DOI QR코드

DOI QR Code

Research Progress of the Structure Vibration-Attitude Coordinated Control of Spacecraft

  • Yang, Jingyu (Laboratory of Space Solar Power Station Dynamics and Control, Faculty of Aerospace Engineering, Shenyang Aerospace University) ;
  • Qu, Shiying (Laboratory of Space Solar Power Station Dynamics and Control, Faculty of Aerospace Engineering, Shenyang Aerospace University) ;
  • Lin, Jiahui (Laboratory of Space Solar Power Station Dynamics and Control, Faculty of Aerospace Engineering, Shenyang Aerospace University) ;
  • Liu, Zhiqi (Laboratory of Space Solar Power Station Dynamics and Control, Faculty of Aerospace Engineering, Shenyang Aerospace University) ;
  • Cui, Xuanming (Laboratory of Space Solar Power Station Dynamics and Control, Faculty of Aerospace Engineering, Shenyang Aerospace University) ;
  • Wang, Chu (Laboratory of Space Solar Power Station Dynamics and Control, Faculty of Aerospace Engineering, Shenyang Aerospace University) ;
  • Zhang, Dujiang (Laboratory of Space Solar Power Station Dynamics and Control, Faculty of Aerospace Engineering, Shenyang Aerospace University) ;
  • gu, Mingcheng (Laboratory of Space Solar Power Station Dynamics and Control, Faculty of Aerospace Engineering, Shenyang Aerospace University) ;
  • Sun, Zhongrui (Laboratory of Space Solar Power Station Dynamics and Control, Faculty of Aerospace Engineering, Shenyang Aerospace University) ;
  • Yang, Kang (Laboratory of Space Solar Power Station Dynamics and Control, Faculty of Aerospace Engineering, Shenyang Aerospace University) ;
  • Zhou, Lanwei (The State Key Laboratory of Mechanics and Control for Mechanical Structures, Nanjing University of Aeronautics and Astronautics) ;
  • Chen, Guoping (The State Key Laboratory of Mechanics and Control for Mechanical Structures, Nanjing University of Aeronautics and Astronautics)
  • Received : 2015.05.27
  • Accepted : 2015.12.15
  • Published : 2015.12.30

Abstract

This paper gives an overview of research on the field of structure vibration-attitude coordinated control of spacecraft. First of all, the importance of the technology has been given an introduction, and then later the research progress of space structure dynamics modeling, research progress of structure vibration-attitude coordinated control of flexible spacecraft have been discussed respectively. Finally, future research on application of structure vibration-attitude coordinated control of spacecraft has been recommended.

Keywords

References

  1. S. Glasstone, Sourcebook on the Space Sciences. 1965.
  2. P. C. Hughes, Spacecraft Attitude Dynamics, Dover Publications, 1986.
  3. L. P. W, "Spacecraft Attitude Dynamics and Control-A Personal Perspective on Early Developments", J. Guid. Control. Dyn., Vol. 19, 1986, pp. 129-134.
  4. M. Balas, "Trends in large space structure control theory: fondest hopes, wildest dreams", Autom. Control. IEEE Trans., Vol. 27, No. 3, 1982, pp. 522-535. https://doi.org/10.1109/TAC.1982.1102953
  5. H. H. Cheng Liu, Qiang Tian, and Dong Yan, "Dynamic analysis of membrane systems undergoing overall motions, large deformations and wrinkles via thin shell elements of ANCF", Com put. Methods Appl.Mech.Engrg., Vol. 258, 2013, pp. 81-95. https://doi.org/10.1016/j.cma.2013.02.006
  6. E. J. L. Shabana, and A A, Hussien, H. A., "Application of the absolute nodal coordinate formulation to large rotation and large deformation problems", J. Mech. Des., Vol. 120, No. 2, 1998, pp. 188-195. https://doi.org/10.1115/1.2826958
  7. S. A. A. and Berzeri, M., "Development of simple models for the elastic forces in the absolute nodal coordinate formulation", J. Sound Vib., Vol. 235, No. 4, 2000, pp.539-565. https://doi.org/10.1006/jsvi.1999.2935
  8. S. A. A., Omar, M. A., "A two-dimensional shear deformable beam for large rotation and deformation problems", J. Sound Vib., Vol. 243, No. 3, 2001, pp. 565-576. https://doi.org/10.1006/jsvi.2000.3416
  9. M. A. M., Kerkkanen K. S. and Sopanen, J. T., "A linear beam finite element based on the absolute nodal coordinate formulation", J. Mech. Des., Vol. 127, No. 4, 2005, pp. 621-630. https://doi.org/10.1115/1.1897406
  10. M. A. M., Dufva, K. E. and Sopanen, J. T., "Threedimensional beam element based on a cross-sectional coordinate system approach", Nonlinear Dyn., Vol. 43, No. 4, 2006, pp. 311-327. https://doi.org/10.1007/s11071-006-8326-7
  11. M. A. M., Dufva, K. E. and Sopanen, J. T., "A twodimensional shear deformable beam element based on the absolute nodal coordinate formulation", J. Sound Vib., Vol. 280, No. 3, 2005, pp. 719-738. https://doi.org/10.1016/j.jsv.2003.12.044
  12. E. J. L., Garcia-Vallejo, D. and Mikkola, A. M., "A new locking-free shear deformable finite element based on absolute nodal coordinates", Nonlinear Dyn., Vol. 50, No. 1, 2007, pp. 249-264. https://doi.org/10.1007/s11071-006-9155-4
  13. S. Y. and Sugiyama, H., "A curved beam element in the analysis of flexible multi-body systems using the absolute nodal coordinates", J. Multi-body Dyn., Vol. 221, No. 2, 2007, pp. 219-231, 2007.
  14. A. A. S., Pengfei, Li, and Florentina, M. Gantoi, "Higher order representation of the beam cross section deformation in large displacement finite element analysis", J. Sound Vib., Vol. 330, 2011, pp. 6495-6508. https://doi.org/10.1016/j.jsv.2011.07.013
  15. H. H., Cheng Liu, and Qiang Tian, "New spatial curved beam and cylindrical shell elements of gradient-deficient Absolute Nodal Coordinate Formulation", Nonlinear Dyn, Vol. 70, 2012, pp. 1903-1918. https://doi.org/10.1007/s11071-012-0582-0
  16. S. A. A. and Mikkola, A. M., "A non-incremental finite element procedure for the analysis of large deformation of plates and shells in mechanical system applications", Multibody Syst. Dyn., Vol. 9, No. 3, 2003, pp. 283-309. https://doi.org/10.1023/A:1022950912782
  17. P. D. Y. and Dmitrochenko, O. N., "Generalization of plate finite elements for absolute nodal coordinate formulation", Multibody Syst. Dyn., Vol. 10, No. 1, 2003, pp. 17-43. https://doi.org/10.1023/A:1024553708730
  18. Yoo, W., Lee, J. and Park, S., "Large deflection analysis of a thin plate: computer simulations and experiments", Multibody Syst. Dyn., Vol. 11, No. 2, 2004, pp. 185-208. https://doi.org/10.1023/B:MUBO.0000025415.73019.bb
  19. M. A. and Dmitrochenko, O., "Two simple triangular plate elements based on the absolute nodal coordinate formulation", J. Comput. Nonlinear Dyn., Vol. 3, No. 4, 2008, pp. 12-41.
  20. J. F. Grzegorz ORZECHOWSKI, "INTEGRATION OF THE EQUATIONS OF MOTION OF MULTIBODY SYSTEMS USING ABSOLUTE NODAL COORDINATE FORMULATION", Acta Mech. Autom., Vol. 6, No. 2, 2012, pp. 75-83.
  21. G. ORZECHOWSKI, "ANALYSIS OF BEAM ELEMENTS OF CIRCULAR CROSS SECTION USING THE ABSOLUTE NODAL COORDINATE FORMULATION", Arch. Mech. Eng., Vol. 12, No. 3, 2012, pp. 283-296.
  22. S. A. Hussein, B. and Negrut, D., "Implicit and Explicit Integration in the Solution of the Absolute Nodal Coordinate Differential/Algebraic Equations", Nonlinear Dyn., No. 54, 2008, pp. 283-296.
  23. H. S. Hiroki Yamashita, "Numerical convergence of finite element solutions of nonrational B-spline element and absolute nodal coordinate formulation", Nonlinear Dyn, Vol. 67, 2012, pp. 177-189. https://doi.org/10.1007/s11071-011-9970-0
  24. Chijie, L., "Dynamic and thermal analyses of flexible structures in orbit", [PhD Dissertation].Storrs, University of Connecticut, 2006.
  25. B. Souh, "Absolute nodal coordinate plane beam formulation for multibody systems dynamics", Multibody Syst Dyn, Vol. 12, 2012, pp. 156-166.
  26. E. Garcia-Vallejo D, Mayo J, "Efficient Evaluation of the Elastic Forces and the Jacobian in the Absolute Nodal Coordinate Formulation", Nonlinear Dyn., No. 35, 2004, pp. 313-329. https://doi.org/10.1023/B:NODY.0000027747.41604.20
  27. L. C. Ting Pi, Yunqing Zhang, "First order sensitivity analysis of flexible multibody systems using absolute nodal coordinate formulation", Multibody Syst Dyn, Vol. 27, 2012, pp. 153-171. https://doi.org/10.1007/s11044-011-9269-4
  28. L. C. Yunqing Zhang, Qiang Tian, "Simulation of a viscoelastic flexible multibody system using absolute nodal coordinate and fractional derivative methods", Multibody Syst Dyn, Vol. 21, 2009, pp. 281-303. https://doi.org/10.1007/s11044-008-9139-x
  29. S. A. Maqueda LG, "Poisson modes and general nonlinear constitutive models in the large displacement analysis of beams", Multibody Syst. Dyn., No. 18, 2007, pp. 375-396. https://doi.org/10.1007/s11044-007-9077-z
  30. M. LG, "Use of nonlinear constitutive models in the absolute nodal coordinate formulation", [PhD Dissertation], Chicago:University of Illinois at Chicago, 2008.
  31. S. A. Sugiyama H, "On the Use of Implicit Integration Methods and the Absolute Nodal Coordinate Formulation in the Analyssis of Elasto-Plastic Deformation Problems", Nonlinear Dyn., No. 37, 2004, pp. 245-270.
  32. G. J. Kübler L, and Eberhard, P., "Flexible Multibody Systems with Large Deformations and Nonlinear Structural Damping Using Absolute Nodal Coordinates", Nonlinear Dyn., No. 34, 2003, pp. 31-52.
  33. J. D. Garcia-Vallejo D, and Valverde J, "An Internal Damping Model for the Absolute Nodal Coordinate Formulation", Nonlinear Dyn., No. 42, 2005, pp. 347-369.
  34. J. Gerstmayr, H. Sugiyama, and A. Mikkola, "Review on the Absolute Nodal Coordinate Formulation for Large Deformation Analysis of Multibody Systems", J. Comput. Nonlinear Dyn., Vol. 8, 2013, pp. 1-12.
  35. W.-S. and Hyun-Woo Kim, "MBD applications in design", Int. J. Non. Linear. Mech., Vol. 53, 2013, pp. 55-62. https://doi.org/10.1016/j.ijnonlinmec.2012.10.008
  36. P. M. Laith K. Abbas, and Xiaoting Rui, "Panel flutter analysis of plate element based on the absolute nodal coordinate formulation", Multibody Syst Dyn, Vol. 27, 2012, pp. 135-152. https://doi.org/10.1007/s11044-011-9268-5
  37. J. Y. Q. Tian, Y. Zhang, and L. Chen, "Simulation of planar flexible multibody systems with clearance and lubricated revolute joints", Nonlinear Dyn., Vol. 60, 2010, pp. 489-511. https://doi.org/10.1007/s11071-009-9610-0
  38. C. Liu, Q. Tian, and H. Hu, "Dynamics and control of a spatial rigid-flexible multibody system with multiple cylindrical clearance joints", Mech. Mach. Theory, Vol. 52, 2012, pp. 106-129. https://doi.org/10.1016/j.mechmachtheory.2012.01.016
  39. V. D. Majda Cohodar, and Wolfgang Borutzky, "Comparison of different formulations of 2D beam elements based on Bond Graph technique", Simul. Model. Pract. Theory, Vol. 17, 2009, pp. 107-124. https://doi.org/10.1016/j.simpat.2008.02.014
  40. Q. Tian, Y. Zhang, L. Chen, and P. Flores, "Dynamics of spatial flexible multibody systems with clearance and lubricated spherical joints", Comput. Struct., Vol. 87, No. 13-14, 2009, pp. 913-929. https://doi.org/10.1016/j.compstruc.2009.03.006
  41. P. F. Qiang Tian, Yanlei Sun, Cheng Liu, and Haiyan Hu, "ElastoHydroDynamic lubricated cylindrical joints for rigid-flexible multibody dynamics", Comput. Struct., Vol. 114-115, 2013, pp. 106-120. https://doi.org/10.1016/j.compstruc.2012.10.019
  42. M. A. B. Ahmed A. Shabana, Florentina M. and Gantoi, "Integration of finite element and multibody system algorithms for the analysis of human body motion", Procedia IUTAM, Vol. 2, 2011, pp. 233-240.
  43. O. Dmitrochenko, "Finite elements using absolute nodal coordinates for large-deformation flexible multibody dynamics", J. Comput. Appl. Math., Vol. 215, 2008, pp. 368 - 377. https://doi.org/10.1016/j.cam.2006.04.063
  44. G. R. Difeng Hong, and Jiali Tang, "Dynamic modeling of mass-flowing linear medium with large amplitude displacement and rotation", J. Fluids Struct., Vol. 27, 2011, pp. 1137-1148. https://doi.org/10.1016/j.jfluidstructs.2011.06.006
  45. H. R. J.L. Tang, G.X. Ren, and W.D. Zhu, "Dynamics of variable-length tethers with application to tethered satellite deployment", Commun Nonlinear Sci Numer Simulat, Vol. 16, 2011, pp. 3411-3424. https://doi.org/10.1016/j.cnsns.2010.11.026
  46. G. Zhenxing Shen, QiangTian, and XiaoningLiu, "Thermally induced vibrations of flexible beams using Absolute Nodal Coordinate Formulation", Aerosp. Sci. Technol., Vol. 29, 2013, pp. 386-393. https://doi.org/10.1016/j.ast.2013.04.009
  47. A. M. E.-A. and Ayman A. Nada, "Absolute nodal coordinate formulation of large-deformation piezoelectric laminated plates", Nonlinear Dyn, Vol. 67, 2012, pp. 2441-2454. https://doi.org/10.1007/s11071-011-0158-4
  48. Jingyu Yang, and Guoping Chen, "Robust Nominal Model-Based Sliding Mode Robust Control for Vibration of Flexible Rectangular Plate", Appl. Math, Vol. 7, No. 2L, 2013, pp. 671-678.
  49. S.-Q. Zhang, Y.-X. Li, and R. Schmidt, "Active shape and vibration control for piezoelectric bonded composite structures using various geometric nonlinearities", Compos. Struct., Vol. 122, 2015, pp. 239-249. https://doi.org/10.1016/j.compstruct.2014.11.031
  50. M. P. C. Zhang S.Q., Li H.N. and Schmidt R., "Disturbance rejection control for vibration suppression of piezoelectric laminated thin-walled structures", J. Sound Vib., Vol. 333, 2014, pp. 1209-1223. https://doi.org/10.1016/j.jsv.2013.10.024
  51. Y. Luo, M. Xu, B. Yan, and X. Zhang, "PD control for vibration attenuation in Hoop truss structure based on a novel piezoelectric bending actuator", J. Sound Vib., Vol. 339, 2015, pp. 11-24. https://doi.org/10.1016/j.jsv.2014.11.003
  52. Sh. Z. and Rongbo He, "Independent modal variable structure fuzzy active vibration control of thin plates laminated with photostrictive actuators", Chinese J. Aeronaut., Vol. 26, No. 2, 2013, pp. 350-356. https://doi.org/10.1016/j.cja.2013.02.012
  53. K. S. and Thomas Rittenschober, "Observer-based self sensing actuation of piezoelastic structures for robust vibration control", Automatica, Vol. 48, 2012, pp. 1123-1131. https://doi.org/10.1016/j.automatica.2012.02.038
  54. A. Reza, M. Mailah, I. Z. Mat, and O. Tokhi, "Selflearning active vibration control of a flexible plate structure with piezoelectric actuator", Simul. Model. Pract. Theory, Vol. 18, No. 5, 2010, pp. 516-532. https://doi.org/10.1016/j.simpat.2009.12.007
  55. I. Z. Mat Darus and M. O. Tokhi, "Soft computing adaptive active vibration control of flexible structures", Elsevier, 2005.
  56. C. Long-xiang, C. Guo-ping, and P. Ji, "Experimental study of delayed feedback control for a flexible plate", J. Sound Vib., Vol. 322, 2009, pp. 629-651. https://doi.org/10.1016/j.jsv.2008.11.045
  57. Z. Qiu, H. Wu, and D. Zhang, "Experimental researches on sliding mode active vibration control of flexible piezoelectric cantilever plate integrated gyroscope", Thin-Walled Struct., Vol. 47, No. 8, 2009, pp. 836-846. https://doi.org/10.1016/j.tws.2009.03.003
  58. M. N. Ma, K. and Ghasemi-Nejhad, "Adaptive control of flexible active composite manipulators driven by piezoelectric patches and active struts with dead zones", Control Syst. Technol. IEEE Trans., Vol. 16, No. 5, 2008, pp. 897-907. https://doi.org/10.1109/TCST.2007.916337
  59. R. Kumar, S. P. Singh, and H. N. Chandrawat, "MIMO adaptive vibration control of smart structures with quickly varying parameters: Neural networks vs classical control approach", J. Sound Vib., Vol. 307, 2007, pp. 639-661. https://doi.org/10.1016/j.jsv.2007.06.028
  60. L. W. Z. Lin J, "Experimental evaluation of a piezoelectric vibration absorber using a simplified fuzzy controller in a cantilever beam", J. Sound Vib., Vol. 296, 2006, pp. 567-582. https://doi.org/10.1016/j.jsv.2006.01.066
  61. J. Qiu, Z. and Ye, C. and Wei, "Experimental Study on Sliding Mode Variable Structure Vibration Control for Piezoelectric Cantilever Plate", in Intelligent Control and Automation, 2008. WCICA 2008. 7th World Congress on, 2008, pp. 1864-1868.
  62. L. Sun and W. Huo, "Robust adaptive relative position tracking and attitude synchronization for spacecraft rendezvous", Aerosp. Sci. Technol., Vol. 41, 2015, pp. 28-35. https://doi.org/10.1016/j.ast.2014.11.013
  63. Z. C. Binglong Cong, and Xiangdong Liu, "Backstepping based adaptive sliding mode control for spacecraft attitude maneuvers", Aerosp. Sci. Technol., Vol. 30, 2013, pp. 1-7. https://doi.org/10.1016/j.ast.2013.05.005
  64. S. N. S. Keum, and W. Lee, "L1 adaptive control of flexible spacecraft despite disturbances", Acta Astronaut. J., Vol. 80, 2012, pp. 24-35. https://doi.org/10.1016/j.actaastro.2012.05.007
  65. B. Wu, D. Wang, and E. K. Poh, "Decentralized slidingmode control for spacecraft attitude synchronization under actuator failures", Acta Astronaut., Vol. 105, No. 1, 2014, pp. 333-343. https://doi.org/10.1016/j.actaastro.2014.10.011
  66. X. S. TIAN Lin, "Attitude Control Considering Variable Input Saturation Limit for a Spacecraft Equipped with Flywheels", Chinese J. Aeronaut., Vol. 25, 2012, pp. 437-445. https://doi.org/10.1016/S1000-9361(11)60400-7
  67. E. J. Findlay, A. de Ruite, J. R. Forbes, and J. Lee, "Magnetic Attitude Control of a Flexible Satellite", J. Guid. Dyn., Vol. 36, No. 5, 2013, pp. 1522-1526. https://doi.org/10.2514/1.57300
  68. M. N. A., Hanspete. S. Butcher, "Spacecraft Attitude Stabilization Using Nonlinear Delayed Multiactuator Control and Inverse Dynamics", J. Guid. Dyn., Vol. 36, No. 5, 2013, pp. 1440-1452. https://doi.org/10.2514/1.58249
  69. G. M. Chuanjiang Li, Kok Lay Teo, Bin Li, "A constrained optimal PID-like controller design for spacecraft attitude stabilization", Acta Astronaut. J., Vol. 74, 2012, pp. 131-140. https://doi.org/10.1016/j.actaastro.2011.12.021
  70. Y. C. Yajie Ma, Bin Jiang Gang Tao, "Actuator failure compensation and attitude control for rigid satellite by adaptive control using quaternion feedbackv", J. Franklin Inst., Vol. 351, 2014, pp. 296-314. https://doi.org/10.1016/j.jfranklin.2013.08.028
  71. Santanu Das, Manoranjan Sinha, Arun K. Misra, "Dynamic Neural Units for Adaptive Magnetic Attitude Control of Spacecraft", J. Guid. Dyn., Vol. 35, No. 4, 2012, pp. 1280-1291. https://doi.org/10.2514/1.54408
  72. Z. C. Binglong Cong, Xiangdong Liu, "Backstepping based adaptive sliding mode control for spacecraft attitude maneuvers", Aerosp. Sci. Technol., Vol. 30, 2013, pp. 1-7. https://doi.org/10.1016/j.ast.2013.05.005
  73. Y. Z. Qinglei Hu, Bo Li, "Robust attitude control design for spacecraft under assigned velocity and control constraints", ISA Trans., Vol. 52, 2013, pp. 480-493. https://doi.org/10.1016/j.isatra.2013.03.003
  74. S.-Y. P. Mohammad Abdelrahman, "Spacecraft attitude control via a combined state-dependent Riccati equation and adaptive neuro-fuzzy approach", Aerosp. Sci. Technol., Vol. 26, 2013, pp. 16-28. https://doi.org/10.1016/j.ast.2012.02.010
  75. Y. X. Kunfeng Lu, "Adaptive attitude tracking control for rigid spacecraft with finite-time convergence", Automatica, Vol. 49, 2013, pp. 3591-3599. https://doi.org/10.1016/j.automatica.2013.09.001
  76. M. G. and E. Bijami, "An efficient decentralized robust adaptive controller for a class of large-scale non-affine nonlinear systems with strong interactions", Neural Comput Applic, Vol. 24, 2014, pp. 463-471. https://doi.org/10.1007/s00521-012-1246-1
  77. Y.-S. H. H.-L. and Y.-X. Zhu, "Decentralized adaptive fuzzy control of large-scale nonaffine nonlinear systems by state and output feedback", Nonlinear Dyn, Vol. 69, 2012, pp. 1665-1677. https://doi.org/10.1007/s11071-012-0377-3
  78. X. Zhang and Y. Lin, "Adaptive output feedback control for a class of large-scale nonlinear time-delay systems", Automatica, Vol. 52, 2015, pp. 87-94. https://doi.org/10.1016/j.automatica.2014.10.116
  79. B.-C. Y. and Guang-Hong Zheng, "Decentralized sliding mode quantized feedback control for a class of uncertain large-scale systems with dead-zone input", Nonlinear Dyn, Vol. 71, 2013, pp. 417-427. https://doi.org/10.1007/s11071-012-0668-8
  80. D. J. H. Tengfei Liu, and Zhong-Ping Jiang, "Decentralized output-feedback control of large-scale nonlinear systems with sensor noise", Automatica, 2012, pp. 2560-2568.
  81. X. J. Shaocheng Tong, and Yongming Li, "Adaptive fuzzy decentralized dynamics surface control for nonlinear large-scale systems based on high-gain observer", Inf. Sci. (Ny)., Vol. 235, 2013, pp. 287-307. https://doi.org/10.1016/j.ins.2013.02.033