WEIERSTRASS SEMIGROUPS OF PAIRS ON H-HYPERELLIPTIC CURVES

Eunju Kang

Abstract

Kato[6] and Torres[9] characterized the Weierstrass semigroup of ramification points on h-hyperelliptic curves. Also they showed the converse results that if the Weierstrass semigroup of a point P on a curve C satisfies certain numerical condition then C can be a double cover of some curve and P is a ramification point of that double covering map. In this paper we expand their results on the Weierstrass semigroup of a ramification point of a double covering map to the Weierstrass semigroup of a pair (P, Q). We characterized the Weierstrass semigroup of a pair (P, Q) which lie on the same fiber of a double covering map to a curve with relatively small genus. Also we proved the converse: if the Weierstrass semigroup of a pair (P, Q) satisfies certain numerical condition then C can be a double cover of some curve and P, Q map to the same point under that double covering map.

1. Introduction and Preliminaries

Let C be a nonsingular complex projective curve of genus $g \geq 2, \mathcal{M}(C)$ denote the field of meromorphic functions on C and \mathbb{N}_{0} be the set of all nonnegative integers. For two distinct points $P, Q \in C$, we define the Weierstrass semigroup $H(P) \subset \mathbb{N}_{0}$ of a point and the Weierstrass semigroup of a pair of points $H(P, Q) \subset \mathbb{N}_{0}^{2}$ by

$$
\begin{aligned}
H(P) & =\left\{\alpha \mid \text { there exists } f \in \mathcal{M}(C) \text { with }(f)_{\infty}=\alpha P\right\} \\
H(P, Q) & =\left\{(\alpha, \beta) \mid \text { there exists } f \in \mathcal{M}(C) \text { with }(f)_{\infty}=\alpha P+\beta Q\right\}
\end{aligned}
$$

where $(f)_{\infty}$ means the divisor of poles of f. Indeed, these sets form sub-semigroups of \mathbb{N}_{0} and \mathbb{N}_{0}^{2}, respectively. The cardinality of the set $G(P)=\mathbb{N}_{0} \backslash H(P)$ is exactly g. The set $G(P, Q)=\mathbb{N}_{0}^{2} \backslash H(P, Q)$ is also finite, but its cardinality is dependent on the points P and Q. In [7], the upper and lower bound of such sets are given as

[^0]$$
\binom{g+2}{2}-1 \leq \operatorname{card} G(P, Q) \leq\binom{ g+2}{2}-1-g+g^{2}
$$

We review some basic facts concerning the Weierstrass semigroups at a pair of points on a curve ([4], [7]).

Lemma 1.1. For each $\alpha \in G(P)$, let $\beta_{\alpha}=\min \{\beta \mid(\alpha, \beta) \in H(P, Q)\}$. Then $\alpha=\min \left\{\gamma \mid\left(\gamma, \beta_{\alpha}\right) \in H(P, Q)\right\}$. Moreover, we have

$$
\left\{\beta_{\alpha} \mid \alpha \in G(P)\right\}=G(Q) .
$$

Proof. See [7].
Let $G(P)=\left\{p_{1}<p_{2}<\cdots<p_{g}\right\}$ and $G(Q)=\left\{q_{1}<q_{2}<\cdots<q_{g}\right\}$. Above lemma implies that the set $H(P, Q)$ defines a permutation $\sigma=\sigma(P, Q)$ satisfying that $\left(p_{i}, q_{\sigma(i)}\right) \in H(P, Q)$. Homma [4] obtained the formula for the cardinality of $G(P, Q)$ using the cardinality of the set of pairs (i, j) which are reversed by σ. Also we define $\tilde{\sigma}: G(P) \rightarrow G(Q)$ by $\tilde{\sigma}\left(p_{i}\right)=q_{\sigma(i)}$ which means nothing but $\tilde{\sigma}(\alpha)=\beta_{\alpha}$. Clearly $\tilde{\sigma}$ is a bijection. We use the following notations;

$$
\begin{aligned}
\Gamma=\Gamma(P, Q) & =\left\{\left(\alpha, \beta_{\alpha}\right) \mid \alpha \in G(P)\right\} \\
& =\left\{\left(p_{i}, q_{\sigma(i)}\right) \mid i=1,2, \cdots, g\right\} \\
\widetilde{\Gamma}=\widetilde{\Gamma}(P, Q) & =\Gamma(P, Q) \cup(H(P) \times\{0\}) \cup(\{0\} \times H(Q)) .
\end{aligned}
$$

The above set $\Gamma(P, Q)$ is called the generating subset of the Weierstrass semigroup $H(P, Q)$. For given distinct two points P, Q, the set $\Gamma(P, Q)$ determines not only $\widetilde{\Gamma}(P, Q)$ but also the sets $H(P, Q)$ and $G(P, Q)$ completely, as described in the lemma below. To state the lemma we use the natural partial order on the set \mathbb{N}_{0}^{2} defined as

$$
(\alpha, \beta) \geq(\gamma, \delta) \text { if and only if } \alpha \geq \gamma \text { and } \beta \geq \delta,
$$

and the least upper bound of two elements $\left(\alpha_{1}, \beta_{1}\right),\left(\alpha_{2}, \beta_{2}\right)$ is defined as

$$
\operatorname{lub}\left\{\left(\alpha_{1}, \beta_{1}\right),\left(\alpha_{2}, \beta_{2}\right)\right\}=\left(\max \left\{\alpha_{1}, \alpha_{2}\right\}, \max \left\{\beta_{1}, \beta_{2}\right\}\right) .
$$

Lemma 1.2. (1) The subset $H(P, Q)$ of \mathbb{N}_{0}^{2} is closed under the lub(least upper bound) operation. (2) Every element of $H(P, Q)$ is expressed as the lub of one or two elements of the set $\widetilde{\Gamma}(P, Q)$. (3) The set $G(P, Q)=\mathbb{N}_{0}^{2} \backslash H(P, Q)$ is expressed as

$$
G(P, Q)=\bigcup_{l \in G(P)}(\{(l, \beta) \mid \beta=0,1, \ldots, \tilde{\sigma}(l)-1\} \cup\{(\alpha, \tilde{\sigma}(l)) \mid \alpha=0,1, \ldots, l-1\}) .
$$

Proof. See [7] and [8].

We say a pair $(\alpha, \beta) \in \mathbb{N}_{0}^{2}$ is special [resp. nonspecial, canonical] if the corresponding divisor $\alpha P+\beta Q$ is special [resp. nonspecial, canonical]. We denote $\operatorname{dim}(\alpha, \beta)$ the dimension of complete linear series $|\alpha P+\beta Q|$ and use the notations

$$
\begin{aligned}
\Gamma_{\leq(\alpha, \beta)} & =\{(\gamma, \delta) \in \Gamma \mid(\gamma, \delta) \leq(\alpha, \beta)\} \\
\widetilde{\Gamma}_{\leq(\alpha, \beta)} & =\{(\gamma, \delta) \in \widetilde{\Gamma} \mid(\gamma, \delta) \leq(\alpha, \beta)\} \\
\mathbb{N}_{0 \leq(\alpha, \beta)}^{2} & =\left\{(\gamma, \delta) \in \mathbb{N}_{0}^{2} \mid(\gamma, \delta) \leq(\alpha, \beta)\right\} \\
H(P, Q)_{\leq(\alpha, \beta)} & =\{(\gamma, \delta) \in H(P, Q) \mid(\gamma, \delta) \leq(\alpha, \beta)\} .
\end{aligned}
$$

We also need the following two theorems in [1].
Theorem 1.3 ([1, p.10] (Brill-Nöther Reciprocity)). Let C be a curve of genus $g \geq 2$. If two linear series g_{n}^{r} and g_{m}^{s} on C are complete and residual to each other, i.e., $\left|g_{n}^{r}+g_{m}^{s}\right|=K$ where K is the canonical series, then $n-2 r=m-2 s$. This implies that if P is a base point of g_{n}^{r} then $\left|g_{m}^{s}+P\right|$ does not have P as a base point, this means that $\operatorname{dim}\left|g_{m}^{s}+P\right|=s+1$.

We use the following well-known lemmas to prove our theorems in this paper.
Lemma 1.4 ([1] (The Inequality of Castelnuovo-Severi)). Let C, C_{1} and C_{2} be curves of respective genera g, g_{1} and g_{2}. Assume that $\phi_{i}: C \rightarrow C_{i}, i=1,2$ are d_{i}-sheeted coverings such that $\phi=\phi_{1} \times \phi_{2}: C \rightarrow C_{1} \times C_{2}$ is birational onto its image. Then $g \leq\left(d_{1}-1\right)\left(d_{2}-1\right)+d_{1} g_{1}+d_{2} g_{2}$.

Lemma 1.5 ([2, p.116] (Castelnuovo's Bound)). Let C be a smooth curve that admits a birational mapping onto a nondegenerate curve of degree d in \mathbb{P}^{r}. Then the genus of C satisfies the inequality

$$
g \leq \frac{m(m-1)}{2}(r-1)+m \epsilon,
$$

where $m=\left[\frac{d-1}{r-1}\right]$ and $\epsilon=d-1-m(r-1)$.
Lemma 1.6 ([2, p.251] (Clifford's Theorem)). For any two effective divisors on a smooth curve C,

$$
\operatorname{dim}|D|+\operatorname{dim}\left|D^{\prime}\right| \leq \operatorname{dim}\left|D+D^{\prime}\right|
$$

and for $|D|$ special

$$
\operatorname{dim}|D| \leq d / 2
$$

with equality holding only if $D=0, D=K$, or C is hyperelliptic.

In Section 2, we study the Weierstrass semigroups of pairs on h-hyperelliptic curves.

2. Semigroups on h-hyperelliptic Curves

Recall that a curve C is called h-hyperelliptic if it admits a double covering map $\pi: C \rightarrow C_{h}$ where C_{h} is a curve of genus h, or equivalently, if there is an automorphism of order two on C which is defined by interchanging of the two sheets of this covering. Such π is unique if $g>4 h+1$ [3], which we can prove easily using above Lemma 1.4. Usually, 0-hyperelliptic curves and 1-hyperelliptic curves are said to be hyperelliptic and bi-elliptic, respectively. The results in this section was motivated by [6] and [9], where the authors studied ordinary Weierstrass semigroups of points on h-hyperelliptic curves.

Lemma 2.1. Let C be a curve of genus g. Suppose that C is an h-hyperelliptic curve for some $h \geq 0$ with a double covering map $\pi: C \rightarrow C_{h}$. If a linear series g_{k}^{1} is base point free and not compounded of π, then $k>g-2 h$.

Proof. The k-sheeted map $\phi_{g_{k}^{1}}: C \rightarrow \mathbb{P}^{1}$ and 2 -sheeted map $\pi: C \rightarrow C_{h}$ induce a birational map

$$
\phi_{g_{k}^{1}} \times \pi: C \rightarrow \mathbb{P}^{1} \times C_{h}
$$

onto its image. By Lemma 1.4, $g \leq(k-1)(2-1)+k \cdot 0+2 \cdot h$ so we get $k>g-2 h$.
Theorem 2.2. Let C be an h-hyperelliptic curve of genus $g \geq 6 h+2$ with a double covering map $\pi: C \rightarrow C_{h}$. Let $P, Q \in C$ be distinct points and $\pi(P)=\pi(Q)=P^{\prime}$. Then

$$
H(P, Q)_{\leq(2 h+1,2 h+1)}=\left\{(k, k) \mid k \in H\left(P^{\prime}\right), k \leq 2 h+1\right\}
$$

Proof. Suppose that there exists an element $(\alpha, \beta) \in H(P, Q)_{\leq(2 h+1,2 h+1)}$ not contained in $\left\{(k, k) \mid k \in H\left(P^{\prime}\right), k \leq 2 h+1\right\}$. Let $g_{\alpha+\beta}^{1}$ be a linear subseries of $|\alpha P+\beta Q|$ which is base-point-free and not necessarily complete. If $\alpha \neq \beta, g_{\alpha+\beta}^{1}$ is not compounded of π. If $\alpha=\beta$ and $\alpha \notin H\left(P^{\prime}\right)$, let $H\left(P^{\prime}\right)_{\leq 2 h}=\left\{n_{0}=\right.$ $\left.0, n_{1}, \cdots, n_{h}=2 h\right\}$. For some $i, n_{i}<\alpha<n_{i+1}$ and $\operatorname{dim}\left|n_{i}(P+Q)\right|<\operatorname{dim}|\alpha(P+Q)|$ by the assumption on α. Also $\operatorname{dim}\left|n_{i}(P+Q)\right| \geq \operatorname{dim}\left|\alpha P^{\prime}\right|=i$ so we have $\operatorname{dim}\left|\alpha P^{\prime}\right|<$ $\operatorname{dim}|\alpha(P+Q)|$. Thus $|\alpha(P+Q)|$ and $g_{\alpha+\beta}^{1}$ is not compounded of π again. Now by Lemma 2.1,

$$
\alpha+\beta>g-2 h \geq(6 h+2)-2 h \geq 4 h+2
$$

which contradicts the choice of $(\alpha, \beta) \in H(P, Q)_{\leq(2 h+1,2 h+1)}$.
Each of the following two theorems is a converse of Theorem 2.2 in a different view point. For the next theorem, we need two lemmas.

Lemma 2.3. Let (α, β) be an element in \mathbb{N}_{0}^{2} with $\beta \geq 1[$ resp. $\alpha \geq 1]$. Then

$$
\operatorname{dim}(\alpha, \beta)=\operatorname{dim}(\alpha, \beta-1)+1[\text { resp. } \operatorname{dim}(\alpha, \beta)=\operatorname{dim}(\alpha-1, \beta)+1]
$$

if and only if there exists $(\gamma, \beta) \in \widetilde{\Gamma}[\operatorname{resp} . \quad(\alpha, \delta) \in \widetilde{\Gamma}]$ with $0 \leq \gamma \leq \alpha$ [resp. $0 \leq \delta \leq \beta]$.

Proof. See [7].
Lemma 2.4. Let $H \subset \mathbb{N}$ be a semigroup. Assume that H contains h terms in $\{1,2, \cdots, 2 h\}$ and $2 h, 2 h+1 \in H$. Then H contains any integers $k \geq 2 h$.

Proof. First, we show that $2 h+2 \in H$. The set $I_{2 h+1}=\{1,2, \cdots, 2 h, 2 h+1\}$ has $h+1$ elements of H. Consider a partition of $I_{2 h+1}$

$$
\{1,2 h+1\},\{2,2 h\},\{3,2 h-1\}, \cdots,\{h+1\}
$$

If $h+1 \in H$, then $2 h+2 \in H$ since H is a semigroup. If $h+1 \notin H$, then at least one of the sets other than $\{h+1\}$ is contained in H, and hence we have $2 h+2 \in H$.

Next, we show that $2 h+3 \in H$. The set $I_{2 h+2}=\{1,2, \cdots, 2 h, 2 h+1,2 h+2\}$ has $h+2$ elements of H. Consider a partition of $I_{2 h+2}$

$$
\{1,2 h+2\},\{2,2 h+1\},\{3,2 h\}, \cdots,\{h+1, h+2\}
$$

Then at least of one is contained in H and hence $2 h+3 \in H$.
Repeating this process, we conclude that $k \in H$ for all $k \geq 2 h$.
Theorem 2.5. Let C be a curve of genus $g \geq 6 h+4$ and $P, Q \in C$. Assume that $H(P, Q)$ contains exactly h terms in $\{(1,1),(2,2), \cdots,(2 h, 2 h)\}$ and that

$$
(2 h, 2 h),(2 h+1,2 h+1) \in H(P, Q) .
$$

Then C is h-hyperelliptic with the double covering map $\phi: C \rightarrow C_{h}$ for some C_{h}. Moreover $\phi(P)=\phi(Q)$ and $H(\phi(P))=\{k \mid(k, k) \in H(P, Q)\}$.

Proof. By Lemma 2.4, $(k, k) \in H(P, Q)$ for all $k \geq 2 h$. By Lemma 2.3,

$$
\operatorname{dim}|(3 h+1)(P+Q)| \geq 2 h+1
$$

Let $s+1=\operatorname{dim}|(3 h+1)(P+Q)|$ and let's denote $|(3 h+1)(P+Q)|$ by $g_{6 h+2}^{s+1}$. Consider a rational map $\phi: C \rightarrow \mathbb{P}^{s+1}$ defined by $g_{6 h+2}^{s+1}$.

Claim: $s=2 h$.
Suppose that $s \geq 2 h+1$. If ϕ is birational, then

$$
m=\left[\frac{(6 h+2)-1}{(s+1)-1}\right]=2, \epsilon=(6 h+1)-2 s .
$$

So by Lemma 1.5, we get

$$
g \leq 12 h+2-3 s \leq 6 h-1
$$

which contradicts our bound of genus. Let t be the degree of ϕ and C^{\prime} be a normalization of $\phi(C)$. Then C^{\prime} admits a complete base-point-free linear series $g_{\frac{6 h+2}{t}}^{s+1}$. Since $s+1<\frac{6 h+2}{t}$, we have $t=2$. Thus C is a double covering of the curve C^{\prime} and we have a complete linear series $g_{3 h+1}^{s+1}\left(C^{\prime}\right)$. By Clifford's theorem, it is a complete nonspecial linear series on C^{\prime}, hence the genus of C^{\prime} is $h^{\prime}=3 h-s<h$. Here we have two possibilities

$$
\phi(P)=\phi(Q) \text { or } \phi(P) \neq \phi(Q) .
$$

Subclaim: $\phi(P)=\phi(Q)$.
If $\phi(P) \neq \phi(Q)$, then $\phi^{*}(\phi(P))=2 P$ and $\phi^{*}(\phi(Q))=2 Q$, since the divisor $(3 h+1)(P+Q)$ is the pull-back of some divisor on C^{\prime} via ϕ. In this case, $3 h+1$ must be even and hence h is odd. Consider a linear series $|(3 h+2)(P+Q)|$ and let its dimension be $u+1$. Then $s+2 \geq u \geq s+1 \geq 2 h+2$. Through the similar steps as above, we conclude that C is a double covering of another curve $C^{\prime \prime}$ of genus $h^{\prime \prime} \leq h-1$, and the series $|(3 h+2)(P+Q)|$ is compounded of the latter map ϕ^{\prime}. Since h is odd, $3 h+2$ is also odd. Hence $\phi^{\prime *}\left(\phi^{\prime}(P)\right)=P+Q$. Now $\phi \times \phi^{\prime}$ is birational, and by Lemma 1.4, we have $g \leq 1+4 h$ contrary to our assumption. Therefore we proved the Subclaim $\phi(P)=\phi(Q)$.

Since $k(P+Q)=\phi^{*}(k \phi(P))$ for any integer k, we have $(k, k) \in H(P, Q)$ for $k \in H(\phi(P))$. Then the cardinality of the set $\{(k, k) \mid(k, k) \notin H(P, Q), k \geq 1\}$ is less than h, which is a contradiction to our assumption. Thus we proved the Claim $s=2 h$.

Now we have a complete linear series $g_{6 h+2}^{2 h+1}=|(3 h+1)(P+Q)|$ and a rational $\operatorname{map} \phi: C \rightarrow \mathbb{P}^{2 h+1}$ induced from $g_{6 h+2}^{2 h+1}$. Suppose ϕ is birational. Then by Lemma 1.5 , we get $g(C) \leq 6 h+3$ which contradicts the assumption $g \geq 6 h+4$.

Thus ϕ is a double covering map from C to $\phi(C)$ with $g(\phi(C))=h$. Therefore C is h-hyperelliptic. Since $|(2 h+1)(P+Q)|$ and $|2 h(P+Q)|$ is also compounded of ϕ, we conclude that $\phi(P)=\phi(Q)$.

Remark 2.6. The above theorem is a modification of Theorem A in [9].
Theorem 2.7. Let C be a curve of genus $g \geq 6 h+5$. Suppose that $(2 h, 2 h),(2 h+$ $1,2 h+1) \in H(P, Q)$ and $\operatorname{dim}(2 h, 2 h)=h, \operatorname{dim}(2 h+1,2 h+1)=h+1$. Then C is an h-hyperelliptic curve. Moreover, P and Q have same image under the double covering map.

Proof. Consider the rational map $\phi: C \rightarrow \mathbb{P}^{h+1}$ defined by the linear series

$$
g_{4 h+2}^{h+1}=|(2 h+1)(P+Q)|
$$

If ϕ is birational, then $g \leq 6 h+4$ by Lemma 1.5. Thus ϕ is not birational. Let t be the degree of ϕ and C^{\prime} be a normalization of $\phi(C)$. Thus C^{\prime} admits a complete base-point-free linear series $g_{\underline{4 h+2}}^{h+1}\left(C^{\prime}\right)$. Since $h+1 \leq \frac{4 h+2}{t}$, we have $t=2$ or $t=3$.

If $t=2$, then we have $g_{\frac{4 h+2}{2}}^{h+t}\left(C^{\prime}\right)=g_{2 h+1}^{h+1}\left(C^{\prime}\right)$ on C^{\prime}. Since $h+1>\frac{2 h+1}{2}$, this series is nonspecial by Lemma 1.6 and the genus of C^{\prime} is exactly h. Since $2 h+1$ is odd and the divisor $(2 h+1)(P+Q)$ is also a pull-back of some divisor via a double covering map ϕ, we conclude that $\phi(P)=\phi(Q)$.

Now it remains to show that the case $t=3$ can not occur. If $t=3$, then $(4 h+2)$ is a multiple of 3 and we have a complete $g_{\frac{4 h+2}{3}}^{h+1}\left(C^{\prime}\right)$ on C^{\prime}. By Lemma 1.6 again, this linear series is nonspecial, and the genus of C^{\prime} is $\frac{h-1}{3}$. If $\phi(P)=\phi(Q)$, then $\phi^{*}(\phi(P))=2 P+Q$ or $P+2 Q$. Then $(2 h+1)(P+Q)$ can not be a pull-back of any divisor on C^{\prime}. Thus we have

$$
\phi^{*}(\phi(P))=3 P \text { and } \phi^{*}(\phi(Q))=3 Q
$$

Now $V=\left|\frac{2 h+1}{3} \phi(P)+\frac{2 h-2}{3} \phi(Q)\right|$ is a complete linear series on C^{\prime} of degree $\frac{4 h-1}{3}$. Since $\frac{4 h-1}{3} \geq 2 \cdot g\left(C^{\prime}\right)$ so V is base point free. Then

$$
|(2 h+1) P+(2 h-2) Q|=\left|\phi^{*}(V)\right|
$$

which is obtained from the pullback of V is also base point free and we have

$$
(2 h+1,2 h-2) \in H(P, Q)
$$

Since $(2 h, 2 h) \in H(P, Q)$ by assumption, we have $(2 h+1,2 h) \in H(P, Q)$ by Lemma 1.2. Thus

$$
\operatorname{dim}(2 h+1,2 h+1)>\operatorname{dim}(2 h+1,2 h)>\operatorname{dim}(2 h, 2 h)=h
$$

which contradicts the assumption $\operatorname{dim}(2 h+1,2 h+1)=h+1$. Hence the case $t=3$ can not occur.

Remark 2.8. In Theorem 2.7, we assume the existence of only two elements in $H(P, Q)$ and their dimensions without assuming the sequence of elements in $H(P, Q)$.

We state a generalized version of Theorem 2.7.
Theorem 2.9. Let C be a curve of genus $g \geq 6 h+a$, $a \geq 5$. Suppose that there exists an integer n satisfying that (i) $2 h+1 \leq n \leq \frac{g+a-3}{2}$, (ii) $\operatorname{dim}|n(P+Q)|=n-h$ and $(n, n) \in H(P, Q)$ and (iii) $\operatorname{dim}|(n-1)(P+Q)|=(n-1)-h$ and $(n-1, n-1) \in$ $H(P, Q)$. Then C is h-hyperelliptic with double covering map $\pi: C \rightarrow C_{h}$ with

$$
\pi(P)=\pi(Q)=P^{\prime} \in C_{h} \text { and }\{k \mid(k, k) \in H(P, Q)\}=H\left(P^{\prime}\right)
$$

Proof. If $n=2 h+1$, we already proved in Theorem 2.7. Now we assume $n \geq 2 h+2$.
Let n be a number such that $2 h+1 \leq n \leq \frac{g+a-3}{2},(n, n) \in H(P, Q)$ and $\operatorname{dim} \mid n(P+$ $Q) \mid=n-h$. Let $|n(P+Q)|=g_{2 n}^{n-h}$ and $\phi_{n}: C \rightarrow \mathbb{P}^{n-h}$ be a rational map defined by $g_{2 n}^{n-h}$.

Claim 1: ϕ_{n} is not birational if $n \geq 2 h+2$.
Suppose that $\phi_{n}: C \rightarrow \mathbb{P}^{n-h}$ is birational. Then using the Castelnuovo bound, the genus of C satisfies the inequality $g \leq \frac{m(m-1)}{2}(r-1)+m \epsilon$, where $m=\left[\frac{d-1}{r-1}\right]$ and $\epsilon=d-1-m(r-1)$. In this theorem, m satisfies $m=\left[\frac{2 n-1}{n-h-1}\right]=2$ or 3 . If $m=2$ and $\epsilon=2 h+1$ then $g \leq n+3 h+1 \leq g-\frac{1}{2}$ which is a contradiction. If $m=3$ and $\epsilon=-n+3 h+2$ then $g \leq 6 h+3<g$ which is a contradiction again. Thus ϕ_{n} is not birational if $n \geq 2 h+2$.

Let $\operatorname{deg} \phi_{n}=t \geq 2$. Since ϕ_{n} is nondegenerate, $n-h \leq \frac{2 n}{t}$ so $\operatorname{deg} \phi_{n}=2$ or $\operatorname{deg} \phi_{n}=3$.

Claim 2: If $(n, n),(n-1, n-1) \in H(P, Q), \operatorname{dim}|n(P+Q)|=n-h$ and $\operatorname{dim} \mid(n-$ $1)(P+Q) \mid=(n-1)-h$, then $\operatorname{deg} \phi_{n}=2$ and $g\left(\phi_{n}(C)\right)=h$.

If $t=3$, then $2 n$ is a multiple of 3 and there is a complete and nonspecial $g_{\frac{2 n}{3}}^{n-h}\left(C^{\prime}\right)$ on $C^{\prime}=\phi_{n}(C)$. Hence the genus of C^{\prime} is $\frac{3 h-n}{3}$. If $\phi_{n}(P)=\phi_{n}(Q)$, then $\phi_{n}^{*}\left(\phi_{n}(P)\right)=2 P+Q$ or $P+2 Q$ and the pullback of a multiple of $\phi(P)$ can not be $n(P+Q)$. Thus we have $\phi_{n}(P) \neq \phi_{n}(Q)$ and hence

$$
\phi_{n}^{*}\left(\phi_{n}(P)\right)=3 P, \phi_{n}^{*}\left(\phi_{n}(Q)\right)=3 Q
$$

Since $|n P+(n-3) Q|=\left|\phi_{n}^{*}\left(\frac{n}{3} \phi_{n}(P)+\frac{n-3}{3} \phi_{n}(Q)\right)\right|$ is base point free, $(n, n-3) \in$ $H(P, Q)$. Then $\operatorname{dim}|n P+n Q|=\operatorname{dim}|(n-1) P+(n-1) Q|+2$ which is a contradiction to our assumption.

Therefore we conclude $\operatorname{deg} \phi_{n}=t=2$ and there is a complete, nonspecial $g_{\frac{2 n}{2}}^{n-h}\left(C^{\prime}\right)$ on $C^{\prime}=\phi_{n}(C)$. Hence the genus of C^{\prime} is h and C is h-hyperelliptic with double covering map $\pi=\phi_{n}: C \rightarrow C^{\prime}=C_{h}$.

Claim 3: $\pi(P)=\pi(Q)=P^{\prime}$ and $\{k \mid(k, k) \in H(P, Q)\}=H\left(P^{\prime}\right)$
Case 1: n is odd.
Since $\pi=\phi_{n}$ is a double covering map by Claim 2, there is a complete, nonspecial $g_{\frac{2 n}{2}}^{n-h}\left(C^{\prime}\right)=g_{n}^{n-h}\left(C^{\prime}\right)$ on C^{\prime}. By Riemann-Roch Theorem, $g\left(C^{\prime}\right)=k-(k-h)=h$. Since $n(P+Q)$ is a pullback of some divisor D on $C^{\prime}=C_{h}$, i.e., $n(P+Q)=\pi^{*}(D)$ and n is odd, we get $\pi(P)=\pi(Q)$.

Case 2: n is even.
Suppose that $\phi_{n}(P) \neq \phi_{n}(Q)$. Since $n \geq 2 h+1$ and n is even, $n \geq 2 h+2$ and $\operatorname{dim}|(n-1)(P+Q)|=(n-1)-h$ and $(n-1, n-1) \in H(P, Q)$ by the assumption on n. Consider ϕ_{n-1} which is defined by $g_{2(n-1)}^{(n-1)-h}=|(n-1)(P+Q)|$. By Castelnuovo's bound, ϕ_{n-1} is not birational and $\operatorname{deg} \phi_{n-1}=2$ or 3. If $\operatorname{deg} \phi_{n-1}=3$, there is a complete, nonspecial $g_{\frac{2(n-1)}{(n-1)-h}}^{(n)}$ on $C^{\prime \prime}=\phi_{n-1}(C)$. So $g\left(C^{\prime \prime}\right)=h-\frac{(n-1)}{3}$. Then the 3:1 map $\phi_{n-1}: C \rightarrow{ }_{C}{ }_{h-\frac{n-1}{3}}$ and the 2:1 map $\phi_{n}: C \rightarrow C_{h}$ induce a map $\phi_{n-1} \times \phi_{n}: C \rightarrow C_{h-\frac{n-1}{3}} \times C_{h}$ which is birational onto its image. By Lemma 1.4, $g(C) \leq(3-1)(2-1)+3\left(h-\frac{n-1}{3}\right)+2 h=2+5 h-(n-1) \leq 2+3 h<g$ which is a contradiction. Thus deg $\phi_{n-1}=2$ and there is a complete, nonspecial $g_{\frac{2(n-1)}{2}}^{(n-1)-h}$ on $\phi_{n-1}(C)$. In this case $g\left(\phi_{n-1}(C)\right)=h$. Let $\phi_{n-1}(C)=C_{h}^{\prime}$. Since $\phi_{n}(P) \neq \phi_{n}(Q)$ and $\phi_{n-1}(P)=\phi_{n-1}(Q), \phi_{n-1} \times \phi_{n}: C \rightarrow C_{h}^{\prime} \times C_{h}$ is birational onto its image. Again by Lemma 1.4, $g(C) \leq(2-1)(2-1)+2 h+2 h=4 h+1<g$ which is a contradiction.

Thus we have $\pi(P)=\pi(Q)$ and the last assertion follows from Theorem 2.2.

References

1. R.D.M. Accola: Topics in the Theory of Riemann Surfaces. Lecture Notes in Math 1595. Springer-Verlag, Berlin (1994).
2. E. Arbarello, M. Cornalba, P.A. Griffiths \& J. Harris: Geometry of Algebraic Curves, I. Springer-Verlag, Berlin/New York (1985).
3. H.M. Farkas \& I. Kra: Riemann Surfaces. Graduate Texts in Mathematics 71, SpringerVerlag, New York (1980).
4. M. Homma: The Weierstrass semigroup of a pair of points on a curve. Arch. Math. 67 (1996), 337-348.
5. E. Kang \& S.J. Kim: Special pairs in the generating subset of the Weierstrass semigroup at a pair. Geom. Dedicata 99 (2003), no. 1, 167-177.
6. T. Kato: On criteria of \tilde{g}-hyperellipticity. Kodai Math. J. 2 (1979), 275-285.
7. S.J. Kim: On the index of the Weierstrass semigroup of a pair of points on a curve. Arch. Math. 62 (1994), 73-82.
8. S.J. Kim \& J. Komeda: Weierstrass semigroups of pairs of points whose first non-gaps are three. Geom. Dedicata 93 (2002), no. 1, 113-119.
9. F. Torres: Weierstrass points and double coverings of curves with application: Symmetric numerical semigroups which cannot be realized as Weierstrass semigroups. Manuscripta Math. 83 (1994), 39-58.

Department of Information and Communication Technology, Honam University, Gwanguu 506-714, Republic of Korea
Email address: ejkang@honam.ac.kr

[^0]: Received by the editors November 02, 2015. Accepted November 20, 2015.
 2010 Mathematics Subject Classification. 14H55.
 Key words and phrases. Weierstrass semigroup of a pair, Weierstrass semigroup of a point, double covering map.

