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SOME OPIAL-TYPE INEQUALITIES APPLICABLE TO
DIFFERENTIAL EQUATIONS INVOLVING IMPULSES

Young Jin Kim

Abstract. The purpose of this paper is to obtain Opial-type inequalities that
are useful to study various qualitative properties of certain differential equations
involving impulses. After we obtain some Opial-type inequalities, we apply our
results to certain differential equations involving impulses.

1. Introduction

Opial-type inequalities are very useful to study various qualitative properties of
differential equations. For a good reference of the work on such inequalities together
with various applications, we recommend the monograph [1]. In this paper we obtain
some Opial-type inequalities that involve Stieltjes derivatives which are applicable to
differential equations with impulses. Differential equations involving impulses arise
in various real world phenomena, we refer to the monograph [8].

2. Preliminaries

To obtain our results in this paper we need some preliminaries.
Let R be the set of all real numbers. Assume that [a, b] ⊂ R is a bounded

interval. A function f : [a, b] −→ R is called regulated on [a, b] if both

f(s+) = lim
η→0+

f(s + η), and f(t−) = lim
η→0+

f(t− η)

exist for every point s ∈ [a, b), t ∈ (a, b], respectively. Let G([a, b]) be the set of all
regulated functions on [a, b]. For f ∈ G([a, b]) we define f(a−) = f(a), f(b+) = f(b).
For convenience we define

∆+f(s) = f(s+)− f(s), ∆−f(s) = f(s)− f(s−) and ∆f(s) = f(s+)− f(s−).
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Remark 2.1. Let f ∈ G([a, b]). Since both f(s+) and f(s−) exist for every s ∈ [a, b]
it is obvious that f is bounded on [a, b], and since f is the uniform limit of step
functions, f is Borel measurable (see [3, Theorem 3.1.]).

For a closed interval I = [c, d], we define f(I) = f(d)− f(c).
A tagged interval (τ, [c, d]) in [a, b] consists of an interval [c, d] ⊂ [a, b] and a point

τ ∈ [c, d].
Let Ii = [ci, di] ⊂ [a, b], i = 1, ..., m. We say that the intervals Ii are pairwise non-

overlapping if
int(Ii) ∩ int(Ij) = ∅

for i 6= j where int(I) denotes the interior of an interval I.

A finite collection {(τi, Ii) : i = 1, 2, ..., m} of pairwise non-overlapping tagged
intervals is called a tagged partition of [a, b] if ∪m

i=1Ii = [a, b]. A positive function δ

on [a, b] is called a gauge on [a, b].
From now on we use notation 1,m = 1, ...,m.

Definition 2.2 ([6, 9]). Let δ be a gauge on [a, b]. A tagged partition P =
{(τi, [ti−1, ti]) : ti−1 < ti, i = 1,m} of [a, b] is said to be δ−fine if for every i = 1,m

we have
τi ∈ [ti−1, ti] ⊂ (τi − δ(τi), τi + δ(τi)).

Moreover if a δ−fine partition P satisfies the implications

τi = ti−1 ⇒ i = 1, τi = ti ⇒ i = m,

then it is called a δ∗−fine partition of [a, b].

The following lemma implies that for a gauge δ on [a, b] there exists a δ∗−fine
partition of [a, b]. This also implies the existence of a δ−fine partition of [a, b].

Lemma 2.3 ([6]). Let δ be a gauge on [a, b] and a dense subset Ω ⊂ (a, b) be given.
Then there exists a δ∗−fine partition P = {(τi, [ti−1, ti]) : i = 1,m} of [a, b] such
that ti ∈ Ω for i = 1,m− 1.

We now give a formal definition of two types of the Kurzweil integrals.

Definition 2.4 ([6, 9]). Assume that f, g : [a, b] −→ R are given. We say that f dg

is Kurzweil integrable (or shortly, K-integrable) on [a, b] and v ∈ R is its integral if
for every ε > 0 there exists a gauge δ on [a, b] such that∣∣∣∣∣

m∑

i=1

f(τi)g(Ii)− v

∣∣∣∣∣ ≤ ε,
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provided P = {(τi, Ii) : i = 1,m} is a δ−fine tagged partition of [a, b]. In this case
we define v =

∫ b
a f(s) dg(s) (or, shortly,v =

∫ b
a f dg).

If, in the above definition, δ−fine is replaced by δ∗−fine, then we say that
f dg is Kurzweil* integrable(or, shortly, K*-integrable) on [a, b] and we define v =
(K∗)

∫ b
a f dg.

Remark 2.5. By the above definition it is obvious that K-integrability implies
K*-integrability.

The following results are needed in this paper. For other properties of the K-
integrals, see, e.g., [2, 7, 9, 10].

In this paper BV ([a, b]) denotes the set of all functions that are of bounded
variation on [a, b].

Theorem 2.6 ([11, 2.15. Theorem]). Assume that f ∈ G([a, b]) and g ∈ BV ([a, b]).
Then both f dg and g df are K-integrable on [a, b] and

∫ b

a
f dg +

∫ b

a
g df = f(b)g(b)− f(a)g(a)

+
∑

t∈[a,b]

[∆−f(t)∆−g(t)−∆+f(t)∆+g(t)].

Remark 2.7. In the above theorem, the sum
∑

t∈[a,b][∆
−f(t)∆−g(t)−∆+f(t)∆+g(t)]

is actually a countable sum because every regulated function has only countable dis-
continuities.

Theorem 2.8 ([10, p. 40, 4.25. Theorem]). Let h ∈ BV ([a, b]), g : [a, b] −→ R
and f : [a, b] −→ R. If the integral

∫ b
a g dh exists and f is bounded on [a, b], then the

integral
∫ b
a f(s) d

[∫ s
a g(v) dh(v)

]
exists if and only if the integral

∫ b
a f(s)g(s) dh(s)

exists and in this case we have∫ b

a
f(s) d

[∫ s

a
g(v) dh(v)

]
=

∫ b

a
f(s)g(s) dh(s).

Theorem 2.9 ([10, p. 34, 4.13. Corollary]). Assume that f ∈ G([a, b]) and g ∈
BV ([a, b]). Then we have for every t ∈ [a, b]

lim
η→0+

t±η∫

a

f(s) dg(s) =

t∫

a

f(s) dg(s)± f(t)∆±g(t).

The following result is the Hölder’s inequality for K-integral. In this paper we
frequently use this inequality.
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Theorem 2.10. (Hölder’s inequality) Assume that f, g ∈ G([a, b]) and h is a
nondecreasing function defined on [a, b]. Let p > 1, 1

p + 1
q = 1. Then we have

∫ b

a
|fg| dh ≤

(∫ b

a
|f |p dh

) 1
p

(∫ b

a
|g|q dh

) 1
q

.(2.1)

Proof. The proof of this theorem is very similar to the proof of the classical Hölder’s
inequality. So we omit the proof. ¤

3. Stieltjes Derivatives

In this section we state the results in [4, 5] that are essential to obtain our main
results.

Throughout this section, we assume that f ∈ G([a, b]) and g is a nondecreasing
function on [a, b].

We say that the function g is not locally constant at t ∈ (a, b) if there exists
η > 0 such that g is not constant on (t − ε, t + ε) for every 0 < ε < η. We also
say that the function g is not locally constant at a and b, respectively if there exist
η, η∗ > 0 such that g is not constant on [a, a + ε), (b − ε∗, b] respectively, for every
ε ∈ (0, η), ε∗ ∈ (0, η∗).

Definition 3.1 ([4]). If g is not locally constant at t ∈ (a, b), we define

df(t)
dg(t)

= lim
η,δ→0+

f(t + η)− f(t− δ)
g(t + η)− g(t− δ)

,

provided that the limit exists.
If g is not locally constant at t = a and t = b respectively, we define

df(a)
dg(a)

= lim
η→0+

f(a + η)− f(a)
g(a + η)− g(a)

,
df(b)
dg(b)

= lim
δ→0+

f(b)− f(b− δ)
g(b)− g(b− δ)

,

respectively, provided that the limits exist. Frequently we use f ′g(t) instead of df(t)
dg(t) .

If both f and g are constant on some neighborhood of t, then we define f ′g (t) = 0.

Remark 3.2. It is obvious that if g is not continuous at t then f ′g(t) exists. Thus
if f ′g(t) does not exist then g is continuous at t. f ′g(t) is called a Stieltjes derivative
of f with respect to g.

Theorem 3.3 ([4]). Assume that if g is not locally constant at t ∈ [a, b]. If f is
continuous at t or g is not continuous at t, then we have
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d
dg(t)

t∫

a

f(s) dg(s) = f(t).

K*-integrals recover Stieltjes derivatives.

Theorem 3.4 ([4]). Assume that if g is constant on some neighborhood of t then
there is a neighborhood of t where both f and g are constant. Suppose that f ′g(t)
exists at every t ∈ [a, b]− {c1, c2, ...}, where f is continuous at every t ∈ {c1, c2, ...}.
Then we have

(K∗)

b∫

a

f ′g(s) dg(s) = f(b)− f(a).

Lemma 3.5 ([4]). Assume that if g is constant on some neighborhood of t then
there is a neighborhood of t such that both f1 and f2 are constant there. If both df1(t)

dg(t)

and df2(t)
dg(t) exist and f1, f2 ∈ G([a, b]), then we have

d[f1(t)f2(t)]
dg(t)

=
df1(t)
dg(t)

f2(t+) + f1(t−)
df2(t)
dg(t)

.

Similarly to the Riemann integral we have the following integration by parts
formula.

Theorem 3.6. (Integration by Parts) Assume that functions f, g, h ∈ G([a, b]) are
all left-continuous and h is nondecreasing. Suppose that both f ′h(t) and g ′h(t) exist
for every t ∈ [a, b] and f ′h, g ′h ∈ G([a, b]). Then we have

b∫

a

f ′hg dh = f(b)g(b)− f(a)g(a)−
b∫

a

fg ′h dh +
∑

a≤t≤b

[∆−f(t)∆−g(t)−∆+f(t)∆+g(t)].

(3.1)

Proof. By Theorem 2.8 and Theorem 3.4 we have

∫ b

a
f dg =

∫ b

a
f(s) d

[∫ s

a
g ′h dh

]
=

∫ b

a
fg ′h dh.

So by Theorem 2.6 we get
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∫ b

a
f ′hg dh =

∫ b

a
g(s) d

[∫ s

a
f ′h dh

]
=

∫ b

a
g df

= f(b)g(b)− f(a)g(a)−
∫ b

a
f dg +

∑

a≤t≤b

[∆−f(t)∆−g(t)−∆+f(t)∆+g(t)]

= f(b)g(b)− f(a)g(a)−
∫ b

a
fg ′h dh +

∑

a≤t≤b

[∆−f(t)∆−g(t)−∆+f(t)∆+g(t)].

This completes the proof. ¤

Let

a ≤ t1 < t2 < · · · < tm < b.

The Heaviside function Hτ : R −→ {0, 1} is defined by

Hτ (t) =

{
0, if t ≤ τ

1, if t > τ.

Using the Heaviside function Hτ , we define function φ : [a, b] −→ R by

φ(t) = t +
m∑

k=1

Htk(t), t ∈ [a, b].(3.2)

Remark 3.7. It is obvious that the function φ is strictly increasing and of bounded
variation on [a, b], and left-continuous on [a, b].

Lemma 3.8 ([5]). Assume that f ∈ G([a, b]) and f ′(t) exists for t 6= tk, k = 1,m

Then we have

(a) f ′φ(t) = f ′(t), f ′φ(tk) = f(tk+)− f(tk−),

(b)

t∫

a

f dφ =

t∫

a

f(s) ds +
∑

a≤tk<t

f(tk).

4. Opial-type Integral Inequalities involving Stieltjes
Derivatives

In this section we obtain some Opial-type integral inequalities involving Stieltjes
derivatives. The Opial-type inequalities have many interesting applications in the
theory of differential equations(see, e.g., [1]).

Throughout this paper we always assume that

a ≤ t1 < t2 < · · · < tm < b,
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and that a function α : [a, b] −→ R is strictly increasing on [a, b], and continuous at
t 6= tk, and ∆ α(tk) 6= 0, for every k = 1,m.

Remark 4.1. Note that strictly increasing implies nondecreasing, and a nonde-
creasing function is regulated.

Let PC([a, b]) = {u ∈ G([a, b]) : u is continuous at every t 6= tk, k = 1,m}.
From now on we always assume that u, u ′α ∈ PC([a, b]), and we define

u+(t) = u(t+), u−(t) = u(t−),∀t ∈ [a, b].

The following result is an Opial-type inequality with Stieltjes derivatives.

Theorem 4.2. Assume that u(a) = u(b) = 0. If both u and α are left-continuous
on [a, b], then we have

b∫

a

(|u|+ |u+|)|u′α|dα ≤ Kα

b∫

a

(u′α)2 dα,(4.1)

where Kα = infh∈[a,b] max{α(h)− α(a), α(b)− α(h)}.

Proof. Let for t ∈ [a, b],

y(t) =
∫ t

a
|u′α| dα, z(t) =

∫ b

t
|u′α|dα.

By Theorem 2.9, the functions, y and z are left-continuous on [a, b]. Also by Theorem
3.3, we have

y′α(t) = |u′α(t)| = −z′α(t)

and we have by Theorem 3.4 and u(a) = u(b) = 0

|u(t)| ≤ y(t), |u(t)| ≤ z(t),

for t ∈ [a, b]. So by Theorem 3.4, Lemma 3.5, and using Hölder’s inequality, we get
∫ h

a
(|u|+ |u+|)|u′α|dα ≤

∫ h

a
(y + y+)y′α dα =

∫ h

a
(y2)′α dα

= y2(h) = [α(h)− α(a)]
∫ h

a
(u ′α)2 dα,

and similarly we obtain
∫ b

h
(|u|+ |u+|)|u′α| dα ≤ −

∫ b

h
(z + z+)z′α dα = −

∫ b

h
(z2)′α dα = z2(h)(4.2)

≤ [ α(b)− α(h)]
∫ b

h
(u′α)2 dα.
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So we have∫ b

a
(|u|+ |u+|)|u′α| dα =

∫ h

a
(|u|+ |u+|)|u′α| dα +

∫ b

h
(|u|+ |u+|)|u′α|dα

≤ [ α(h)− α(a)]
∫ h

a
(u′α)2 dα + [ α(b)− α(h)]

∫ b

h
(u′α)2 dα

≤ Kα

∫ b

a
(u′α)2 dα.

The proof is complete. ¤

A slightly more general result is as follows.

Theorem 4.3. Assume that u(b) = 0. If both u and α are left-continuous on [a, b],
then we have

b∫

a

(|u|+ |u+|)|u′α|dα ≤ [ α(b)− α(a)]

b∫

a

(u′α)2 dα.(4.3)

Proof. From (4.2) we have
∫ b

h
(|u|+ |u+|)|u′α| dα ≤ [α(b)− α(h)]

∫ b

h
(u′α)2 dα ≤ [ α(b)− α(a)]

∫ b

a
(u′α)2 dα.

So we get
∫ b

a
(|u|+ |u+|)|u′α|dα ≤ [ α(b)− α(a)]

∫ b

a
(u′α)2 dα.

This gives (4.3). The proof is complete. ¤

More generally we have the following result.

Theorem 4.4. Let p ≥ 0, q ≥ 1, r ≥ 0,m ≥ 1 be real numbers and let f ∈ PC([a, b])
be a positive function on [a, b] with infs∈[a,b] f(s) > 0. Assume that both functions u

and α are left-continuous on [a, b]. If u(b) = 0, then we have
b∫

a

f |u|m(p+q)|u′α|mr dα ≤ [(p + q + r)mI(m, f)]p+q

b∫

a

f |u ′α|m(p+q+r) dα,(4.4)

where I(m, f) =
∫ b
a fγ d α, γ(t) =

[∫ b
t (f)

1
1−m dα

]m−1

,
for m 6= 1, and γ(t) =

[
infs∈[t,b] f(s)

]−1

,
for m = 1.

Proof. Let for t ∈ [a, b],

z(t) =
∫ b

t
|u ′α|dα.
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Then by Theorem 3.4, |u(t)| ≤ z(t) and by Theorem 2.9, z is left-continuous, and
non-increasing on [a, b].

If t 6= tk, k = 1,m, then by Theorem 3.3, z ′α(t) exists, and by Theorem 2.9, z is
continuous at t. Using the Mean Value Theorem and by the definition of the Stieltjes
derivatives, if z is not locally constant at t, then we have,

(zp+q) ′α(t) = lim
δ,η→0+

zp+q(t + η)− zp+q(t− δ)
z(t + η)− z(t− δ)

z(t + η)− z(t− δ)
α(t + η)− α(t− δ)

= lim
δ,η→0+

(p + q)ωp+q−1z ′α(t), where z(t + η) ≤ ω ≤ z(t− δ)

= (p + q)zp+q−1(t)z ′α(t).

If z is constant on some neighborhood of t, then since (zp+q) ′α(t) = 0 = z ′α(t), the
above equality is also true. If t = tk, k = 1,m, since z is non-increasing on [a, b],
and z ′α = −|u ′α| ≤ 0, and by the Mean Value Theorem, and by the definition of the
Stieltjes derivatives, we have,

(zp+q) ′α(tk) = [zp+q(tk+)− zp+q(tk−)]/[ α(tk+)− α(tk−)]

= (p + q)ωp+q−1[z(tk+)− z(tk−)]/[α(tk+)− α(tk−)]

= (p + q)ωp+q−1z ′α(tk) ≥ (p + q)zp+q−1(tk)z ′α(tk),

where z(tk+) ≤ ω ≤ z(tk) = z(tk−). Thus we have

−(zp+q) ′α(t) ≤ −(p + q)zp+q−1(t)z ′α(t), ∀t ∈ [a, b].(4.5)

Let β(t) =
∫ t
a f dα. Then by hypotheses, β is strictly increasing on [a, b].

Since

(zp+q) ′β(t) = lim
δ,η→0+

zp+q(t + η)− zp+q(t− δ)
α(t + η)− α(t− δ)

α(t + η)− α(t− δ)
β(t + η)− β(t− δ)

=
(zp+q) ′α(t)

β ′α(t)
=

(zp+q) ′α(t)
f(t)

,by Theorem 3.3,

we have by Theorem 3.4 and (4.5), since z(b) = 0 and z ′α ≤ 0,

zp+q(t) = −
∫ b

t
(zp+q) ′β dβ = −

∫ b

t
f−1(zp+q) ′α dβ

≤ (p + q)
∫ b

t
f−1zp+q−1(−z ′α) dβ = (p + q)

∫ b

t
f−1zp+q−1|z ′α| dβ.

Using Hölder’s inequality with indices m, m
m−1 , we have

zm(p+q)(t) ≤ (p + q)mγ(t)
∫ b

a
zm(p+q−1)|z ′α|m dβ, ∀t ∈ [a, b].(4.6)
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Integrating (4.6) on [a, b] and using Hölder’s inequality with indices q, q
q−1 , and

considering
∫ b
a γ dβ =

∫ b
a fγ dα by Theorem 2.8, we get

∫ b

a
zm(p+q) dβ(4.7)

≤ (p + q)mI(m, f)
∫ b

a

(
z

mp
q |z ′α|m

)
· zm(p+q−1)−mp

q dβ

≤ (p + q)mI(m, f)
(∫ b

a
zmp|z ′α|mq dβ

) 1
q
(∫ b

a
zm(p+q) dβ

) q−1
q

.

If
∫ b
a zm(p+q) dβ = 0, then

∫ b

a
zm(p+q) dβ ≤ [(p + q)mI(m, f)]q

∫ b

a
zmp|z ′α|mq dβ(4.8)

is obviously true, otherwise, dividing both sides of (4.7) by
(∫ b

a zm(p+q) dβ
) q−1

q and
then taking the qth power on both sides of the resulting inequality we get also (4.8).

Using the Hölder’s inequality with indices q+r
r , q+r

q , we have, by (4.8),

∫ b

a
zm(p+q)|z′α|mr dβ

(4.9)

=
∫ b

a
[zm(pr/(q+r))|z ′α|mr] · [zm(p+q)−m(pr/(q+r))] dβ

≤
[∫ b

a
zmp|z ′α|m(q+r) dβ

]r/(q+r) [∫ b

a
zm(p+q+r) dβ

]q/(q+r)

≤
[∫ b

a
zmp|z ′α|m(q+r) dβ

] r
q+r

[
[(p + q + r)mI(m, f)]q+r

∫ b

a
zmp|z ′α|m(q+r) dβ

] q
q+r

= [(p + q + r)mI(m, f)]q
∫ b

a
zmp|z ′α|m(q+r) dβ.

Using Hölder’s inequality with indices p+q
p , p+q

q , we get by (4.9)

∫ b

a
zm(p+q)|z′α|mr dβ ≤ [(p + q + r)mI(m, f)]q

∫ b

a
zmp|z ′α|m(q+r) dβ,

(4.10)

≤ [(p + q + r)mI(m, f)]q
∫ b

a

[
zmp|z ′α|m(rp/(p+q))

]
·
[
|z ′α|m(q+r)−m(rp/(p+q))

]
dβ
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≤ [(p + q + r)mI(m, f)]q
[∫ b

a
zm(p+q)|z ′α|mr dβ

] p
p+q

[∫ b

a
|z ′α|m(p+q+r) dβ

] q
p+q

.

If
∫ b
a zm(p+q)|z ′α|mr dβ = 0, then the inequality

∫ b

a
zm(p+q)|z′α|mr dβ ≤ [(p + q + r)mI(m, f)]p+q

∫ b

a
|z ′α|m(p+q+r) dβ(4.11)

is obviously true, otherwise, dividing both sides of (4.10) by
[∫ b

a zm(p+q)|z ′α|mr dβ
] p

p+q

and then taking the p+q
q th power on both sides of the resulting inequality we get

also (4.11). Since |u| ≤ z and |u ′α| = |z ′α| we have
∫ b

a
f |u|m(p+q)|u′α|mr dα =

∫ b

a
|u|m(p+q)|u′α|mr dβ ≤

∫ b

a
zm(p+q)|z′α|mr dβ

≤ [(p + q + r)mI(m, f)]p+q

∫ b

a
|z ′α|m(p+q+r) dβ, by (4.11)

≤ [(p + q + r)mI(m, f)]p+q

∫ b

a
f |u ′α|m(p+q+r) dα.

This gives (4.4). The proof is complete. ¤

5. Some Applications to certain Differential Equations
involving Impulses

In this section we always assume that both functions u and u ′ are left- continuous
on [a, b], and that α = φ (see (3.2)). Consider the following impulsive differential
equation: for k = 1,m,

u ′ ′ + q1(t)u = 0, t 6= tk,(5.1)

∆u ′(tk) = aku
′(tk),

∆u(tk) = bku
′(tk) , bk 6= 0,

where q1 ∈ PC([a, b]). Now we define

u ′ ′α(t) = (u ′) ′α(t).

Since by Lemma 3.8 for k = 1,m

u ′ ′α(t) =

{
u ′ ′(t), t 6= tk

∆u ′(tk), t = tk,

the equation (5.1) implies the following equation:

u ′ ′α + p(t)u ′ + q(t)u = 0,(5.2)
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where

p(t) =

{
0, t 6= tk

−ak, t = tk,
q(t) =

{
q1(t), t 6= tk

0, t = tk, k = 1,m.
(5.3)

We need the following result.

Lemma 5.1. If the function u satisfies the equation (5.1) and c ∈ [a, b], then we
have

∫ c

a
|uu ′| dα =

∫ c

a
|uu ′α| dα +

∑

a≤tk<c

(1− |bk|)|u(tk)u ′(tk)|,(5.4)

∑

a≤tk<c

|bk||u(tk)u ′(tk)| ≤
∫ c

a
|uu ′α| dα,(5.5)

∫ c

a
u ′u ′α dα =

∫ c

a
|u ′α|2 dα +

∑

a≤tk<c

(bk − b2
k)|u ′(tk)|2,(5.6)

∑

a≤tk<c

b2
k|u ′(tk)|2 ≤

∫ c

a
|u ′α|2 dα.(5.7)

Proof. In the proof, we frequently use Lemma 3.8, u ′(t) = u ′α(t). t 6= tk, ∆u ′(tk) =
u ′ ′α(tk) = aku

′(tk), and ∆u(tk) = u ′α(tk) = bku
′(tk), k = 1,m.

∫ c

a
|uu ′| dα =

∫ c

a
|u(s)u ′(s)|ds +

∑

a≤tk<c

|u(tk)u ′(tk)|

=
∫ c

a
|u(s)u ′α(s)|ds +

∑

a≤tk<c

|u(tk)u ′(tk)|

=
∫ c

a
|u(s)u ′α(s)|ds +

∑

a≤tk<c

|u(tk)u ′α(tk)| −
∑

a≤tk<c

|u(tk)u ′α(tk)|+
∑

a≤tk<c

|u(tk)u ′(tk)|

=
∫ c

a
|uu ′α|dα−

∑

a≤tk<c

|u(tk)u ′α(tk)|+
∑

a≤tk<c

|u(tk)u ′(tk)|

=
∫ c

a
|uu ′α|dα−

∑

a≤tk<c

|bk||u(tk)u ′(tk)|+
∑

a≤tk<c

|u(tk)u ′(tk)|

=
∫ c

a
|uu ′α|dα +

∑

a≤tk<c

(1− |bk|)|u(tk)u ′(tk)|.
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This gives (5.4). And

∑

a≤tk<c

|u(tk)u ′(tk)| ≤
∫ c

a
|u(s)u ′(s)| ds +

∑

a≤tk<c

|u(tk)u ′(tk)|

=
∫ c

a
|u(s)u ′α(s)| ds +

∑

a≤tk<c

|u(tk)u ′α(tk)| −
∑

a≤tk<c

|u(tk)u ′α(tk)|+
∑

a≤tk<c

|u(tk)u ′(tk)|

=
∫ c

a
|uu ′α|dα−

∑

a≤tk<c

|bk||u(tk)u ′(tk)|+
∑

a≤tk<c

|u(tk)u ′(tk)|.

This gives (5.5). And
∫ c

a
u ′u ′α dα =

∫ c

a
u ′(s)u ′α(s) ds +

∑

a≤tk<c

u ′(tk)u ′α(tk)

=
∫ c

a
|u ′α|2 ds +

∑

a≤tk<c

u ′(tk)u ′α(tk)

=
∫ c

a
|u ′α|2 ds +

∑

a≤tk<c

|u ′α(tk)|2 −
∑

a≤tk<c

|u ′α(tk)|2 +
∑

a≤tk<c

u ′(tk)u ′α(tk)

=
∫ c

a
|u ′α|2 dα−

∑

a≤tk<c

b2
k|u ′(tk)|2 +

∑

a≤tk<c

bk|u ′(tk)|2

=
∫ c

a
|u ′α|2 dα +

∑

a≤tk<c

(bk − b2
k)|u ′(tk)|2.

This gives (5.6). Also

∑

a≤tk<c

|u ′(tk)|2 ≤
∫ c

a
|u ′(s)|2 ds +

∑

a≤tk<c

|u ′(tk)|2

=
∫ c

a
|u ′α(s)|2 ds +

∑

a≤tk<c

|u ′(tk)|2

=
∫ c

a
|u ′α(s)|2 ds +

∑

a≤tk<c

|u ′α(tk)|2 −
∑

a≤tk<c

|u ′α(tk)|2 +
∑

a≤tk<c

|u ′(tk)|2

=
∫ c

a
|u ′α|2 dα−

∑

a≤tk<c

|u ′α(tk)|2 +
∑

a≤tk<c

|u ′(tk)|2

=
∫ c

a
|u ′α|2 dα−

∑

a≤tk<c

b2
k|u ′(tk)|2 +

∑

a≤tk<c

|u ′(tk)|2.

This gives (5.7). The proof is complete. ¤
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Theorem 5.2. Assume that u satisfies the equation (5.1) and u ′(a) = 0, u(a) 6= 0.

If we have

1 >[α(b)− α(a)]
[

max
a≤s≤b

|Q(s)|+ max
a≤tk≤b

|ak|
(

1 + max
a≤tk≤b

|1− |bk||
|bk|

)]
(5.8)

+ max
a≤tk≤b

|1− bk + ak|
|bk| ,

where Q(t) =
∫ t
a q dα, then u(t) 6= 0 for every t ∈ [a, b].

Proof. Assume that there is a number c ∈ (a, b] with u(c) = 0. Then multiplying
both sides of (5.2) by u and integrating we have

∫ c

a
uu ′ ′α dα +

∫ c

a
puu ′ dα +

∫ c

a
qu2 dα = 0.(5.9)

Using Theorem 3.3, Lemma 3.5 and Theorem 3.6, and u(c) = Q(a) = 0, we get,
since, by Theorem 2.9 and Remark 3.7, Q is left-continuous on [a, b], and ∆ α(tk) =
∆+ α(tk) = 1, q(tk) = 0, k = 1,m,

∫ c

a
qu2 dα =

∫ c

a
Q ′

αu2 dα

(5.10)

=
[
Qu2

]c

a
−

∫ c

a
Q(u2) ′α dα−

∑

a≤tk<c

∆+Q(tk)∆+u2(tk), since ∆−Q(tk) = 0,

= −
∫ c

a
Q(u2) ′α dα−

∑

a≤tk<c

q(tk)(u2) ′α(tk), by Theorem2.9

= −
∫ c

a
Q(u + u+)u ′α dα.

Since both u and u ′ are left-continuous

∆+u ′(tk) = ∆u ′(tk) = aku
′(tk),

∆+u(tk) = ∆u(tk) = bku
′(tk).

By Lemma 3.8 and Lemma 5.1, we get, since u(c) = u ′(a) = 0,

∫ c

a
uu ′ ′α dα =

∫ c

a
u(u ′) ′α dα(5.11)
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=
[
uu ′

]c

a
−

∫ c

a
u ′αu ′ dα−

∑

a≤tk<c

∆+u(tk)∆+u ′(tk), since ∆−u(tk) = 0

= −
∫ c

a
u ′αu ′ dα−

∑

a≤tk<c

akbk|u ′(tk)|2

= −
∫ c

a
|u ′α|2 dα−

∑

a≤tk<c

(bk − b2
k)|u ′(tk)|2 −

∑

a≤tk<c

akbk|u ′(tk)|2

= −
∫ c

a
|u ′α|2 dα−

∑

a≤tk<c

bk(1− bk + ak)|u ′(tk)|2.

By (5.9), (5.10) and (5.11), we have
∫ c

a
(u ′α)2 dα +

∫ c

a
Q(u + u+)u ′α dα

−
∫ c

a
puu ′ dα +

∑

a≤tk<c

bk(1− bk + ak)|u ′(tk)|2 = 0.

Hence by Theorem 4.3 and Lemma 5.1, we get
∫ c

a
(u ′α)2 dα ≤

∫ c

a
|Q|(|u|+ |u+|)|u ′α|dα +

∫ c

a
|p||uu ′| dα(5.12)

+
∑

a≤tk<c

|bk||1− bk + ak||u ′(tk)|2

≤ max
a≤s≤c

|Q(s)|[ α(c)− α(a)]
∫ c

a
(u ′α)2 dα + max

a≤tk≤c
|p(tk)|

∫ c

a
|uu ′|dα

+
∑

a≤tk<c

|1− bk + ak|
|bk| b2

k|u ′(tk)|2

≤ max
a≤s≤c

|Q(s)|[ α(c)− α(a)]
∫ c

a
(u ′α)2 dα + max

a≤tk≤c
|ak|

∫ c

a
|uu ′| dα

+ max
a≤tk≤c

|1− bk + ak|
|bk|

∑

a≤tk<c

b2
k|u ′(tk)|2

≤ max
a≤s≤c

|Q(s)|[ α(c)− α(a)]
∫ c

a
(u ′α)2 dα

+ max
a≤tk≤c

|ak|



∫ c

a
|uu ′α| dα +

∑

a≤tk<c

|1− |bk|||u(tk)u ′(tk)|



+ max
a≤tk≤c

|1− bk + ak|
|bk|

∫ c

a
(u ′α)2 dα
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≤ max
a≤s≤c

|Q(s)|[α(c)− α(a)]
∫ c

a
(u ′α)2 dα

+ max
a≤tk≤c

|ak|



∫ c

a
|uu ′α| dα +

∑

a≤tk<c

|1− |bk||
|bk| |bk||u(tk)u ′(tk)|




+ max
a≤tk≤c

|1− bk + ak|
|bk|

∫ c

a
(u ′α)2 dα

≤ max
a≤s≤c

|Q(s)|[α(c)− α(a)]
∫ c

a
(u ′α)2 dα

+ max
a≤tk≤c

|ak|
(∫ c

a
|uu ′α| dα + max

a≤tk≤c

|1− |bk||
|bk|

∫ c

a
|uu ′α| dα

)

+ max
a≤tk≤c

|1− bk + ak|
|bk|

∫ c

a
(u ′α)2 dα

≤ max
a≤s≤c

|Q(s)|[α(c)− α(a)]
∫ c

a
(u ′α)2 dα

+ max
a≤tk≤c

|ak|[ α(c)− α(a)]
(

1 + max
a≤tk≤c

|1− |bk||
|bk|

)∫ c

a
(u ′α)2 dα

+ max
a≤tk≤c

|1− bk + ak|
|bk|

∫ c

a
(u ′α)2 dα.

If

0 =
∫ c

a
(u ′α)2 dα =

∫ c

a
(u ′α)2(s) ds +

∑

a≤tk<c

(u ′α)2(tk),

then, since 0 =
∫ c
a (u ′α)2(s) ds =

∫ c
a (u ′)2(s) ds, u ′(t) = 0,∀t ∈ [a, b] − {tk : tk < c}

and u ′α(tk) = u(tk+) − u(tk) = 0. This implies that u is a constant on [a, c]. So
u(c) = u(a) 6= 0. But this is a contradiction to u(c) = 0. Hence we conclude that∫ c
a (u ′α)2 dα > 0.

In (5.12), canceling
∫ c
a (u ′α)2 dα, we get a contradiction to (5.8). This completes

the proof. ¤

In the following result we apply Theorem 4.4.

Theorem 5.3. Let q ∈ PC([a, b]) and let α = φ (see (3.2)). If u ∈ PC([a, b]) is
left-continuous and a nontrivial solution of the following equation:

(u ′α)m +
q(t)um+1

1 + |u|+ (u ′)2
= 0, u(b) = 0, (m = 1, 3, 5, ...),

then we have

1 ≤ I(m, 1) max
a≤s≤b

|q(s)|.(5.13)
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Proof. Substituting f ≡ 1, p = 0, q = 1, r = 0 into Theorem 4.4, then we have
∫ b

a
|u|m dα ≤ I(m, 1)

∫ b

a
|u ′α|m dα.

So we have ∫ b

a
|u ′α|m dα ≤

∫ b

a

|q||u|m+1

1 + |u|+ (u ′)2
dα ≤

∫ b

a
|q||u|m dα

≤ I(m, 1) max
a≤s≤b

|q(s)|
∫ b

a
|u ′α|m dα.

Canceling
∫ b
a |u ′α|m dα, we get (5.13). ¤
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