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WEIERSTRASS SEMIGROUPS OF PAIRS
ON H-HYPERELLIPTIC CURVES

Eunju Kang

Abstract. Kato[6] and Torres[9] characterized the Weierstrass semigroup of rami-
fication points on h-hyperelliptic curves. Also they showed the converse results that
if the Weierstrass semigroup of a point P on a curve C satisfies certain numerical
condition then C can be a double cover of some curve and P is a ramification point
of that double covering map. In this paper we expand their results on the Weier-
strass semigroup of a ramification point of a double covering map to the Weierstrass
semigroup of a pair (P, Q). We characterized the Weierstrass semigroup of a pair
(P, Q) which lie on the same fiber of a double covering map to a curve with relatively
small genus. Also we proved the converse: if the Weierstrass semigroup of a pair
(P, Q) satisfies certain numerical condition then C can be a double cover of some
curve and P , Q map to the same point under that double covering map.

1. Introduction and Preliminaries

Let C be a nonsingular complex projective curve of genus g ≥ 2, M(C) denote
the field of meromorphic functions on C and N0 be the set of all nonnegative integers.
For two distinct points P, Q ∈ C, we define the Weierstrass semigroup H(P ) ⊂ N0

of a point and the Weierstrass semigroup of a pair of points H(P, Q) ⊂ N2
0 by

H(P ) = {α | there exists f ∈M(C) with (f)∞ = αP},
H(P, Q) = {(α, β) | there exists f ∈M(C) with (f)∞ = αP + βQ},

where (f)∞ means the divisor of poles of f . Indeed, these sets form sub-semigroups
of N0 and N2

0, respectively. The cardinality of the set G(P ) = N0 \H(P ) is exactly
g. The set G(P,Q) = N2

0 \H(P, Q) is also finite, but its cardinality is dependent on
the points P and Q. In [7], the upper and lower bound of such sets are given as

Received by the editors November 02, 2015. Accepted November 20, 2015.
2010 Mathematics Subject Classification. 14H55.
Key words and phrases. Weierstrass semigroup of a pair, Weierstrass semigroup of a point, double

covering map.

c© 2015 Korean Soc. Math. Educ.

403



404 Eunju Kang

(
g + 2

2

)
− 1 ≤ card G(P, Q) ≤

(
g + 2

2

)
− 1− g + g2.

We review some basic facts concerning the Weierstrass semigroups at a pair of
points on a curve ([4], [7]).

Lemma 1.1. For each α ∈ G(P ), let βα = min{β | (α, β) ∈ H(P,Q)}. Then
α = min{γ | (γ, βα) ∈ H(P,Q)}. Moreover, we have

{βα | α ∈ G(P )} = G(Q).

Proof. See [7]. ¤

Let G(P ) = {p1 < p2 < · · · < pg} and G(Q) = {q1 < q2 < · · · < qg}. Above
lemma implies that the set H(P, Q) defines a permutation σ = σ(P, Q) satisfying
that (pi, qσ(i)) ∈ H(P,Q). Homma [4] obtained the formula for the cardinality of
G(P, Q) using the cardinality of the set of pairs (i, j) which are reversed by σ. Also
we define σ̃ : G(P ) → G(Q) by σ̃(pi) = qσ(i) which means nothing but σ̃(α) = βα.
Clearly σ̃ is a bijection. We use the following notations;

Γ = Γ(P, Q) = {(α, βα) | α ∈ G(P )}
= {(pi, qσ(i)) | i = 1, 2, · · · , g},

Γ̃ = Γ̃(P, Q) = Γ(P, Q) ∪ (
H(P )× {0}) ∪ ({0} ×H(Q)

)
.

The above set Γ(P,Q) is called the generating subset of the Weierstrass semigroup
H(P, Q). For given distinct two points P, Q, the set Γ(P,Q) determines not only
Γ̃(P,Q) but also the sets H(P, Q) and G(P, Q) completely, as described in the lemma
below. To state the lemma we use the natural partial order on the set N2

0 defined as

(α, β) ≥ (γ, δ) if and only if α ≥ γ and β ≥ δ,

and the least upper bound of two elements (α1, β1), (α2, β2) is defined as

lub{(α1, β1), (α2, β2)} = (max{α1, α2}, max{β1, β2}).

Lemma 1.2. (1) The subset H(P, Q) of N2
0 is closed under the lub(least upper

bound) operation. (2) Every element of H(P, Q) is expressed as the lub of one or
two elements of the set Γ̃(P, Q). (3) The set G(P, Q) = N2

0 \H(P, Q) is expressed as

G(P, Q) =
⋃

l∈G(P )

({(l, β)|β = 0, 1, . . . , σ̃(l)− 1} ∪ {(α, σ̃(l))|α = 0, 1, . . . , l − 1}).

Proof. See [7] and [8]. ¤
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We say a pair (α, β) ∈ N2
0 is special [ resp. nonspecial, canonical ] if the cor-

responding divisor αP + βQ is special [ resp. nonspecial, canonical ]. We denote
dim(α, β) the dimension of complete linear series |αP + βQ| and use the notations

Γ≤(α,β) = {(γ, δ) ∈ Γ | (γ, δ) ≤ (α, β)}
Γ̃≤(α,β) = {(γ, δ) ∈ Γ̃ | (γ, δ) ≤ (α, β)}
N2

0≤(α,β) = {(γ, δ) ∈ N2
0 | (γ, δ) ≤ (α, β)}

H(P, Q)≤(α,β) = {(γ, δ) ∈ H(P, Q) | (γ, δ) ≤ (α, β)}.
We also need the following two theorems in [1].

Theorem 1.3 ( [1, p.10] (Brill-Nöther Reciprocity)). Let C be a curve of genus
g ≥ 2. If two linear series gr

n and gs
m on C are complete and residual to each other,

i.e., |gr
n + gs

m| = K where K is the canonical series, then n − 2r = m − 2s. This
implies that if P is a base point of gr

n then |gs
m + P | does not have P as a base point,

this means that dim |gs
m + P | = s + 1.

We use the following well-known lemmas to prove our theorems in this paper.

Lemma 1.4 ( [1] (The Inequality of Castelnuovo-Severi)). Let C, C1 and C2 be
curves of respective genera g, g1 and g2. Assume that φi : C → Ci, i = 1, 2 are
di-sheeted coverings such that φ = φ1 × φ2 : C → C1 × C2 is birational onto its
image. Then g ≤ (d1 − 1)(d2 − 1) + d1g1 + d2g2.

Lemma 1.5 ([2, p.116] (Castelnuovo’s Bound)). Let C be a smooth curve that
admits a birational mapping onto a nondegenerate curve of degree d in Pr. Then the
genus of C satisfies the inequality

g ≤ m(m− 1)
2

(r − 1) + mε,

where m =
[

d−1
r−1

]
and ε = d− 1−m(r − 1).

Lemma 1.6 ([2, p.251] (Clifford’s Theorem)). For any two effective divisors on a
smooth curve C,

dim |D|+ dim |D′| ≤ dim |D + D′|
and for |D| special

dim |D| ≤ d/2

with equality holding only if D = 0, D = K, or C is hyperelliptic.
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In Section 2, we study the Weierstrass semigroups of pairs on h-hyperelliptic
curves.

2. Semigroups on h-hyperelliptic Curves

Recall that a curve C is called h-hyperelliptic if it admits a double covering
map π : C → Ch where Ch is a curve of genus h, or equivalently, if there is an
automorphism of order two on C which is defined by interchanging of the two sheets
of this covering. Such π is unique if g > 4h + 1 [3], which we can prove easily using
above Lemma 1.4. Usually, 0-hyperelliptic curves and 1-hyperelliptic curves are
said to be hyperelliptic and bi-elliptic, respectively. The results in this section was
motivated by [6] and [9], where the authors studied ordinary Weierstrass semigroups
of points on h-hyperelliptic curves.

Lemma 2.1. Let C be a curve of genus g. Suppose that C is an h-hyperelliptic
curve for some h ≥ 0 with a double covering map π : C → Ch. If a linear series g1

k

is base point free and not compounded of π, then k > g − 2h.

Proof. The k-sheeted map φg1
k

: C → P1 and 2-sheeted map π : C → Ch induce a
birational map

φg1
k
× π : C → P1 × Ch

onto its image. By Lemma 1.4, g ≤ (k−1)(2−1)+k ·0+2·h so we get k > g−2h. ¤

Theorem 2.2. Let C be an h-hyperelliptic curve of genus g ≥ 6h + 2 with a double
covering map π : C → Ch. Let P,Q ∈ C be distinct points and π(P ) = π(Q) = P ′.
Then

H(P,Q)≤(2h+1,2h+1) = {(k, k) | k ∈ H(P ′), k ≤ 2h + 1}.

Proof. Suppose that there exists an element (α, β) ∈ H(P,Q)≤(2h+1,2h+1) not con-
tained in {(k, k) | k ∈ H(P ′), k ≤ 2h + 1}. Let g1

α+β be a linear subseries of
|αP + βQ| which is base-point-free and not necessarily complete. If α 6= β, g1

α+β

is not compounded of π. If α = β and α /∈ H(P ′), let H(P ′)≤2h = {n0 =
0, n1, · · · , nh = 2h}. For some i, ni < α < ni+1 and dim |ni(P +Q)| < dim |α(P +Q)|
by the assumption on α. Also dim |ni(P+Q)| ≥ dim |αP ′| = i so we have dim |αP ′| <
dim |α(P + Q)|. Thus |α(P + Q)| and g1

α+β is not compounded of π again. Now by
Lemma 2.1,

α + β > g − 2h ≥ (6h + 2)− 2h ≥ 4h + 2
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which contradicts the choice of (α, β) ∈ H(P, Q)≤(2h+1,2h+1). ¤

Each of the following two theorems is a converse of Theorem 2.2 in a different
view point. For the next theorem, we need two lemmas.

Lemma 2.3. Let (α, β) be an element in N2
0 with β ≥ 1 [ resp. α ≥ 1]. Then

dim(α, β) = dim(α, β − 1) + 1 [ resp. dim(α, β) = dim(α− 1, β) + 1]

if and only if there exists (γ, β) ∈ Γ̃ [ resp. (α, δ) ∈ Γ̃] with 0 ≤ γ ≤ α [ resp.
0 ≤ δ ≤ β].

Proof. See [7].

Lemma 2.4. Let H ⊂ N be a semigroup. Assume that H contains h terms in
{1, 2, · · · , 2h} and 2h, 2h + 1 ∈ H. Then H contains any integers k ≥ 2h.

Proof. First, we show that 2h + 2 ∈ H. The set I2h+1 = {1, 2, · · · , 2h, 2h + 1} has
h + 1 elements of H. Consider a partition of I2h+1

{1, 2h + 1}, {2, 2h}, {3, 2h− 1}, · · · , {h + 1}.
If h + 1 ∈ H, then 2h + 2 ∈ H since H is a semigroup. If h + 1 6∈ H, then at least
one of the sets other than {h+1} is contained in H, and hence we have 2h+2 ∈ H.

Next, we show that 2h + 3 ∈ H. The set I2h+2 = {1, 2, · · · , 2h, 2h + 1, 2h + 2}
has h + 2 elements of H. Consider a partition of I2h+2

{1, 2h + 2}, {2, 2h + 1}, {3, 2h}, · · · , {h + 1, h + 2}.
Then at least of one is contained in H and hence 2h + 3 ∈ H.

Repeating this process, we conclude that k ∈ H for all k ≥ 2h. ¤

Theorem 2.5. Let C be a curve of genus g ≥ 6h + 4 and P, Q ∈ C. Assume that
H(P, Q) contains exactly h terms in {(1, 1), (2, 2), · · · , (2h, 2h)} and that

(2h, 2h), (2h + 1, 2h + 1) ∈ H(P,Q).

Then C is h-hyperelliptic with the double covering map φ : C → Ch for some Ch.
Moreover φ(P ) = φ(Q) and H(φ(P )) = {k | (k, k) ∈ H(P, Q)}.

Proof. By Lemma 2.4, (k, k) ∈ H(P,Q) for all k ≥ 2h. By Lemma 2.3,

dim |(3h + 1)(P + Q)| ≥ 2h + 1.

Let s + 1 = dim |(3h + 1)(P + Q)| and let’s denote |(3h + 1)(P + Q)| by gs+1
6h+2.

Consider a rational map φ : C → Ps+1 defined by gs+1
6h+2.
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Claim: s = 2h.
Suppose that s ≥ 2h + 1. If φ is birational, then

m =
[(6h + 2)− 1

(s + 1)− 1

]
= 2, ε = (6h + 1)− 2s.

So by Lemma 1.5, we get

g ≤ 12h + 2− 3s ≤ 6h− 1

which contradicts our bound of genus. Let t be the degree of φ and C ′ be a nor-
malization of φ(C). Then C ′ admits a complete base-point-free linear series gs+1

6h+2
t

.

Since s + 1 < 6h+2
t , we have t = 2. Thus C is a double covering of the curve C ′ and

we have a complete linear series gs+1
3h+1(C

′). By Clifford’s theorem, it is a complete
nonspecial linear series on C ′, hence the genus of C ′ is h′ = 3h − s < h. Here we
have two possibilities

φ(P ) = φ(Q) or φ(P ) 6= φ(Q).

Subclaim: φ(P ) = φ(Q).
If φ(P ) 6= φ(Q), then φ∗(φ(P )) = 2P and φ∗(φ(Q)) = 2Q, since the divisor

(3h + 1)(P + Q) is the pull-back of some divisor on C ′ via φ. In this case, 3h + 1
must be even and hence h is odd. Consider a linear series |(3h + 2)(P + Q)| and
let its dimension be u + 1. Then s + 2 ≥ u ≥ s + 1 ≥ 2h + 2. Through the similar
steps as above, we conclude that C is a double covering of another curve C ′′ of
genus h′′ ≤ h− 1, and the series |(3h + 2)(P + Q)| is compounded of the latter map
φ′. Since h is odd, 3h + 2 is also odd. Hence φ′∗(φ′(P )) = P + Q. Now φ × φ′

is birational, and by Lemma 1.4, we have g ≤ 1 + 4h contrary to our assumption.
Therefore we proved the Subclaim φ(P ) = φ(Q).

Since k(P + Q) = φ∗(kφ(P )) for any integer k, we have (k, k) ∈ H(P, Q) for
k ∈ H(φ(P )). Then the cardinality of the set {(k, k) | (k, k) 6∈ H(P, Q), k ≥ 1} is
less than h, which is a contradiction to our assumption. Thus we proved the Claim
s = 2h.

Now we have a complete linear series g2h+1
6h+2 = |(3h + 1)(P + Q)| and a rational

map φ : C → P2h+1 induced from g2h+1
6h+2. Suppose φ is birational. Then by Lemma

1.5, we get g(C) ≤ 6h + 3 which contradicts the assumption g ≥ 6h + 4.
Thus φ is a double covering map from C to φ(C) with g(φ(C)) = h. Therefore

C is h-hyperelliptic. Since |(2h + 1)(P + Q)| and |2h(P + Q)| is also compounded
of φ, we conclude that φ(P ) = φ(Q). ¤
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Remark 2.6. The above theorem is a modification of Theorem A in [9].

Theorem 2.7. Let C be a curve of genus g ≥ 6h + 5. Suppose that (2h, 2h), (2h +
1, 2h + 1) ∈ H(P, Q) and dim(2h, 2h) = h, dim(2h + 1, 2h + 1) = h + 1. Then C

is an h-hyperelliptic curve. Moreover, P and Q have same image under the double
covering map.

Proof. Consider the rational map φ : C → Ph+1 defined by the linear series

gh+1
4h+2 = |(2h + 1)(P + Q)| .

If φ is birational, then g ≤ 6h + 4 by Lemma 1.5. Thus φ is not birational. Let t

be the degree of φ and C ′ be a normalization of φ(C). Thus C ′ admits a complete
base-point-free linear series gh+1

4h+2
t

(C ′). Since h + 1 ≤ 4h+2
t , we have t = 2 or t = 3.

If t = 2, then we have gh+1
4h+2

2

(C ′) = gh+1
2h+1(C

′) on C ′. Since h + 1 > 2h+1
2 , this

series is nonspecial by Lemma 1.6 and the genus of C ′ is exactly h. Since 2h + 1 is
odd and the divisor (2h + 1)(P + Q) is also a pull-back of some divisor via a double
covering map φ, we conclude that φ(P ) = φ(Q).

Now it remains to show that the case t = 3 can not occur. If t = 3, then (4h+2)
is a multiple of 3 and we have a complete gh+1

4h+2
3

(C ′) on C ′. By Lemma 1.6 again,

this linear series is nonspecial, and the genus of C ′ is h−1
3 . If φ(P ) = φ(Q), then

φ∗(φ(P )) = 2P +Q or P +2Q. Then (2h+1)(P +Q) can not be a pull-back of any
divisor on C ′. Thus we have

φ∗(φ(P )) = 3P and φ∗(φ(Q)) = 3Q.

Now V =
∣∣2h+1

3 φ(P ) + 2h−2
3 φ(Q)

∣∣ is a complete linear series on C ′ of degree 4h−1
3 .

Since 4h−1
3 ≥ 2 · g(C ′) so V is base point free. Then

|(2h + 1)P + (2h− 2)Q| = |φ∗ (V )|
which is obtained from the pullback of V is also base point free and we have

(2h + 1, 2h− 2) ∈ H(P, Q).

Since (2h, 2h) ∈ H(P,Q) by assumption, we have (2h + 1, 2h) ∈ H(P, Q) by
Lemma 1.2. Thus

dim(2h + 1, 2h + 1) > dim(2h + 1, 2h) > dim(2h, 2h) = h

which contradicts the assumption dim(2h + 1, 2h + 1) = h + 1. Hence the case t = 3
can not occur. ¤
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Remark 2.8. In Theorem 2.7, we assume the existence of only two elements in
H(P, Q) and their dimensions without assuming the sequence of elements in H(P, Q).

We state a generalized version of Theorem 2.7.

Theorem 2.9. Let C be a curve of genus g ≥ 6h + a, a ≥ 5. Suppose that there
exists an integer n satisfying that (i) 2h+1 ≤ n ≤ g+a−3

2 , (ii) dim |n(P +Q)| = n−h

and (n, n) ∈ H(P, Q) and (iii) dim |(n−1)(P +Q)| = (n−1)−h and (n−1, n−1) ∈
H(P, Q). Then C is h-hyperelliptic with double covering map π : C → Ch with

π(P ) = π(Q) = P ′ ∈ Ch and {k | (k, k) ∈ H(P, Q)} = H(P ′).

Proof. If n = 2h+1, we already proved in Theorem 2.7. Now we assume n ≥ 2h+2.
Let n be a number such that 2h+1 ≤ n ≤ g+a−3

2 , (n, n) ∈ H(P, Q) and dim |n(P+
Q)| = n− h. Let |n(P + Q)| = gn−h

2n and φn : C → Pn−h be a rational map defined
by gn−h

2n .
Claim 1: φn is not birational if n ≥ 2h + 2.
Suppose that φn : C → Pn−h is birational. Then using the Castelnuovo bound,

the genus of C satisfies the inequality g ≤ m(m−1)
2 (r − 1) + mε, where m =

[
d−1
r−1

]

and ε = d − 1 − m(r − 1). In this theorem, m satisfies m =
[

2n−1
n−h−1

]
=2 or 3. If

m = 2 and ε = 2h+1 then g ≤ n+3h+1 ≤ g− 1
2 which is a contradiction. If m = 3

and ε = −n + 3h + 2 then g ≤ 6h + 3 < g which is a contradiction again. Thus φn

is not birational if n ≥ 2h + 2.
Let deg φn = t ≥ 2. Since φn is nondegenerate, n − h ≤ 2n

t so deg φn = 2 or
deg φn = 3.

Claim 2: If (n, n), (n−1, n−1) ∈ H(P,Q), dim |n(P +Q)| = n−h and dim |(n−
1)(P + Q)| = (n− 1)− h, then deg φn = 2 and g(φn(C)) = h.

If t = 3, then 2n is a multiple of 3 and there is a complete and nonspecial
gn−h

2n
3

(C ′) on C ′ = φn(C). Hence the genus of C ′ is 3h−n
3 . If φn(P ) = φn(Q), then

φ∗n(φn(P )) = 2P + Q or P + 2Q and the pullback of a multiple of φ(P ) can not be
n(P + Q). Thus we have φn(P ) 6= φn(Q) and hence

φ∗n(φn(P )) = 3P, φ∗n(φn(Q)) = 3Q.

Since |nP + (n − 3)Q| = |φ∗n(n
3 φn(P ) + n−3

3 φn(Q))| is base point free, (n, n − 3) ∈
H(P, Q). Then dim |nP +nQ| = dim |(n−1)P +(n−1)Q|+2 which is a contradiction
to our assumption.
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Therefore we conclude deg φn = t = 2 and there is a complete, nonspecial
gn−h

2n
2

(C ′) on C ′ = φn(C). Hence the genus of C ′ is h and C is h-hyperelliptic

with double covering map π = φn : C → C ′ = Ch.
Claim 3: π(P ) = π(Q) = P ′ and {k | (k, k) ∈ H(P, Q)} = H(P ′)
Case 1: n is odd.
Since π = φn is a double covering map by Claim 2, there is a complete, nonspecial

gn−h
2n
2

(C ′) = gn−h
n (C ′) on C ′. By Riemann-Roch Theorem, g(C ′) = k − (k − h) = h.

Since n(P + Q) is a pullback of some divisor D on C ′ = Ch, i.e., n(P + Q) = π∗(D)
and n is odd, we get π(P ) = π(Q).

Case 2: n is even.
Suppose that φn(P ) 6= φn(Q). Since n ≥ 2h + 1 and n is even, n ≥ 2h + 2 and

dim |(n−1)(P +Q)| = (n−1)−h and (n−1, n−1) ∈ H(P,Q) by the assumption on
n. Consider φn−1 which is defined by g

(n−1)−h
2(n−1) = |(n−1)(P +Q)|. By Castelnuovo’s

bound, φn−1 is not birational and deg φn−1 = 2 or 3. If deg φn−1 = 3, there is
a complete, nonspecial g

(n−1)−h
2(n−1)

3

on C ′′ = φn−1(C). So g(C ′′) = h − (n−1)
3 . Then

the 3:1 map φn−1 : C → Ch−n−1
3

and the 2:1 map φn : C → Ch induce a map
φn−1 × φn : C → Ch−n−1

3
× Ch which is birational onto its image. By Lemma 1.4,

g(C) ≤ (3− 1)(2− 1) + 3(h− n−1
3 ) + 2h = 2 + 5h− (n− 1) ≤ 2 + 3h < g which is

a contradiction. Thus deg φn−1 = 2 and there is a complete, nonspecial g
(n−1)−h
2(n−1)

2

on

φn−1(C). In this case g(φn−1(C)) = h. Let φn−1(C) = C ′
h. Since φn(P ) 6= φn(Q)

and φn−1(P ) = φn−1(Q), φn−1 × φn : C → C ′
h × Ch is birational onto its image.

Again by Lemma 1.4, g(C) ≤ (2 − 1)(2 − 1) + 2h + 2h = 4h + 1 < g which is a
contradiction.

Thus we have π(P ) = π(Q) and the last assertion follows from Theorem 2.2. ¤
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