DOI QR코드

DOI QR Code

Does Establishing a Safety Margin Reduce Local Recurrence in Subsegmental Transarterial Chemoembolization for Small Nodular Hepatocellular Carcinomas?

  • Kang, Hyo-Jin (Department of Radiology, Seoul National University Hospital) ;
  • Kim, Young Il (Department of Radiology, Seoul National University Hospital) ;
  • Kim, Hyo-Cheol (Department of Radiology, Seoul National University Hospital) ;
  • Jae, Hwan Jun (Department of Radiology, Seoul National University Hospital) ;
  • Hur, Saebeom (Department of Radiology, Seoul National University Hospital) ;
  • Chung, Jin Wook (Department of Radiology, Seoul National University Hospital)
  • 투고 : 2014.11.28
  • 심사 : 2015.05.21
  • 발행 : 2015.09.01

초록

Objective: To test the hypothesis that a safety margin may affect local tumor recurrence (LTR) in subsegmental chemoembolization. Materials and Methods: In 101 patients with 128 hepatocellular carcinoma (HCC) nodules (1-3 cm in size and ${\leq}3$ in number), cone-beam CT-assisted subsegmental lipiodol chemoembolization was performed. Immediately thereafter, a non-contrast thin-section CT image was obtained to evaluate the presence or absence of intra-tumoral lipiodol uptake defect and safety margin. The effect of lipiodol uptake defect and safety margin on LTR was evaluated. Univariate and multivariate analyses were performed to indentify determinant factors of LTR. Results: Of the 128 HCC nodules in 101 patients, 49 (38.3%) nodules in 40 patients showed LTR during follow-up period (median, 34.1 months). Cumulative 1- and 2-year LTR rates of nodules with lipiodol uptake defect (n = 27) and those without defect (n = 101) were 58.1% vs. 10.1% and 72.1% vs. 19.5%, respectively (p < 0.001). Among the 101 nodules without a defect, the 1- and 2-year cumulative LTR rates for nodules with complete safety margin (n = 52) and those with incomplete safety margin (n = 49) were 9.8% vs. 12.8% and 18.9% vs. 19.0% (p = 0.912). In multivariate analyses, ascites (p = 0.035), indistinct tumor margin on cone-beam CT (p = 0.039), heterogeneous lipiodol uptake (p = 0.023), and intra-tumoral lipiodol uptake defect (p < 0.001) were determinant factors of higher LTR. Conclusion: In lipiodol chemoembolization, the safety margin in completely lipiodolized nodule without defect will not affect LTR in small nodular HCCs.

키워드

참고문헌

  1. Portolani N, Coniglio A, Ghidoni S, Giovanelli M, Benetti A, Tiberio GA, et al. Early and late recurrence after liver resection for hepatocellular carcinoma: prognostic and therapeutic implications. Ann Surg 2006;243:229-235 https://doi.org/10.1097/01.sla.0000197706.21803.a1
  2. Zytoon AA, Ishii H, Murakami K, El-Kholy MR, Furuse J, El- Dorry A, et al. Recurrence-free survival after radiofrequency ablation of hepatocellular carcinoma. A registry report of the impact of risk factors on outcome. Jpn J Clin Oncol 2007;37:658-672 https://doi.org/10.1093/jjco/hym086
  3. Kim YS, Lim HK, Rhim H, Lee MW, Choi D, Lee WJ, et al. Tenyear outcomes of percutaneous radiofrequency ablation as first-line therapy of early hepatocellular carcinoma: analysis of prognostic factors. J Hepatol 2013;58:89-97 https://doi.org/10.1016/j.jhep.2012.09.020
  4. Shi M, Guo RP, Lin XJ, Zhang YQ, Chen MS, Zhang CQ, et al. Partial hepatectomy with wide versus narrow resection margin for solitary hepatocellular carcinoma: a prospective randomized trial. Ann Surg 2007;245:36-43 https://doi.org/10.1097/01.sla.0000231758.07868.71
  5. Tang YH, Wen TF, Chen X. Resection margin in hepatectomy for hepatocellular carcinoma: a systematic review. Hepatogastroenterology 2012;59:1393-1397
  6. Kim KW, Lee JM, Klotz E, Kim SJ, Kim SH, Kim JY, et al. Safety margin assessment after radiofrequency ablation of the liver using registration of preprocedure and postprocedure CT images. AJR Am J Roentgenol 2011;196:W565-W572 https://doi.org/10.2214/AJR.10.5122
  7. Bruix J, Sherman M; American Association for the Study of Liver Diseases. Management of hepatocellular carcinoma: an update. Hepatology 2011;53:1020-1022 https://doi.org/10.1002/hep.24199
  8. Lee IJ, Chung JW, Yin YH, Kim HC, Kim YI, Jae HJ, et al. Cone-beam CT hepatic arteriography in chemoembolization for hepatocellular carcinoma: angiographic image quality and its determining factors. J Vasc Interv Radiol 2014;25:1369-1379;quiz 1379-1379.e1 https://doi.org/10.1016/j.jvir.2014.04.011
  9. Choi WS, Kim HC, Hur S, Choi JW, Lee JH, Yu SJ, et al. Role of C-arm CT in identifying caudate arteries supplying hepatocellular carcinoma. J Vasc Interv Radiol 2014;25:1380-1388 https://doi.org/10.1016/j.jvir.2014.02.028
  10. Kim HC. Role of C-arm cone-beam CT in chemoembolization for hepatocellular carcinoma. Korean J Radiol 2015;16:114-124 https://doi.org/10.3348/kjr.2015.16.1.114
  11. Song SY, Chung JW, Yin YH, Jae HJ, Kim HC, Jeon UB, et al. Celiac axis and common hepatic artery variations in 5002 patients: systematic analysis with spiral CT and DSA. Radiology 2010;255:278-288 https://doi.org/10.1148/radiol.09090389
  12. Miyayama S, Matsui O, Yamashiro M, Ryu Y, Kaito K, Ozaki K, et al. Ultraselective transcatheter arterial chemoembolization with a 2-f tip microcatheter for small hepatocellular carcinomas: relationship between local tumor recurrence and visualization of the portal vein with iodized oil. J Vasc Interv Radiol 2007;18:365-376 https://doi.org/10.1016/j.jvir.2006.12.004
  13. Ito K, Mitchell DG, Siegelman ES. Cirrhosis: MR imaging features. Magn Reson Imaging Clin N Am 2002;10:75-92, vi https://doi.org/10.1016/S1064-9689(03)00050-3
  14. Gupta AA, Kim DC, Krinsky GA, Lee VS. CT and MRI of cirrhosis and its mimics. AJR Am J Roentgenol 2004;183:1595-1601 https://doi.org/10.2214/ajr.183.6.01831595
  15. Lafortune M, Matricardi L, Denys A, Favret M, Dery R, Pomier- Layrargues G. Segment 4 (the quadrate lobe): a barometer of cirrhotic liver disease at US. Radiology 1998;206:157-160 https://doi.org/10.1148/radiology.206.1.9423666
  16. de Franchis R; Baveno V Faculty. Revising consensus in portal hypertension: report of the Baveno V consensus workshop on methodology of diagnosis and therapy in portal hypertension. J Hepatol 2010;53:762-768 https://doi.org/10.1016/j.jhep.2010.06.004
  17. de Franchis R, Primignani M. Natural history of portal hypertension in patients with cirrhosis. Clin Liver Dis 2001;5:645-663 https://doi.org/10.1016/S1089-3261(05)70186-0
  18. Annet L, Materne R, Danse E, Jamart J, Horsmans Y, Van Beers BE. Hepatic flow parameters measured with MR imaging and Doppler US: correlations with degree of cirrhosis and portal hypertension. Radiology 2003;229:409-414 https://doi.org/10.1148/radiol.2292021128
  19. Sasaki A, Kai S, Iwashita Y, Hirano S, Ohta M, Kitano S. Microsatellite distribution and indication for locoregional therapy in small hepatocellular carcinoma. Cancer 2005;103:299-306 https://doi.org/10.1002/cncr.20798
  20. Nonami T, Harada A, Kurokawa T, Nakao A, Takagi H. Hepatic resection for hepatocellular carcinoma. Am J Surg 1997;173:288-291 https://doi.org/10.1016/S0002-9610(96)00399-6
  21. Nagasue N, Uchida M, Makino Y, Takemoto Y, Yamanoi A, Hayashi T, et al. Incidence and factors associated with intrahepatic recurrence following resection of hepatocellular carcinoma. Gastroenterology 1993;105:488-494 https://doi.org/10.1016/0016-5085(93)90724-Q
  22. Poon RT, Fan ST, Ng IO, Wong J. Significance of resection margin in hepatectomy for hepatocellular carcinoma: a critical reappraisal. Ann Surg 2000;231:544-551 https://doi.org/10.1097/00000658-200004000-00014
  23. Makuuchi M, Hasegawa H, Yamazaki S. Ultrasonically guided subsegmentectomy. Surg Gynecol Obstet 1985;161:346-350
  24. Arii S, Tanaka S, Mitsunori Y, Nakamura N, Kudo A, Noguchi N, et al. Surgical strategies for hepatocellular carcinoma with special reference to anatomical hepatic resection and intraoperative contrast-enhanced ultrasonography. Oncology 2010;78 Suppl 1:125-130
  25. Goldberg SN, Grassi CJ, Cardella JF, Charboneau JW, Dodd GD 3rd, Dupuy DE, et al. Image-guided tumor ablation: standardization of terminology and reporting criteria. J Vasc Interv Radiol 2009;20(7 Suppl):S377-S390 https://doi.org/10.1016/j.jvir.2009.04.011
  26. Fujioka C, Horiguchi J, Ishifuro M, Kakizawa H, Kiguchi M, Matsuura N, et al. A feasibility study: evaluation of radiofrequency ablation therapy to hepatocellular carcinoma using image registration of preoperative and postoperative CT. Acad Radiol 2006;13:986-994 https://doi.org/10.1016/j.acra.2006.05.011
  27. Miyayama S, Yamashiro M, Hashimoto M, Hashimoto N, Ikuno M, Okumura K, et al. Comparison of local control in transcatheter arterial chemoembolization of hepatocellular carcinoma ${\leq}$6 cm with or without intraprocedural monitoring of the embolized area using cone-beam computed tomography. Cardiovasc Intervent Radiol 2014;37:388-395 https://doi.org/10.1007/s00270-013-0667-2
  28. Matsui O, Kadoya M, Kameyama T, Yoshikawa J, Takashima T, Nakanuma Y, et al. Benign and malignant nodules in cirrhotic livers: distinction based on blood supply. Radiology 1991;178:493-497 https://doi.org/10.1148/radiology.178.2.1846240
  29. Takayasu K, Wakao F, Moriyama N, Muramatsu Y, Sakamoto M, Hirohashi S, et al. Response of early-stage hepatocellular carcinoma and borderline lesions to therapeutic arterial embolization. AJR Am J Roentgenol 1993;160:301-306 https://doi.org/10.2214/ajr.160.2.8380949
  30. Miyayama S, Matsui O, Yamashiro M, Ryu Y, Takata H, Takeda T, et al. Iodized oil accumulation in the hypovascular tumor portion of early-stage hepatocellular carcinoma after ultraselective transcatheter arterial chemoembolization. Hepatol Int 2007;1:451-459 https://doi.org/10.1007/s12072-007-9030-5
  31. Wallace MJ, Murthy R, Kamat PP, Moore T, Rao SH, Ensor J, et al. Impact of C-arm CT on hepatic arterial interventions for hepatic malignancies. J Vasc Interv Radiol 2007;18:1500-1507 https://doi.org/10.1016/j.jvir.2007.07.021

피인용 문헌

  1. Is scheduled second chemoembolization necessary for early stage hepatocellular carcinoma showing complete response after first chemoembolization? vol.23, pp.1, 2017, https://doi.org/10.3350/cmh.2017.0102
  2. Comparison of the Efficacy and Prognostic Factors of Transarterial Chemoembolization Plus Microwave Ablation versus Transarterial Chemoembolization Alone in Patients with a Large Solitary or Multinodu vol.19, pp.2, 2018, https://doi.org/10.3348/kjr.2018.19.2.237
  3. Hedgehog/GLI1 activation leads to leukemic transformation of myelodysplastic syndrome in vivo and GLI1 inhibition results in antitumor activity vol.38, pp.5, 2019, https://doi.org/10.1038/s41388-018-0431-9
  4. Microvascular Flow Imaging of Residual or Recurrent Hepatocellular Carcinoma after Transarterial Chemoembolization: Comparison with Color/Power Doppler Imaging vol.20, pp.7, 2015, https://doi.org/10.3348/kjr.2018.0932
  5. Improved Local Tumor Control and Survival Rates by Obtaining a 3D-Safety Margin in Superselective Transarterial Chemoembolization for Small Hepatocellular Carcinoma vol.43, pp.3, 2015, https://doi.org/10.1007/s00270-019-02365-9
  6. An Optimal Ablative Margin of Small Single Hepatocellular Carcinoma Treated with Image-Guided Percutaneous Thermal Ablation and Local Recurrence Prediction Base on the Ablative Margin: A Multicenter S vol.8, pp.None, 2021, https://doi.org/10.2147/jhc.s330746