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THE SET OF PRIORS IN THE REPRESENTATION OF
CHOQUET EXPECTATION WHEN A CAPACITY IS

SUBMODULAR

Ju Hong Kim

Abstract. We show that the set of priors in the representation of Choquet expec-
tation is the one of equivalent martingale measures under some conditions, when
given capacity is submodular. It is proven via Peng’s g-expectation and related
topics.

1. Introduction

A starting point for a mathematical definition of risk is simply as standard devi-
ation. The more risk we take, the more we stand to lose or gain. Standard deviation
(or volatility) is a kind of simple risk measure. Different families of risk measures
have been proposed in literature like coherent, convex, spectral risk measures, con-
ditional value-at-risk etc. and discussed to measure or quantify the market risks in
theoretical and practical perspectives. Risk measures are also linked to insurance
premiums.

Markowitz [18] used the standard deviation to measure the market risk in his
portfolio theory but his method doesn’t tell the difference between the positive and
the negative deviation. Artzer et al. [1, 2] proposed a coherent risk measure in an
axiomatic approach, and formulated the representation theorems. Fritelli [11] pro-
posed sublinear risk measure to weaken coherent axioms. Heath [14] firstly studied
the convex risk measures and Föllmer & Schied [8, 9, 10] and Frittelli & Rosazza
Gianin [12] extended them to general probability spaces. They had weakened the
conditions of positive homogeneity and subadditivity by replacing them with con-
vexity.
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There exist stochastic phenomena like Allais paradox and Ellsberg paradox which
can not be dealt with linear mathematical expectation in economics. So Choquet [4]
introduced a nonlinear expectation called Choquet expectation which applied to
many areas such as statistics, economics and finance. Choquet expectation is equiv-
alent to the convex(or coherent) risk measure if given capacity is submodular. But
Choquet expectation has a difficulty in defining a conditional expectation. Peng [21]
introduced a nonlinear expectation, g-expectation which is a solution of a nonlinear
backward stochastic differential equation. It’s easy to define conditional expectation
with Peng’s g-expectation (see papers[5, 13, 15, 17, 20, 22] for related topics).

In this paper, we show that the set of priors in the representation of Choquet
expectation is the one of equivalent martingale measures under some conditions,
when the distortion is submodular. That is, if a capacity c is submodular, then we
have the representation∫

X dc = max
Q∈Qc

EQ[X] for X ∈ L2(FT ),

where Qc := {Q ∈ M1,f : Q[A] ≤ c(A)∀A ∈ FT }. There is no specific explanation
in the literature for the structure of the set Qc. It is worthy of examining it. By
using g-expectation and related topics, we’ll show that

Qc =
{

Qθ : θ ∈ Θg,
dQθ

dP

∣∣∣
Ft

= exp
(∫ t

0
θsdBs − 1

2

∫ t

0
|θs|2ds

)}
(1.1)

for some density generator set Θg.
This paper consists of as follows. Introduction is given in section 1. Definitions

of Choquet expectation( or integral) and risk measures are stated in section 2. Def-
inition of Peng’s g-expectation and related topics are given in section 3. The set
of priors in the representation of Choquet expectation is discussed and the main
Theorem 4.4 is given in section 4.

2. Definitions of Choquet Expectation( or Integral) and Risk
Measures

In this section, we give definitions of Choquet expectation( or integral) and coher-
ent( or convex) risk measures. Let (Ω, (Ft)t∈[0,T ], P ) be the given filtered probability
space.

Definition 2.1. A set function c : F → [0, 1] is called monotone if

c(A) ≤ c(B) for A ⊂ B, A,B ∈ F
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and normalized if

c(∅) = 0 and c(Ω) = 1.

The monotone and normalized set function is called a capacity. A monotone set
function is called submodular or 2-alternating if

c(A ∪B) + c(A ∩B) ≤ c(A) + c(B).

Two real functions X and Y defined on Ω are called comonotonic if

[X(ω1)−X(ω2)][Y (ω1)− Y (ω2)] ≥ 0, ω1, ω2 ∈ Ω.

A class of function X is said to be comonotonic if for every pair (X, Y ) ∈ X ×X , X

and Y are comonotonic.

Definition 2.2. Let ψ : [0, 1] → [0, 1] be increasing function with ψ(0) = 0 and
ψ(1) = 1. The set function

cψ(A) := ψ(P (A)), A ∈ F

is called distortion of P with respect to the distortion function ψ.

The cψ defined in Definition 2.2 becomes normalized monotone function. The
notion of integral with respect to a capacity is due to Choquet [4].

Definition 2.3. Let c : F → [0, 1] be monotone and normalized set function. The
Choquet integral or concave distortion risk measure of X ∈ L2(FT ) with respect to
c is defined as

∫

Ω
X dc :=

∫ 0

−∞
(c(X > x)− 1) dx +

∫ ∞

0
c(X > x) dx.

The following is the definition of coherent risk measure of which concept is bor-
rowed from one of norm.

Definition 2.4. A coherent risk measure ρ : X → R is a mapping satisfying for
X, Y ∈ X

(1) ρ(X) ≥ ρ(Y ) if X ≤ Y (monotonicity),
(2) ρ(X + m) = ρ(X)−m for m ∈ R (translation invariance),
(3) ρ(X + Y ) ≤ ρ(X) + ρ(Y ) (subadditivity),
(4) ρ(λX) = λρ(X) for λ ≥ 0 (positive homogeneity).
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The subadditivity and the positive homogeneity can be relaxed to a weaker quan-
tity, i.e. convexity

ρ(λX + (1− λ)Y ) ≤ λρ(X) + (1− λ)ρ(Y ) ∀λ ∈ [0, 1],

which means diversification should not increase the risk.
A convex risk measure ρ :→ R is a functional satisfying monotonicity, translation

invariance and convexity.

Definition 2.5. Choquet integral of the loss is defined as

ρ(X) :=
∫

(−X)dc,

where c is a capacity.
Choquet integral of the loss ρ : X → R satisfies monotonicity, cash invariance,

positive homogeneity and the others.

(1)
∫

λdc = λ for constant λ (constant preserving).
(2) If X ≤ Y , then

∫
(−X)dc ≥ ∫

(−Y )dc (monotonicity).
(3) For λ ≥ 0,

∫
λ(−X)dc = λ

∫
(−X)dc (positive homogeneity).

(4) If X and Y are comonotone functions, then
∫

[(−X) + (−Y )]dc =
∫

(−X)dc +
∫

(−Y )dc (comonotone additivity).

(5) If c is submodular or concave function, then
∫

(X + Y ) dc ≤
∫

X dc +
∫

Y dc (subadditivity).

3. Peng’s g-expectation

In this section, the definition of g-expectation is given. Let g : Ω×[0, T ]×R×Rn →
R be a function that g 7→ g(t, y, z) is measurable for each (y, z) ∈ R×Rn and satisfy
the following conditions

|g(t, y, z)− g(t, ȳ, z̄)| ≤ K(|y − ȳ|+ |z − z̄|)(3.1a)

∀t ∈ [0, T ],∀(y, z), (ȳ, z̄) ∈ R× Rn, for some K > 0,∫ T

0
|g(t, 0, 0)|2 dt < ∞,(3.1b)

For each (t, y) ∈ [0, T ]× R, g(t, y, 0) = 0.(3.1c)
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Theorem 3.1 ([21]). For every terminal condition ξ ∈ L2(FT ) := L2(Ω,FT , P ) the
following backward stochastic differential equation

−dyt = g(t, yt, zt) dt− ztdBt, 0 ≤ t ≤ T,(3.2a)

yT = ξ(3.2b)

has a unique solution

(yt, zt)t∈[0,T ] ∈ L2
F ([0, T ];R)× L2

F ([0, T ];Rn).

Definition 3.2. For each ξ ∈ L2(FT ) and for each t ∈ [0, T ] g−expectation of X

and the conditional g−expectation of X under Ft is respectively defined by

Eg[ξ] := y0, Eg[ξ|Ft] := yt,

where yt is the solution of the BSDE (3.2).

3.1. Two sets of probability measures, Sg
1 and Sg

2 Let g be independent of
y and g(t, y, 0) = 0. We define two sets of probability measures on the measurable
space (Ω,FT ),

Sg
1 := {Q : EQ[ξ] ≤ Eg[ξ] ∀ξ ∈ L2(Ω,FT , P )},

Sg
2 :=

{
Qθ : θ ∈ Θg,

dQθ

dP

∣∣∣
Ft

= exp

(∫ t

0
θsdBs − 1

2

∫ t

0
|θs|2ds

)}

where t ∈ [0, T ] and Θg is defined as

Θg = {(θt)t∈[0,T ] : θ is Rd − valued, progressively measurable,

θt · z ≤ g(t, z) ∀z ∈ Rd, dP × dt− a.s.}
Let’s see properties of set of priors, Qc as in (1.1). Set

zθ
t = exp

(∫ t

0
θsdBs − 1

2

∫ t

0
|θs|2ds

)
, 0 ≤ t ≤ T.

Then (zθ
t )0≤t≤T is a P -martingale since dzθ

t = zθ
t θt · dBt. Also zθ

T is a P -density on
FT since 1 = zθ

0 = E[zθ
T ]. A probability measure Qθ on (Ω,F) is equivalent to P ,

where Qθ is defined as

Qθ(A) = E[1Azθ
T ], A ∈ FT .

We can easily see that Qc is convex and weakly compact in L1(Ω,F , P ). For every
deterministic τ ∈ [0, T ] and every B ∈ Fτ ,

Qc =
{

Q(·) =
∫ [

Q1(·|Fτ )1B + Q2(·|Fτ )1Bc

]
dQ3

τ

∣∣∣{Qi}3
i=1 ⊂ Qc

}
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where Q3
τ denotes the restriction of Q3 to Fτ (See the paper [23] for details).

If θ ∈ Θg, i.e. θt · z ≤ g(t, z), then we have θt · z ≤ |g(t, z)| ≤ K|z| and so
|θt| ≤ K by taking z = θt. The Girsanov transformation implies that there exists a
probability measure Qθ on the space (Ω,Ft) such that

dQθ

dP

∣∣∣
Ft

= exp
(∫ t

0
θs dBs − 1

2

∫ t

0
|θs|2ds

)
, 0 ≤ t ≤ T,

and

Bθ
t := Bt −

∫ t

0
θsds, t ∈ [0, T ] is a Qθ-Brownian motion.

The two prior sets, Sg
1 and Sg

2 are the same set under some conditions.

Theorem 3.3 ([16]). Let g be independent of y and satisfy the conditions (3.1a)
and (3.1c). Then

Sg
1 = Sg

2 .

Definition 3.4. Let g be independent of y and satisfy the conditions (3.1a) and
(3.1c). The generator g is said to be sublinear with respect to z if for a ≥ 0,
z1, z2 ∈ Rd

g(t, az1) = ag(t, z1) dP × dt− a.s.,

g(t, z1 + z2) ≤ g(t, z1) + g(t, z2) dP × dt− a.s..

Theorem 3.5 ([16]). Let g be independent of y and satisfy the conditions (3.1a)
and (3.1c). Then

Eg[ξ] = sup
Q∈Sg

1

EQ[ξ] ∀ξ ∈ L2(Ω,Ft, P ) if and only if g is sublinear with respect to z.

4. The Set of Priors in the Representation of Choquet
Expectation

The following theorem is about the equivalent properties on the Choquet integral
with respect to a capacity c.

Theorem 4.1 ([7]). For the Choquet integral with respect to a capacity c, the fol-
lowings are equivalent.

(1) ρ(X) :=
∫

(−X) dc is a convex risk measure on L2(FT ).
(2) ρ(X) :=

∫
(−X) dc is a coherent risk measure on L2(FT ).
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(3) For Qc := {Q ∈M1,f : Q[A] ≤ c(A) ∀A ∈ FT },
∫

X dc = max
Q∈Qc

EQ[X] for X ∈ L2(FT ),(4.1)

where M1,f := M1,f (Ω,F) is the set of all finitely additive normalized set
functions Q : F → [0, 1].

(4) The set function c is submodular. In this case, Qc = Qmax, where Qmax :=
{Q << P : αmin(Q) = 0} is in the representation of the convex risk measure

ρ(X) = sup
Q<<P

(EQ[−X]− αmin(Q)) , X ∈ L2(FT ).

Peng’s g-expectation provides various features. We will use the properties of
g-expectation to investigate the set of prior, Qc. The classical mathematical expec-
tation can be represented by the Choquet expectation if g is linear function of z.
The following theorem deals with the one-dimensional Brownian motion case, and
y, z ∈ R.

Theorem 4.2 ([3]). Suppose that g satisfies the conditions (3.1a), (3.1b) and (3.1c).
Then there exists a Choquet expectation whose restriction to L2(Ω,F , P ) is equal to
a g-expectation if and only if g is independent of y and is linear in z, i.e. there
exists a continuous function νt such that

g(y, z, t) = νtz.

Set g(y, z, t) = νtz through the last of this paper. Then Choquet expectation is
equal to g-expectation by Theorem 4.2. I.e., there exist a capacity cg such that

Eg[ξ] =
∫

Ω
ξ dcg ∀ξ ∈ L2(Ω,F , P ).(4.2)

If we take ξ = IA for A ∈ F in (4.2), then the capacity cg satisfies

Eg(IA) =
∫

IA dcg = cg(A) for A ∈ F .

Then we can prove that cg is submodular.

Theorem 4.3. The capacity cg in (4.2) is submodular.

Proof. By Dellacherie’s theorem in Dellacherie [6], Choquet expectation on L2(Ω,F , P )
is comonotonic additive. That is, if Eg is Choquet expectation, then we have

Eg[ξ + η] = Eg[ξ] + Eg[η] whenever ξ and η are comonotonic.
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Note that IA∪B and IA∩B is a pair of comonotone functions for all A,B ∈ F . Hence
comonotonicity and subadditivity of Eg imply

cg(A ∩B) + cg(A ∪B) = Eg[IA∩B] + Eg[IA∪B] = Eg[IA∩B + IA∪B]

= Eg[IA + IB]

≤ Eg[IA] + Eg[IB] = cg(A) + cg(B).

So the proof is done. ¤

Since cg is submodular, by Theorem 4.1 we have the representation
∫

X dcg = max
Q∈Qcg

EQ[X] for X ∈ L2(FT ),(4.3)

where Qcg := {Q ∈M1,f : Q[A] ≤ cg(A) ∀A ∈ FT }.
The following is the main theorem.

Theorem 4.4. Qcg = Sg
2 where Qcg is the prior set in the representation (4.3).

Notice that Sg
2 is defined as

Sg
2 :=

{
Qθ : θ ∈ Θg,

dQθ

dP

∣∣∣
Ft

= exp

(∫ t

0
θsdBs − 1

2

∫ t

0
|θs|2ds

)}

where t ∈ [0, T ] and Θg is defined as

Θg = {(θt)t∈[0,T ] : θ is R− valued, progressively measurable &

|θt| ≤ νt}.

Proof. Since Sg
1 has the same expression as

Sg
1 := {Q : Q(A) ≤ Eg[IA] = cg(A) ∀A ∈ FT },

Sg
1 becomes Qcg . Since g(y, z, t) = νtz is independent of y and satisfy the conditions

(3.1a) and (3.1c), Sg
1 = Sg

2 by Theorem 3.3. Therefore, we have Qcg = Sg
2 . ¤

In fact, for the linear function g(t, y, z) = νtz, let us consider the BSDE

yt = ξ +
∫ T

t
νszs ds−

∫ T

t
zs dBs, ξ ∈ L2(FT ).(4.4)

The above differential equation (4.4) is reduced to

yt = ξ −
∫ T

t
zsdB̃s, B̃t = Bt −

∫ t

0
νs ds.

By Girsanov’s Theorem, (B̃ν
t )0≤t≤T is a Qν-Brownian motion under Qν defined as
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dQν

dP
= exp

[
−1

2

∫ T

0
ν2

sds +
∫ T

0
νsdBs

]
.

Therefore we have the relations

Eg[ξ] = EQν [ξ], Eg[ξ|Ft] = EQν [ξ|Ft] for Qν ∈ Sg
2 ,

which means g-expectation is a classical mathematical expectation.
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