J. Korea Soc. Math. Educ. Ser. B: Pure Appl. Math. http://dx.doi.org/10.7468/jksmeb.2015.22.4.403 Volume 22, Number 4 (November 2015), Pages 403–412

WEIERSTRASS SEMIGROUPS OF PAIRS ON *H*-HYPERELLIPTIC CURVES

EUNJU KANG

ABSTRACT. Kato[6] and Torres[9] characterized the Weierstrass semigroup of ramification points on *h*-hyperelliptic curves. Also they showed the converse results that if the Weierstrass semigroup of a point P on a curve C satisfies certain numerical condition then C can be a double cover of some curve and P is a ramification point of that double covering map. In this paper we expand their results on the Weierstrass semigroup of a ramification point of a double covering map to the Weierstrass semigroup of a pair (P, Q). We characterized the Weierstrass semigroup of a pair (P,Q) which lie on the same fiber of a double covering map to a curve with relatively small genus. Also we proved the converse: if the Weierstrass semigroup of a pair (P,Q) satisfies certain numerical condition then C can be a double cover of some curve and P, Q map to the same point under that double covering map.

1. INTRODUCTION AND PRELIMINARIES

Let C be a nonsingular complex projective curve of genus $g \ge 2$, $\mathcal{M}(C)$ denote the field of meromorphic functions on C and \mathbb{N}_0 be the set of all nonnegative integers. For two distinct points $P, Q \in C$, we define the Weierstrass semigroup $H(P) \subset \mathbb{N}_0$ of a point and the Weierstrass semigroup of a pair of points $H(P,Q) \subset \mathbb{N}_0^2$ by

$$H(P) = \{ \alpha \mid \text{there exists } f \in \mathcal{M}(C) \text{ with } (f)_{\infty} = \alpha P \},\$$

$$H(P,Q) = \{ (\alpha,\beta) \mid \text{there exists } f \in \mathcal{M}(C) \text{ with } (f)_{\infty} = \alpha P + \beta Q \},\$$

where $(f)_{\infty}$ means the divisor of poles of f. Indeed, these sets form sub-semigroups of \mathbb{N}_0 and \mathbb{N}_0^2 , respectively. The cardinality of the set $G(P) = \mathbb{N}_0 \setminus H(P)$ is exactly g. The set $G(P,Q) = \mathbb{N}_0^2 \setminus H(P,Q)$ is also finite, but its cardinality is dependent on the points P and Q. In [7], the upper and lower bound of such sets are given as

 $\bigodot 2015$ Korean Soc. Math. Educ.

Received by the editors November 02, 2015. Accepted November 20, 2015.

²⁰¹⁰ Mathematics Subject Classification. 14H55.

Key words and phrases. Weierstrass semigroup of a pair, Weierstrass semigroup of a point, double covering map.

$$\binom{g+2}{2} - 1 \le \text{card } G(P,Q) \le \binom{g+2}{2} - 1 - g + g^2.$$

We review some basic facts concerning the Weierstrass semigroups at a pair of points on a curve ([4], [7]).

Lemma 1.1. For each $\alpha \in G(P)$, let $\beta_{\alpha} = \min\{\beta \mid (\alpha, \beta) \in H(P, Q)\}$. Then $\alpha = \min\{\gamma \mid (\gamma, \beta_{\alpha}) \in H(P, Q)\}$. Moreover, we have

$$\{\beta_{\alpha} \mid \alpha \in G(P)\} = G(Q).$$

Proof. See [7].

Let $G(P) = \{p_1 < p_2 < \cdots < p_g\}$ and $G(Q) = \{q_1 < q_2 < \cdots < q_g\}$. Above lemma implies that the set H(P,Q) defines a permutation $\sigma = \sigma(P,Q)$ satisfying that $(p_i, q_{\sigma(i)}) \in H(P,Q)$. Homma [4] obtained the formula for the cardinality of G(P,Q) using the cardinality of the set of pairs (i, j) which are reversed by σ . Also we define $\tilde{\sigma} : G(P) \to G(Q)$ by $\tilde{\sigma}(p_i) = q_{\sigma(i)}$ which means nothing but $\tilde{\sigma}(\alpha) = \beta_{\alpha}$. Clearly $\tilde{\sigma}$ is a bijection. We use the following notations;

$$\begin{split} \Gamma &= \Gamma(P,Q) &= \{(\alpha,\beta_{\alpha}) \mid \alpha \in G(P)\} \\ &= \{(p_i,q_{\sigma(i)}) \mid i=1,2,\cdots,g\}, \\ \widetilde{\Gamma} &= \widetilde{\Gamma}(P,Q) &= \Gamma(P,Q) \cup \big(H(P) \times \{0\}\big) \cup \big(\{0\} \times H(Q)\big). \end{split}$$

The above set $\Gamma(P, Q)$ is called the *generating subset* of the Weierstrass semigroup H(P, Q). For given distinct two points P, Q, the set $\Gamma(P, Q)$ determines not only $\widetilde{\Gamma}(P, Q)$ but also the sets H(P, Q) and G(P, Q) completely, as described in the lemma below. To state the lemma we use the natural partial order on the set \mathbb{N}_0^2 defined as

 $(\alpha, \beta) \ge (\gamma, \delta)$ if and only if $\alpha \ge \gamma$ and $\beta \ge \delta$,

and the least upper bound of two elements $(\alpha_1, \beta_1), (\alpha_2, \beta_2)$ is defined as

$$lub\{(\alpha_1, \beta_1), (\alpha_2, \beta_2)\} = (max\{\alpha_1, \alpha_2\}, max\{\beta_1, \beta_2\}).$$

Lemma 1.2. (1) The subset H(P,Q) of \mathbb{N}_0^2 is closed under the lub(least upper bound) operation. (2) Every element of H(P,Q) is expressed as the lub of one or two elements of the set $\widetilde{\Gamma}(P,Q)$. (3) The set $G(P,Q) = \mathbb{N}_0^2 \setminus H(P,Q)$ is expressed as

$$G(P,Q) = \bigcup_{l \in G(P)} \left(\{ (l,\beta) | \beta = 0, 1, \dots, \tilde{\sigma}(l) - 1 \} \cup \{ (\alpha, \tilde{\sigma}(l)) | \alpha = 0, 1, \dots, l - 1 \} \right).$$

Proof. See [7] and [8].

404

We say a pair $(\alpha, \beta) \in \mathbb{N}_0^2$ is special [resp. nonspecial, canonical] if the corresponding divisor $\alpha P + \beta Q$ is special [resp. nonspecial, canonical]. We denote $\dim(\alpha, \beta)$ the dimension of complete linear series $|\alpha P + \beta Q|$ and use the notations

$$\begin{split} \Gamma_{\leq(\alpha,\beta)} &= \{(\gamma,\delta)\in\Gamma\mid(\gamma,\delta)\leq(\alpha,\beta)\}\\ \widetilde{\Gamma}_{\leq(\alpha,\beta)} &= \{(\gamma,\delta)\in\widetilde{\Gamma}\mid(\gamma,\delta)\leq(\alpha,\beta)\}\\ \mathbb{N}^2_{0\leq(\alpha,\beta)} &= \{(\gamma,\delta)\in\mathbb{N}^2_0\mid(\gamma,\delta)\leq(\alpha,\beta)\}\\ H(P,Q)_{\leq(\alpha,\beta)} &= \{(\gamma,\delta)\in H(P,Q)\mid(\gamma,\delta)\leq(\alpha,\beta)\}. \end{split}$$

We also need the following two theorems in [1].

Theorem 1.3 ([1, p.10] (Brill-Nöther Reciprocity)). Let C be a curve of genus $g \ge 2$. If two linear series g_n^r and g_m^s on C are complete and residual to each other, i.e., $|g_n^r + g_m^s| = K$ where K is the canonical series, then n - 2r = m - 2s. This implies that if P is a base point of g_n^r then $|g_m^s + P|$ does not have P as a base point, this means that dim $|g_m^s + P| = s + 1$.

We use the following well-known lemmas to prove our theorems in this paper.

Lemma 1.4 ([1] (The Inequality of Castelnuovo-Severi)). Let C, C_1 and C_2 be curves of respective genera g, g_1 and g_2 . Assume that $\phi_i : C \to C_i$, i = 1, 2 are d_i -sheeted coverings such that $\phi = \phi_1 \times \phi_2 : C \to C_1 \times C_2$ is birational onto its image. Then $g \leq (d_1 - 1)(d_2 - 1) + d_1g_1 + d_2g_2$.

Lemma 1.5 ([2, p.116] (Castelnuovo's Bound)). Let C be a smooth curve that admits a birational mapping onto a nondegenerate curve of degree d in \mathbb{P}^r . Then the genus of C satisfies the inequality

$$g \le \frac{m(m-1)}{2}(r-1) + m\epsilon,$$

where $m = \left[\frac{d-1}{r-1}\right]$ and $\epsilon = d - 1 - m(r-1)$.

Lemma 1.6 ([2, p.251] (Clifford's Theorem)). For any two effective divisors on a smooth curve C,

 $\dim |D| + \dim |D'| \le \dim |D + D'|$

and for |D| special

 $\dim |D| \le d/2$

with equality holding only if D = 0, D = K, or C is hyperelliptic.

In Section 2, we study the Weierstrass semigroups of pairs on h-hyperelliptic curves.

2. Semigroups on h-hyperelliptic Curves

Recall that a curve C is called *h*-hyperelliptic if it admits a double covering map $\pi : C \to C_h$ where C_h is a curve of genus h, or equivalently, if there is an automorphism of order two on C which is defined by interchanging of the two sheets of this covering. Such π is unique if g > 4h + 1 [3], which we can prove easily using above Lemma 1.4. Usually, 0-hyperelliptic curves and 1-hyperelliptic curves are said to be hyperelliptic and bi-elliptic, respectively. The results in this section was motivated by [6] and [9], where the authors studied ordinary Weierstrass semigroups of points on *h*-hyperelliptic curves.

Lemma 2.1. Let C be a curve of genus g. Suppose that C is an h-hyperelliptic curve for some $h \ge 0$ with a double covering map $\pi : C \to C_h$. If a linear series g_k^1 is base point free and not compounded of π , then k > g - 2h.

Proof. The k-sheeted map $\phi_{g_k^1}: C \to \mathbb{P}^1$ and 2-sheeted map $\pi: C \to C_h$ induce a birational map

$$\phi_{q_i^1} \times \pi : C \to \mathbb{P}^1 \times C_h$$

onto its image. By Lemma 1.4, $g \leq (k-1)(2-1) + k \cdot 0 + 2 \cdot h$ so we get k > g - 2h. \Box

Theorem 2.2. Let C be an h-hyperelliptic curve of genus $g \ge 6h + 2$ with a double covering map $\pi : C \to C_h$. Let $P, Q \in C$ be distinct points and $\pi(P) = \pi(Q) = P'$. Then

$$H(P,Q)_{\leq (2h+1,2h+1)} = \{(k,k) \mid k \in H(P'), \ k \leq 2h+1\}.$$

Proof. Suppose that there exists an element $(\alpha, \beta) \in H(P, Q)_{\leq (2h+1,2h+1)}$ not contained in $\{(k,k) \mid k \in H(P'), k \leq 2h+1\}$. Let $g_{\alpha+\beta}^1$ be a linear subseries of $|\alpha P + \beta Q|$ which is base-point-free and not necessarily complete. If $\alpha \neq \beta, g_{\alpha+\beta}^1$ is not compounded of π . If $\alpha = \beta$ and $\alpha \notin H(P')$, let $H(P')_{\leq 2h} = \{n_0 = 0, n_1, \cdots, n_h = 2h\}$. For some $i, n_i < \alpha < n_{i+1}$ and dim $|n_i(P+Q)| < \dim |\alpha(P+Q)|$ by the assumption on α . Also dim $|n_i(P+Q)| \geq \dim |\alpha P'| = i$ so we have dim $|\alpha P'| < \dim |\alpha(P+Q)|$. Thus $|\alpha(P+Q)|$ and $g_{\alpha+\beta}^1$ is not compounded of π again. Now by Lemma 2.1,

$$\alpha + \beta > g - 2h \ge (6h + 2) - 2h \ge 4h + 2$$

which contradicts the choice of $(\alpha, \beta) \in H(P, Q)_{\leq (2h+1, 2h+1)}$.

Each of the following two theorems is a converse of Theorem 2.2 in a different view point. For the next theorem, we need two lemmas.

Lemma 2.3. Let (α, β) be an element in \mathbb{N}_0^2 with $\beta \ge 1$ [resp. $\alpha \ge 1$]. Then

 $\dim(\alpha,\beta) = \dim(\alpha,\beta-1) + 1 [\text{resp. }\dim(\alpha,\beta) = \dim(\alpha-1,\beta) + 1]$

if and only if there exists $(\gamma, \beta) \in \widetilde{\Gamma}$ [resp. $(\alpha, \delta) \in \widetilde{\Gamma}$] with $0 \leq \gamma \leq \alpha$ [resp. $0 \leq \delta \leq \beta$].

Proof. See [7].

Lemma 2.4. Let $H \subset \mathbb{N}$ be a semigroup. Assume that H contains h terms in $\{1, 2, \dots, 2h\}$ and $2h, 2h + 1 \in H$. Then H contains any integers $k \geq 2h$.

Proof. First, we show that $2h + 2 \in H$. The set $I_{2h+1} = \{1, 2, \dots, 2h, 2h+1\}$ has h + 1 elements of H. Consider a partition of I_{2h+1}

 $\{1, 2h+1\}, \{2, 2h\}, \{3, 2h-1\}, \cdots, \{h+1\}.$

If $h + 1 \in H$, then $2h + 2 \in H$ since H is a semigroup. If $h + 1 \notin H$, then at least one of the sets other than $\{h + 1\}$ is contained in H, and hence we have $2h + 2 \in H$.

Next, we show that $2h + 3 \in H$. The set $I_{2h+2} = \{1, 2, \dots, 2h, 2h + 1, 2h + 2\}$ has h + 2 elements of H. Consider a partition of I_{2h+2}

$$\{1, 2h+2\}, \{2, 2h+1\}, \{3, 2h\}, \cdots, \{h+1, h+2\}.$$

Then at least of one is contained in H and hence $2h + 3 \in H$.

Repeating this process, we conclude that $k \in H$ for all $k \geq 2h$.

Theorem 2.5. Let C be a curve of genus $g \ge 6h + 4$ and $P, Q \in C$. Assume that H(P,Q) contains exactly h terms in $\{(1,1), (2,2), \dots, (2h,2h)\}$ and that

$$(2h, 2h), (2h+1, 2h+1) \in H(P, Q).$$

Then C is h-hyperelliptic with the double covering map $\phi : C \to C_h$ for some C_h . Moreover $\phi(P) = \phi(Q)$ and $H(\phi(P)) = \{k \mid (k,k) \in H(P,Q)\}.$

Proof. By Lemma 2.4, $(k, k) \in H(P, Q)$ for all $k \ge 2h$. By Lemma 2.3,

$$\dim |(3h+1)(P+Q)| \ge 2h+1.$$

Let $s + 1 = \dim |(3h + 1)(P + Q)|$ and let's denote |(3h + 1)(P + Q)| by g_{6h+2}^{s+1} . Consider a rational map $\phi: C \to \mathbb{P}^{s+1}$ defined by g_{6h+2}^{s+1} .

Claim: s = 2h.

Suppose that $s \ge 2h + 1$. If ϕ is birational, then

$$m = \left[\frac{(6h+2)-1}{(s+1)-1}\right] = 2, \ \epsilon = (6h+1)-2s.$$

So by Lemma 1.5, we get

$$g \le 12h + 2 - 3s \le 6h - 1$$

which contradicts our bound of genus. Let t be the degree of ϕ and C' be a normalization of $\phi(C)$. Then C' admits a complete base-point-free linear series $g_{\frac{6h+2}{t}}^{s+1}$. Since $s + 1 < \frac{6h+2}{t}$, we have t = 2. Thus C is a double covering of the curve C' and we have a complete linear series $g_{3h+1}^{s+1}(C')$. By Clifford's theorem, it is a complete nonspecial linear series on C', hence the genus of C' is h' = 3h - s < h. Here we have two possibilities

$$\phi(P) = \phi(Q)$$
 or $\phi(P) \neq \phi(Q)$.

Subclaim: $\phi(P) = \phi(Q)$.

If $\phi(P) \neq \phi(Q)$, then $\phi^*(\phi(P)) = 2P$ and $\phi^*(\phi(Q)) = 2Q$, since the divisor (3h+1)(P+Q) is the pull-back of some divisor on C' via ϕ . In this case, 3h+1 must be even and hence h is odd. Consider a linear series |(3h+2)(P+Q)| and let its dimension be u+1. Then $s+2 \geq u \geq s+1 \geq 2h+2$. Through the similar steps as above, we conclude that C is a double covering of another curve C'' of genus $h'' \leq h-1$, and the series |(3h+2)(P+Q)| is compounded of the latter map ϕ' . Since h is odd, 3h+2 is also odd. Hence $\phi'^*(\phi'(P)) = P + Q$. Now $\phi \times \phi'$ is birational, and by Lemma 1.4, we have $g \leq 1 + 4h$ contrary to our assumption. Therefore we proved the Subclaim $\phi(P) = \phi(Q)$.

Since $k(P+Q) = \phi^*(k\phi(P))$ for any integer k, we have $(k,k) \in H(P,Q)$ for $k \in H(\phi(P))$. Then the cardinality of the set $\{(k,k) \mid (k,k) \notin H(P,Q), k \ge 1\}$ is less than h, which is a contradiction to our assumption. Thus we proved the Claim s = 2h.

Now we have a complete linear series $g_{6h+2}^{2h+1} = |(3h+1)(P+Q)|$ and a rational map $\phi: C \to \mathbb{P}^{2h+1}$ induced from g_{6h+2}^{2h+1} . Suppose ϕ is birational. Then by Lemma 1.5, we get $g(C) \leq 6h+3$ which contradicts the assumption $g \geq 6h+4$.

Thus ϕ is a double covering map from C to $\phi(C)$ with $g(\phi(C)) = h$. Therefore C is *h*-hyperelliptic. Since |(2h+1)(P+Q)| and |2h(P+Q)| is also compounded of ϕ , we conclude that $\phi(P) = \phi(Q)$.

Remark 2.6. The above theorem is a modification of Theorem A in [9].

Theorem 2.7. Let C be a curve of genus $g \ge 6h + 5$. Suppose that (2h, 2h), $(2h + 1, 2h + 1) \in H(P,Q)$ and $\dim(2h, 2h) = h$, $\dim(2h + 1, 2h + 1) = h + 1$. Then C is an h-hyperelliptic curve. Moreover, P and Q have same image under the double covering map.

Proof. Consider the rational map $\phi: C \to \mathbb{P}^{h+1}$ defined by the linear series

$$g_{4h+2}^{h+1} = |(2h+1)(P+Q)|.$$

If ϕ is birational, then $g \leq 6h + 4$ by Lemma 1.5. Thus ϕ is not birational. Let t be the degree of ϕ and C' be a normalization of $\phi(C)$. Thus C' admits a complete base-point-free linear series $g_{4h+2}^{h+1}(C')$. Since $h+1 \leq \frac{4h+2}{t}$, we have t=2 or t=3.

base-point-free linear series $g_{\frac{4h+2}{t}}^{h+1}(C')$. Since $h+1 \leq \frac{4h+2}{t}$, we have t=2 or t=3. If t=2, then we have $g_{\frac{4h+2}{t}}^{h+1}(C') = g_{2h+1}^{h+1}(C')$ on C'. Since $h+1 > \frac{2h+1}{2}$, this series is nonspecial by Lemma 1.6 and the genus of C' is exactly h. Since 2h+1 is odd and the divisor (2h+1)(P+Q) is also a pull-back of some divisor via a double covering map ϕ , we conclude that $\phi(P) = \phi(Q)$.

Now it remains to show that the case t = 3 can not occur. If t = 3, then (4h+2) is a multiple of 3 and we have a complete $g_{\frac{4h+2}{3}}^{h+1}(C')$ on C'. By Lemma 1.6 again, this linear series is nonspecial, and the genus of C' is $\frac{h-1}{3}$. If $\phi(P) = \phi(Q)$, then $\phi^*(\phi(P)) = 2P + Q$ or P + 2Q. Then (2h+1)(P+Q) can not be a pull-back of any divisor on C'. Thus we have

$$\phi^*(\phi(P)) = 3P$$
 and $\phi^*(\phi(Q)) = 3Q$.

Now $V = \left|\frac{2h+1}{3}\phi(P) + \frac{2h-2}{3}\phi(Q)\right|$ is a complete linear series on C' of degree $\frac{4h-1}{3}$. Since $\frac{4h-1}{3} \ge 2 \cdot g(C')$ so V is base point free. Then

$$|(2h+1)P + (2h-2)Q| = |\phi^*(V)|$$

which is obtained from the pullback of V is also base point free and we have

$$(2h+1, 2h-2) \in H(P, Q).$$

Since $(2h, 2h) \in H(P, Q)$ by assumption, we have $(2h + 1, 2h) \in H(P, Q)$ by Lemma 1.2. Thus

$$\dim(2h+1, 2h+1) > \dim(2h+1, 2h) > \dim(2h, 2h) = h$$

which contradicts the assumption $\dim(2h+1, 2h+1) = h+1$. Hence the case t = 3 can not occur.

Remark 2.8. In Theorem 2.7, we assume the existence of only two elements in H(P,Q) and their dimensions without assuming the sequence of elements in H(P,Q).

We state a generalized version of Theorem 2.7.

Theorem 2.9. Let C be a curve of genus $g \ge 6h + a$, $a \ge 5$. Suppose that there exists an integer n satisfying that (i) $2h+1 \le n \le \frac{g+a-3}{2}$, (ii) dim |n(P+Q)| = n-h and $(n,n) \in H(P,Q)$ and (iii) dim |(n-1)(P+Q)| = (n-1)-h and $(n-1,n-1) \in H(P,Q)$. Then C is h-hyperelliptic with double covering map $\pi : C \to C_h$ with

$$\pi(P) = \pi(Q) = P' \in C_h \text{ and } \{k \mid (k,k) \in H(P,Q)\} = H(P').$$

Proof. If n = 2h + 1, we already proved in Theorem 2.7. Now we assume $n \ge 2h + 2$.

Let n be a number such that $2h+1 \leq n \leq \frac{g+a-3}{2}$, $(n,n) \in H(P,Q)$ and dim |n(P+Q)| = n-h. Let $|n(P+Q)| = g_{2n}^{n-h}$ and $\phi_n : C \to \mathbb{P}^{n-h}$ be a rational map defined by g_{2n}^{n-h} .

Claim 1: ϕ_n is not birational if $n \ge 2h + 2$.

Suppose that $\phi_n : C \to \mathbb{P}^{n-h}$ is birational. Then using the Castelnuovo bound, the genus of C satisfies the inequality $g \leq \frac{m(m-1)}{2}(r-1) + m\epsilon$, where $m = \left[\frac{d-1}{r-1}\right]$ and $\epsilon = d - 1 - m(r-1)$. In this theorem, m satisfies $m = \left[\frac{2n-1}{n-h-1}\right] = 2$ or 3. If m = 2 and $\epsilon = 2h+1$ then $g \leq n+3h+1 \leq g-\frac{1}{2}$ which is a contradiction. If m = 3and $\epsilon = -n+3h+2$ then $g \leq 6h+3 < g$ which is a contradiction again. Thus ϕ_n is not birational if $n \geq 2h+2$.

Let deg $\phi_n = t \ge 2$. Since ϕ_n is nondegenerate, $n - h \le \frac{2n}{t}$ so deg $\phi_n = 2$ or deg $\phi_n = 3$.

Claim 2: If $(n, n), (n - 1, n - 1) \in H(P, Q), \dim |n(P + Q)| = n - h$ and $\dim |(n - 1)(P + Q)| = (n - 1) - h$, then $\deg \phi_n = 2$ and $g(\phi_n(C)) = h$.

If t = 3, then 2n is a multiple of 3 and there is a complete and nonspecial $g_{\frac{2n}{3}}^{n-h}(C')$ on $C' = \phi_n(C)$. Hence the genus of C' is $\frac{3h-n}{3}$. If $\phi_n(P) = \phi_n(Q)$, then $\phi_n^*(\phi_n(P)) = 2P + Q$ or P + 2Q and the pullback of a multiple of $\phi(P)$ can not be n(P+Q). Thus we have $\phi_n(P) \neq \phi_n(Q)$ and hence

$$\phi_n^*(\phi_n(P)) = 3P, \ \phi_n^*(\phi_n(Q)) = 3Q.$$

Since $|nP + (n-3)Q| = |\phi_n^*(\frac{n}{3}\phi_n(P) + \frac{n-3}{3}\phi_n(Q))|$ is base point free, $(n, n-3) \in H(P,Q)$. Then dim $|nP+nQ| = \dim |(n-1)P + (n-1)Q| + 2$ which is a contradiction to our assumption.

411

Therefore we conclude deg $\phi_n = t = 2$ and there is a complete, nonspecial $g_{\frac{2n}{2}}^{n-h}(C')$ on $C' = \phi_n(C)$. Hence the genus of C' is h and C is h-hyperelliptic with double covering map $\pi = \phi_n : C \to C' = C_h$.

Claim 3: $\pi(P) = \pi(Q) = P'$ and $\{k \mid (k, k) \in H(P, Q)\} = H(P')$

Case 1: n is odd.

Since $\pi = \phi_n$ is a double covering map by Claim 2, there is a complete, nonspecial $g_{\frac{2n}{2}}^{n-h}(C') = g_n^{n-h}(C')$ on C'. By Riemann-Roch Theorem, g(C') = k - (k - h) = h. Since n(P+Q) is a pullback of some divisor D on $C' = C_h$, i.e., $n(P+Q) = \pi^*(D)$ and n is odd, we get $\pi(P) = \pi(Q)$.

Case 2: n is even.

Suppose that $\phi_n(P) \neq \phi_n(Q)$. Since $n \geq 2h + 1$ and n is even, $n \geq 2h + 2$ and dim |(n-1)(P+Q)| = (n-1) - h and $(n-1, n-1) \in H(P,Q)$ by the assumption on n. Consider ϕ_{n-1} which is defined by $g_{2(n-1)}^{(n-1)-h} = |(n-1)(P+Q)|$. By Castelnuovo's bound, ϕ_{n-1} is not birational and deg $\phi_{n-1} = 2$ or 3. If deg $\phi_{n-1} = 3$, there is a complete, nonspecial $g_{\frac{2(n-1)}{3}}^{(n-1)-h}$ on $C'' = \phi_{n-1}(C)$. So $g(C'') = h - \frac{(n-1)}{3}$. Then the 3:1 map $\phi_{n-1} : C \to C_{h-\frac{n-1}{3}}$ and the 2:1 map $\phi_n : C \to C_h$ induce a map $\phi_{n-1} \times \phi_n : C \to C_{h-\frac{n-1}{3}} \times C_h$ which is birational onto its image. By Lemma 1.4, $g(C) \leq (3-1)(2-1) + 3(h - \frac{n-1}{3}) + 2h = 2 + 5h - (n-1) \leq 2 + 3h < g$ which is a contradiction. Thus deg $\phi_{n-1} = 2$ and there is a complete, nonspecial $g_{\frac{2(n-1)}{2}}^{(n-1)-h}$ on $\phi_{n-1}(C)$. In this case $g(\phi_{n-1}(C)) = h$. Let $\phi_{n-1}(C) = C'_h$. Since $\phi_n(P) \neq \phi_n(Q)$ and $\phi_{n-1}(P) = \phi_{n-1}(Q), \ \phi_{n-1} \times \phi_n : C \to C'_h \times C_h$ is birational onto its image. Again by Lemma 1.4, $g(C) \leq (2-1)(2-1) + 2h + 2h = 4h + 1 < g$ which is a contradiction.

Thus we have $\pi(P) = \pi(Q)$ and the last assertion follows from Theorem 2.2.

References

- R.D.M. Accola: Topics in the Theory of Riemann Surfaces. Lecture Notes in Math 1595. Springer-Verlag, Berlin (1994).
- E. Arbarello, M. Cornalba, P.A. Griffiths & J. Harris: Geometry of Algebraic Curves, I. Springer-Verlag, Berlin/New York (1985).
- H.M. Farkas & I. Kra: *Riemann Surfaces*. Graduate Texts in Mathematics 71, Springer-Verlag, New York (1980).
- M. Homma: The Weierstrass semigroup of a pair of points on a curve. Arch. Math. 67 (1996), 337-348.

- 5. E. Kang & S.J. Kim: Special pairs in the generating subset of the Weierstrass semigroup at a pair. *Geom. Dedicata* **99** (2003), no. 1, 167-177.
- 6. T. Kato: On criteria of \tilde{g} -hyperellipticity. Kodai Math. J. 2 (1979), 275-285.
- S.J. Kim: On the index of the Weierstrass semigroup of a pair of points on a curve. Arch. Math. 62 (1994), 73-82.
- 8. S.J. Kim & J. Komeda: Weierstrass semigroups of pairs of points whose first non-gaps are three. *Geom. Dedicata* **93** (2002), no. 1, 113-119.
- F. Torres: Weierstrass points and double coverings of curves with application: Symmetric numerical semigroups which cannot be realized as Weierstrass semigroups. Manuscripta Math. 83 (1994), 39-58.

DEPARTMENT OF INFORMATION AND COMMUNICATION TECHNOLOGY, HONAM UNIVERSITY, GWANGJU 506-714, REPUBLIC OF KOREA

 $Email \ address: \verb"ejkang@honam.ac.kr"$