 변환 수식을 이용하는 방법, 지상에서 측정한 분광 반사율만으로 단순 경험적 회귀 분석을 이용하는 방법, ATCOR/FLAASH 같은 수학적 모델을 이용하는 방법 등이 있다. 본 연구에서는 CASI 초분광 영상의 분광 반사율 자료를 이용하여 RapidEye 위성영상의 대리복사보정을 수행하고, 그 결과를 다른 복사보정 기법 결과 및 지상 자료와 비교하였다. 실험 결과 제안 기법이 ATCOR 및 New Kurucz 2005 기법보다 높은 유사성을 보였으며, 일반적으로 활용되는 ELM 기법과 유사한 결과를 도출하였다.

Keywords

References

  1. Ben-Dor, E., Kindel, B. and Goez, A. F. H., 2004, Quality assessment of several methods to recover surface reflectance using synthetic imaging spectroscopy data, Remote Sensing of Environment, Vol. 90, No. 3, pp. 389-404. https://doi.org/10.1016/j.rse.2004.01.014
  2. Bernstein, L. S., Jin, S., Gregor, B. and Adler-Golden, S. M., 2012, The Quick Atmospheric Correction (QUAC) Code: algorithm description and recent upgrades, SPIE Optical Engineering, Vol. 51, No. 11, pp. 111719.
  3. BlackBridge, 2012, Spectral response curves of the RapidEye sensor, http://blackbridge.com/rapideye/upload/Spectral_Response_Curves.pdf
  4. BlackBridge, 2015, Product information, http://blackbridge.com/rapideye/about/resources.htm
  5. Brook, A. and Ben-Dor, E., 2011, Supervised vicarious calibration (SVC) of hyperspectral remotesensing data, Remote Sensing of Environment, Vol. 115, No. 6, pp. 1543-1555. https://doi.org/10.1016/j.rse.2011.02.013
  6. Chang, A., Eo, Y., Kim, S., Kim, Y. and Kim, Y., 2011, Canopy-cover thematic-map generation for military map products using remote sensing data in inaccessible areas, Landscape and Ecological Engineering, Vol. 7, No. 1, pp. 263-274. https://doi.org/10.1007/s11355-010-0132-1
  7. Chang, A., Kim, Y., Choi, S., Han, D., Choi, J., Kim, Y., Han, Y., Park, H., Wang, B. and Lim, H., 2013, Construction and data analysis of test-bed by hyperspectral airborne remote sensing, Korean Journal of Remote Sensing, Vol. 29, No. 2, pp. 161-172. https://doi.org/10.7780/kjrs.2013.29.2.1
  8. Chi, J., 2013, Validation of the radiometric characteristics of Landsat 8 (LDCM) OLI sensor using band aggregation technique of EO-1 Hyperion Hyperspectral imagery, Korean Journal of Remote Sensing, Vol. 29, No. 4, pp. 399-406. https://doi.org/10.7780/kjrs.2013.29.4.5
  9. Cho, H. G., Kim, D. W. and Shin, J. I., 2014, Study of comparison of classification accuracy of airborne hyperspectral image land cover classification though resolution change, Journal of the Korean Society for Geospatial Information System, Vol. 22, No. 3, pp. 155-160. https://doi.org/10.7319/kogsis.2014.22.3.155
  10. Choi. B. G., Na, Y. W., Kim, S. H. and Lee, J. I., 2014, A study on the improvement classification accuracy of land cover using the aerial hyperspectral image with PCA, Journal of the Korean Society for Geospatial Information System, Vol. 22, No. 1, pp. 81-88. https://doi.org/10.7319/kogsis.2014.22.1.081
  11. Choi, J. W., Byun, Y. G., Kim, Y. I. and Yu, K. Y., 2006, Support vector machine classification of hyperspectral image using spectral similarity kernel, Journal of the Korean Society for Geospatial Information System, Vol. 14, No. 4, pp. 71-77.
  12. Jung, T. W., Eo, Y. D., Jin, T., Lim, S. B. and Park, D. Y., 2009, Comparison of digital number distribution changes of each class according to atmospheric correction in Landsat-5 TM, Korean Journal of Remote Sensing, Vol. 25, No. 1, pp. 11-20. https://doi.org/10.7780/kjrs.2009.25.1.11
  13. Kim, Y., 2014, Block-based image fusion using band simulateion for hyperspectral and multispectral images, Master's thesis, Seoul National University, Seoul, South Korea.
  14. Kim, Y. S. and Lee, G. W., 2005, An experimental study on the image-based atmospheric correction method for high resolution multispectral data, Proc. of 2005 IGARSS, Seoul, South Korea, Jul. 25-29, Vol. 1, pp. 434-436.
  15. Pahlevan, N. and Schott, J. R., 2013, Leveraging EO-1 to evaluate capability of new generation of Landsat sensors for coastal/inland water studies, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 6, No. 2, pp. 360-374. https://doi.org/10.1109/JSTARS.2012.2235174