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A MODIFIED INEXACT NEWTON METHOD†

PENGZHAN HUANG∗ AND ABDURISHIT ABDUWALI

Abstract. In this paper, we consider a modified inexact Newton method
for solving a nonlinear system F (x) = 0 where F (x) : Rn → Rn. The basic
idea is to accelerate convergence. A semi-local convergence theorem for
the modified inexact Newton method is established and an affine invariant
version is also given. Moreover, we test three numerical examples which
show that the modified inexact scheme is more efficient than the classical
inexact Newton strategy.
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1. Introduction

Consider the system of nonlinear equations

F (x) = 0, (1.1)

where F (x) : D ⊂ Rn → Rn is Fréchet differentiable. Let F ′(x) denote the
Fréchet derivative of F at x.

Such equations (1.1) often arise in many important practical fields (e.g.,
physics and engineering, etc.). For example, input-output systems, least squares
problems, finite difference or finite element problems, integral or differential
equations, constrained function minimization, complementarity problems, vari-
ational inequalities, calculation of the load flows for power systems and solving
initial or boundary value problems in ordinary or partial differential equations,
etc.

Among all kinds of numerical methods for solving the nonlinear equations
(1.1), Newton method [18, 24, 33] is the most classical one. In general, suppose
that xk is the current approximate solution; a new approximate solution xk+1

can be computed through the following general form:
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Algorithm 1.1 : Newton method
1. Let x0 ∈ Rn be a given initial guess.
2. For k = 0 until convergence do.

2.1. For the iteration xk, find the step sk satisfying

F ′(xk)sk = −F (xk). (1.2)

2.2. Set xk+1 = xk + sk.
2.3. Set k = k + 1 and turn to 2.1.

If n is not too large, the Newton method is attractive because it converges
rapidly from any sufficiently good initial data. However, Newton method has
two disadvantages from the point of view of practical computation: one is that it
requires computing Jacobian matrices, and the other is that it requires solving
linear equations (1.2) exactly. Computing the exact solution using a direct
method such as Gaussian elimination may be expensive if the Jacobian matrix
is large and may not be justified when xk is far from the exact solution x∗.
In order to overcome the disadvantage of Newton method, using an iterative
method and solving (1.2) approximately are reasonable. This approach was
first considered by Dembo, Eisenstat and Steihaug in [11] (such a variant is the
so-called inexact Newton method).

Algorithm 1.2 : Inexact Newton method
1. Let x0 ∈ Rn be a given initial guess.
2. For k = 0 until convergence do.

2.1. Choose ηk ∈ [0, 1).
2.2. For the residual rk and the iteration xk, find the step sk satisfying

F ′(xk)sk = −F (xk) + rk, (1.3)

where
‖rk‖

‖F (xk)‖
≤ ηk. (1.4)

2.3. Set xk+1 = xk + sk.
2.4. Set k = k + 1 and turn to 2.1.

Remark 1.1. In the above algorithm, sk is the inexact Newton step and (1.4)
is the inexact Newton condition. ηk is the forcing term for the k-th iteration
step which may depend on xk; taking ηk ≡ 0 gives the famous Newton method.

In typical applications, the choice of the forcing terms is critical to the ef-
ficiency of the method and can affect robustness as well. Usually, it is hard
to choose a good sequence of forcing terms. In computational practice, several
authors considered some concrete strategies. We list here the following:

1. The choice η = 10−1 used by Elias, Coutinho and Martins [16].
2. The choice η = 10−4 used by Cai, Gropp, Keyes and Tidriri [9].
3. The choice 1

2k+1 of Brown and Saad [7].

4. The choice η = min{ 1
k+2 , ‖F (xk)‖} of Dembo and Steihaug [12].

5. Eisenstat and Walker [15] proposed two choices:
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(1). Given η0 ∈ [0, 1), choose

ηk =
‖F (xk)− F (xk−1)− F ′(xk−1)sk−1‖

‖F (xk−1)‖
, k = 1, 2, . . . ,

or

ηk =
| ‖F (xk)‖ − ‖F (xk−1) + F ′(xk−1)sk−1‖ |

‖F (xk−1)‖
, k = 1, 2, . . . .

(2). Given γ ∈ [0, 1], α ∈ (1, 2] and η0 ∈ [0, 1), choose

ηk = γ

(

‖F (xk)‖

‖F (xk−1)‖

)α

, k = 1, 2, . . . .

6. H.B. An, Z.Y. Mo and X.P. Liu [1] choosed forcing terms by the following
way:

ηk =



















1− 2p1, rk−1 < p1,

ηk−1, p1 ≤ rk−1 < p2,

0.8ηk−1, p2 ≤ rk−1 < p3,

0.5ηk−1, rk−1 ≥ p3,

k = 1, 2, . . . ,

where 0 < p1 < p2 < p3 < 1 are prescribed at first, and p1 ∈ (0, 12 ). In addition,

assume that η0 is given and rk = ‖F (xk)‖−‖F (xk+sk)‖
‖F (xk)‖−‖F (xk)+F ′(xk)s(xk)‖

.

There are three types of convergence issues about inexact Newton method:
global, local and semi-local convergence analysis. The first is the convergence
analysis based on the whole domain, the second is the convergence analysis based
on a neighborhood of the solution x∗, and the last is the convergence analysis
based on a neighborhood of the initial guess x0. Recently, several authors have
studied the global convergence (see [14, 31]), local convergence (see [10, 20, 23,
34]) and semi-local convergence (see [2, 3, 4, 19, 22, 29, 30, 32, 36]) of inexact
Newton method and proposed application in different fields [5, 21, 28].

After this method is established, some iteration methods are considered by
many authors based on it. AIN (Accelerated Inexact Newton) method is pre-
sented by Fokkema, Sleijpen and Voest in [17]. They have shown how the clas-
sical Newton iteration scheme for nonlinear problems can be accelerated in a
similar way as standard Richardson-type iteration schemes for linear equation.
REGINN (Regularization based on Inexact Newton iteration) method is pre-
sented by Rieder in [25, 26, 27]. INM (Inexact Newton Multigrid) is considered
by Brown, Vassilevski and Woodward in [6]. They have proved optimal-order
and mesh-independent convergence of an inexact Newton method where the
linear Jacobian systems are solved with multigrid techniques. Also, PIN (Pre-
conditioned Inexact Newton) method is considered by Cai and Keyes in [8].

In this paper we consider a modified inexact Newton method. Our modifica-
tion uses F ′(x̂k)sk = −F (xk) + rk to replace F ′(xk)sk = −F (xk) + rk, where
x̂k := xk−F ′(x̂k−1)

−1F (xk). The use of this method is particularly appropriate
when an exact solution of Newton equation is difficult to obtain and/or when
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evaluating and preparing the Jacobian for the computation is costly, and this
method has fast convergence as well.

The rest of this paper is organized as follows. In section 2, a modified inexact
Newton algorithm is established. In section 3, we will present the semi-local
convergence result for the given algorithm. Moreover, another theorem shows
the affine invariance of the convergence of our proposed method. In section 4,
we give three test problems using the algorithm presented in this paper to show
its convergence properties and robustness. In the last section, some concluding
remarks are made.

2. A modified inexact Newton method

In this section, we introduce a modified inexact Newton method.
From the Algorithm 1.2, we know that the inexact Newton iteration scheme

is
F ′(xk)(xk+1 − xk) = −F (xk) + rk, k = 0, 1, . . . . (2.1)

Note that (2.1) can be rewritten as

xk+1 = xk − F ′(xk)
−1F (xk) + F ′(xk)

−1rk, k = 0, 1, . . . , (2.2)

if F ′(x) is invertible for every x ∈ D.
Consider one-dimensional nonlinear equation

f(x) = 0, (2.3)

where f(x) : R → R and f ′(x) is invertible for every x ∈ R. It easily follows
from (2.2) that the inexact Newton iteration scheme of (2.3) is

xk+1 = xk − f ′(xk)
−1f(xk) + f ′(xk)

−1rk, k = 0, 1, . . . . (2.4)

If ηk ≡ 0, then rk in (2.4) is 0. Moreover, (2.4) yields the famous Newton
iteration scheme as follows

xk+1 = xk − f ′(xk)
−1f(xk), k = 0, 1, . . . . (2.5)

In fact, from the point of view of geometry, Newton iteration scheme (2.5) uses
tangent line of point (xk, f(xk)) to approximate curved line. We claim that,
if the tangent line of the point

(

xk − f ′(xk)
−1f(xk), f

(

xk − f ′(xk)
−1f(xk)

))

is
used to replace the former one, then a new scheme can be obtained as follows

xk+1 = xk − f ′
(

xk − f ′(xk)
−1f(xk)

)−1
f(xk), k = 0, 1, . . . . (2.6)

Furthermore by generalizing this method to n-dimensional case, we have

xk+1 = xk − F ′
(

xk − F ′(xk)
−1F (xk)

)−1
F (xk), k = 0, 1, . . . . (2.7)

For simplicity, let x̂k = xk − F ′(xk)
−1F (xk). Hence, (2.7) reduces to

xk+1 = xk − F ′(x̂k)
−1F (xk), k = 0, 1, . . . . (2.8)

However, we have to solve two inverse matrices at each iteration, which will
cost a lot of computational time. Meanwhile, it is hard to get x̂k, because it is
difficult to calculate F ′(xk)

−1 even if the scale of problems is medium. Here,
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we give a new scheme, which can use the information of the former iteration
adequately and save CUP-time. Here, we take x̂k = xk − F ′(x̂k−1)

−1F (xk) and
x̂0 = x0. Moreover, a modified inexact Newton algorithm is obtained.

Algorithm 2.1 : Modified inexact Newton method
1. Let x0 ∈ Rn be a given initial guess.
2. For k = 0 until convergence do.

2.1. Choose ηk ∈ [0, 1).
2.2. For the residual rk and the iteration xk, find the step sk satisfying

F ′(x̂k)sk = −F (xk) + rk, (2.9)

where
‖rk‖

‖F (xk)‖
≤ ηk. (2.10)

2.3. Set xk+1 = xk + sk.
2.4. Set k = k + 1 and turn to 2.1.

Remark 2.1. In the above algorithm, sk is the inexact Newton step and (2.10)
is the modified inexact Newton condition. ηk is the forcing term for the k-th
iteration step which may depend on xk. Taking ηk ≡ 0 and x̂k = xk give the
famous Newton method. Because F ′(x̂k−1)

−1 has already known in the previous
iteration, it is easy to get x̂k.

3. Semi-local convergence analysis of modified inexact Newton

method

In this section, we will present the semi-local convergence result for Algorithm
2.1 and an affine invariant version is also presented.

The following well-known results are useful for our theorems, one can find
them in [24].

Definition 3.1. F ′ is Lipschitz continuous in D, if there exists L ≥ 0 such that

‖F ′(x) − F ′(y)‖ ≤ L‖x− y‖, (3.1)

for every x, y ∈ D.

Lemma 3.1. Let F : D ⊂ Rn → Rn be Fréchet differentiable and F ′ be Lipschitz

continuous satisfying (3.1). Then,

‖F (y)− F (x)− F ′(x)(y − x)‖ ≤
L

2
‖y − x‖2, (3.2)

for every x, y ∈ D.

Lemma 3.2. Let F : D ⊂ Rn → Rn be Fréchet differentiable and F ′ be invert-

ible for every x ∈ D such that

‖F ′(z)−1[F ′(x) − F ′(y)]‖ ≤ L‖x− y‖, ∀ x, y, z ∈ D.

Then,

‖F ′(z)−1[F (y)− F (x)− F ′(x)(y − x)]‖ ≤
L

2
‖y − x‖2,
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for every x, y, z ∈ D.

Theorem 3.3. Suppose F : D ⊂ Rn → Rn is Fréchet differentiable and F ′

is Lipschitz continuous in D. Let x0 ∈ D and ‖F (x0)‖ ≤ η. Assume x̂k =
xk − F ′(x̂k−1)

−1F (xk) and ‖F ′(x̂)−1‖ ≤ γ. If

σ =
Lη

2

[

(2γ + γηmax)
2 + γ2

]

+ ηmax < 1, (3.3)

S = S

(

x0,
δ

1− σ

)

⊂ D, (3.4)

where ηmax = sup
k

{ηk} < 1, L = max{L1, L2} and δ = γ(1 + ηmax)η. Then

the sequence of modified inexact Newton method defined by (2.9) stays in S and

converges to x∗ which satisfies F (x∗) = 0.

Proof. Firstly, we will prove

‖F (xk)‖ ≤ σkη, k = 0, 1, . . . , (3.5)

by induction.
For k = 0, (3.5) holds evidently.
Assume that (3.5) is true for k ≤ m.
Now, we prove the assertion for k = m+ 1. Since

‖F (xm+1)‖ = ‖F (xm+1)− F (xm)− F ′(x̂m)(xm+1 − xm) + rm‖

= ‖F (xm+1)− F (x̂m) + F (x̂m)− F (xm)

− F ′(x̂m)(xm+1 − x̂m + x̂m − xm) + rm‖

≤ ‖F (xm+1)− F (x̂m)− F ′(x̂m)(xm+1 − x̂m)‖

+ ‖F (xm)− F (x̂m)− F ′(x̂m)(xm − x̂m)‖+ ‖rm‖.

By Lemma 3.1, it follows that

‖F (xm+1)− F (x̂m)− F ′(x̂m)(xm+1 − x̂m)‖ ≤
L1

2
‖xm+1 − x̂m‖2, (3.6)

‖F (xm)− F (x̂m)− F ′(x̂m)(xm − x̂m)‖ ≤
L2

2
‖xm − x̂m‖2, (3.7)

where L1 and L2 are Lipschitz constants.
Using (3.6) and (3.7), we have

‖F (xm+1)‖ ≤
L

2
‖xm+1 − x̂m‖2 +

L

2
‖xm − x̂m‖2 + ‖rm‖

=
L

2
‖xm+1 − xm + F ′(x̂m−1)

−1F (xm)‖2

+
L

2
‖F ′(x̂m−1)

−1F (xm)‖2 + ‖rm‖

≤
L

2

‖F ′(x̂m)−1[rm − F (xm)] + F ′(x̂m−1)
−1F (xm)‖2

‖F (xm)‖2
‖F (xm)‖2
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+
L

2

∥

∥F ′(x̂m−1)
−1

∥

∥

2
‖F (xm)‖2 + ηmax‖F (xm)‖.

Hence, it follows from the assumption of induction, (2.10) and (3.3) that

‖F (xm+1)‖ ≤

[

L

2
(γ + γηmax + γ)2‖F (xm)‖+

L

2
γ2‖F (xm)‖ + ηmax

]

‖F (xm)‖

≤

{

Lη

2

[

(2γ + γηmax)
2 + γ2

]

+ ηmax

}

‖F (xm)‖

≤ σσmη = σm+1η.

This gives (3.5) and the induction is complete.
Indeed, by (2.9) and (3.5),

‖xk+1 − xk‖ = ‖F ′(x̂k)
−1[rk − F (xk)]‖ ≤ ‖F ′(x̂k)

−1‖‖rk − F (xk)‖

≤ γ
‖F (xk)‖+ ‖rk‖

‖F (xk)‖
‖F (xk)‖ ≤ γ(1 + ηmax)‖F (xk)‖

≤ γ(1 + ηmax)σ
kη.

By the definition of δ, we have

‖xk+1 − xk‖ ≤ σkδ. (3.8)

Therefore, for m ≥ 0,

‖xk+m − xk‖ ≤

k+m−1
∑

i=k

‖xi+1 − xi‖ ≤

k+m−1
∑

i=k

σiδ ≤
δσk

1− σ
. (3.9)

Thus, by (3.3), {xk} is a Cauchy sequence and converges to x∗ as k → +∞.
Moreover,

‖xm − x0‖ ≤
δ

1− σ
,

for any m ≥ 0. In view of (3.4), we obtain xm ∈ S ⊂ D, which implies that
x∗ ∈ S ⊂ D as well.

Finally, we assert that

‖F (x∗)‖ =

∥

∥

∥

∥

lim
k→+∞

F (xk)

∥

∥

∥

∥

≤ lim
k→+∞

σkη = 0.

Hence, F (x∗) = 0. The proof is completed. �

It is well-known [13, 35] that many Newton-like methods are affine invariant
in the sense that when they are used to solve the affinely transformed problem

F(x) = 0, F ≡ AF,

where A is any nonsingular n× n matrix.

Example. Consider the Newton iteration

xk+1 = xk − [F (xk)]
−1F (xk), k = 0, 1, . . . .
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For F , we use affine transform F = AF . Then

[F ′(x)]−1F(x) = [AF ′(x)]−1[AF (x)] = [F ′(x)]−1F (x).

Thus, we assert that the Newton iteration sequence {xk} is affine invariant.
Convergence conditions for affine invariant methods should themselves be

invariant under the transformations of this form [13]. Now it is clear that even if
the method (2.9) is affine invariant, the condition (2.10) is not affine invariant.
In order to give semi-local convergence theorem for the modified inexact Newton
method with affine invariant condition, we improve the method (2.9) with the
above condition (2.10) as follows

F ′(x̂k)sk = −F (xk) + F ′(xk)rk, k = 0, 1, . . . , (3.10)

‖rk‖

‖F ′(xk)−1F (xk)‖
≤ νk, k = 0, 1, . . . . (3.11)

These improvements for inexact Newton method were proposed by Bai and Tong
[4]. Here, we take them for our method.

The following theorem concerns the affine invariance of our algorithm.

Theorem 3.4. Suppose F : D ⊂ Rn → Rn is Fréchet differentiable and the

modified inexact Newton method is defined by (3.10) and (3.11). Assume F ′ is

invertible for every x ∈ D such that

‖F ′(z)−1[F ′(x) − F ′(y)]‖ ≤ L‖x− y‖, ∀ x, y, z ∈ D.

Let x0 ∈ D and ‖F ′(x0)
−1F (x0)‖ ≤ η. Suppose further that x̂k = xk −

F ′(x̂k−1)
−1F (xk),

‖F ′(x̂)−1F (x)‖
‖F ′(x)−1F (x)‖ ≤ µ and ‖F ′(x̂)−1F ′(x)‖ ≤ γ. If

σ =
Lη

2

[

(2µ+ γνmax)
2 + µ2

]

+ Lη(µ+ γνmax) + νmax < 1, (3.12)

S = S

(

x0,
δ

1− σ

)

⊂ D, (3.13)

where νmax = sup
k

{νk} < 1, L = max{L1, L2} and δ = γ(1 + νmax)η. Then

the sequence of modified inexact Newton method stays in S and converges to x∗

which satisfies F (x∗) = 0.

Proof. The proof is similar to the proof of Theorem 3.1. Firstly, we will prove

‖F ′(xk)
−1F (xk)‖ ≤ σkη, k = 0, 1, . . . , (3.14)

by induction.
For k = 0, (3.14) holds evidently.
Assume that (3.14) is true for k ≤ m.
Now, we prove the assertion for k = m+1. Let Tm+1 = ‖F ′(xm+1)

−1F (xm+1)‖
for short. Since

Tm+1 = ‖F ′(xm+1)
−1[F (xm+1)− F (xm)− F ′(x̂m)(xm+1 − xm)]

+ F ′(xm+1)
−1F ′(xm)rm‖
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= ‖F ′(xm+1)
−1[F (xm+1)− F (x̂m) + F (x̂m)− F (xm)

− F ′(x̂m)(xm+1 − x̂m + x̂m − xm)] + F ′(xm+1)
−1F ′(xm)rm‖

≤ ‖F ′(xm+1)
−1[F (xm+1)− F (x̂m)− F ′(x̂m)(xm+1 − x̂m)]‖

+ ‖F ′(xm+1)
−1[F (xm)− F (x̂m)− F ′(x̂m)(xm − x̂m)]‖

+ ‖F ′(xm+1)
−1F ′(xm)rm‖.

By Lemma 3.2, it follows that

‖F ′(xm+1)
−1[F (xm+1)− F (x̂m)− F ′(x̂m)(xm+1 − x̂m)]‖ ≤

L1

2
‖xm+1 − x̂m‖2, (3.15)

‖F ′(xm+1)
−1[F (xm)− F (x̂m)− F ′(x̂m)(xm − x̂m)]‖ ≤

L2

2
‖xm − x̂m‖2, (3.16)

where L1 and L2 are constant.
Using (3.15) and (3.16),

Tm+1 ≤
L

2
‖xm+1 − x̂m‖2 +

L

2
‖xm − x̂m‖2

+ ‖F ′(xm+1)
−1[F ′(xm)− F ′(xm+1)]rm‖+ ‖rm‖

=
L

2
‖xm+1 − xm + F ′(x̂m−1)

−1F (xm)‖2 +
L

2
‖F ′(x̂m−1)

−1F (xm)‖2

+ L‖xm − xm+1‖‖rm‖+ ‖rm‖

=
L

2
‖ − F ′(x̂m)−1F (xm) + F ′(x̂m)−1F ′(xm)rm + F ′(x̂m−1)

−1F (xm)‖2

+
L

2
‖F ′(x̂m−1)

−1F (xm)‖2

+ L
∥

∥−F ′(x̂m)−1F (xm) + F ′(x̂m)−1F ′(xm)rm
∥

∥ ‖rm‖+ ‖rm‖.

Hence, it follows from the assumption of induction, (3.11) and (3.12) that

Tm+1 ≤

{

Lη

2

[

(2µ+ γνmax)
2 + µ

2
]

+ Lη(µ+ γνmax) + νmax

}

‖F ′(xm)−1
F (xm)‖

≤ σσ
m

η = σ
m+1

η.

This gives (3.14) and the induction is complete.
Indeed, by (3.10) and (3.14)

‖xk+1 − xk‖

= ‖F ′(x̂k)
−1[F ′(xk)rk − F (xk)]‖ = ‖F ′(x̂k)

−1F ′(xk)[rk − F ′(xk)
−1F (xk)]‖

≤ γ
‖F (xk)

−1F (xk)‖ + ‖rk‖

‖F (xk)−1F (xk)‖
‖F (xk)

−1F (xk)‖ ≤ γ(1 + νmax)‖F (xk)
−1F (xk)‖

≤ γ(1 + νmax)σ
kη.

By the definition of δ, we have

‖xk+1 − xk‖ ≤ σkδ. (3.17)
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Therefore, for m ≥ 0,

‖xk+m − xk‖ ≤
k+m−1
∑

i=k

‖xi+1 − xi‖ ≤
k+m−1
∑

i=k

σiδ ≤
δσk

1− σ
. (3.18)

Thus, by (3.12), {xk} is a Cauchy sequence and converges to x∗ as k → +∞.
Moreover,

‖xm − x0‖ ≤
δ

1− σ
,

for any m ≥ 0. In view of (3.13), we obtain xm ∈ S ⊂ D, which implies that
x∗ ∈ S ⊂ D as well.

Finally, we assert that

‖F (x∗)‖ =

∥

∥

∥

∥

lim
k→+∞

F (xk)

∥

∥

∥

∥

≤ lim
k→+∞

σkη = 0.

Hence, F (x∗) = 0. The proof is completed. �

Next, we consider the rate of convergence of the modified inexact Newton
method. First, we give the following definition given by R.S. Dembo et al. [11].

Definition 3.2. Let {xk} be a sequence which converges to x∗. Then xk → x∗

with order at least q (q > 1) if

‖xk+1 − x∗‖ = O(‖xk − x∗‖q) as k → ∞.

Theorem 3.5. Under the assumptions of Theorem 3.1, if the modified inexact

Newton iterates {xk} converge to x∗, then xk → x∗ with order at least 2 if and

only if

‖rk‖ = O(‖xk − x∗‖2) as k → ∞.

Proof. Assume that xk → x∗ with order at least 2. Note that

rk = [F (xk)− F (x∗)− F ′(x∗)(xk − x∗)]− [F ′(x̂k)− F ′(x∗)](xk − x∗)

+ [F ′(x∗) + F ′(x̂k)− F ′(x∗)](xk+1 − x∗).

Taking norms, we arrive at

‖rk‖ ≤ ‖F (xk)− F (x∗)− F ′(x∗)(xk − x∗)‖+ ‖F ′(x̂k)− F ′(x∗)‖‖xk − x∗‖

+ [‖F ′(x∗)‖+ ‖F ′(x̂k)− F ′(x∗)‖]‖xk+1 − x∗‖.

Therefore, by Lemma 3.1, the continuity of F ′ at x∗ and the assumption that
xk → x∗ with order at least 2, we have

‖rk‖ = O(‖xk − x∗‖2) as k → ∞.

Conversely, assume that ‖rk‖ = O(‖xk − x∗‖2). Note that

xk+1 − x∗ = xk − x∗ + F ′(x̂k)
−1[rk − F (xk)]

= F ′(x̂k)
−1[rk + (F ′(x̂k)− F ′(x∗))(xk − x∗)

− F (xk) + F (x∗) + F ′(x∗)(xk − x∗)].
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Taking norms, we arrive at

‖xk+1 − x∗‖ ≤ ‖F ′(x̂k)
−1‖[‖rk‖+ ‖F ′(x̂k)− F ′(x∗)‖‖xk − x∗‖

+ ‖F (xk)− F (x∗)− F ′(x∗)(xk − x∗)‖].

Therefore, by Lemma 3.1 and the assumption that ‖rk‖ = O(‖xk − x∗‖2), we
have

‖xk+1 − x∗‖ = O(‖xk − x∗‖2) as k → ∞.

�

4. Numerical experiments

In this section, we give three test problems using the algorithm presented in
this paper to show its convergence property and robustness. The purpose of the
first two problems are to show that Algorithm 2.1 is useful in the nonlinear case.
By useful we mean that the algorithm presented has faster convergence. In the
third problem, a nonlinear PDE is solved.

Example 1. Consider the following nonlinear equations:
{

f1 = x3
1 + x2 − 2,

f2 = x1 + 2x2 − 3,

with x∗ = (1, 1)T.
Take η = 10−4 given by Cai, Gropp, Keyes and Tidriri [9]. Using the modified

inexact Newton method, we can obtain the iterative solutions listed in Table 1
and 2 with initial guess (−1,−1)T and (510, 1021)T, respectively.

Table 1. Comparison of iterative solutions of two algorithms with the initial guess
(−1,−1)T

k xIN

1 xIN

2 xMIN

1 xMIN

2

1 -0.6000 1.8000 0.7241 1.1379
2 0.1172 1.4414 0.8569 1.0715
3 -1.0969 2.0485 0.9678 1.0161
4 -0.6881 1.8440 0.9987 1.0007
5 -0.1646 1.5823 1.0000 1.0000
10 -1.2463 2.1231 1.0000 1.0000
20 0.9874 1.0063 1.0000 1.0000
22 1.0000 1.0000 1.0000 1.0000

In Table 1, a comparison of iterative solutions of two algorithms of Example 1
with the initial guess (−1,−1)T is shown. Here, xIN

1 and xIN

2 denote the iterative
solutions of inexact Newton method while xMIN

1 and xMIN

2 represent the iterative
solutions of modified inexact Newton method. We have seen from Table 1 that
the modified inexact Newton method has faster convergence.

In Table 2, a comparison of iterative solutions of two algorithms of Example
1 with the initial guess (510, 1021)T is shown. We have seen from Table 2 that
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Table 2. Comparison of iterative solutions of two algorithms with the initial guess
(510, 1021)T

k xIN

1 xIN

2 xMIN

1 xMIN

2

1 339.7500 0.0000 127.0000 0.0000
2 226.5003 -111.7502 31.7528 -14.3764
3 151.0007 -74.0004 7.9498 -2.4749
7 29.8317 -13.4159 0.9986 1.0007
8 19.8917 -8.4459 1.0000 1.0000
10 8.8541 -2.9271 1.0000 1.0000
18 1.0001 1.0000 1.0000 1.0000
19 1.0000 1.0000 1.0000 1.0000

two methods have a wide convergence domain and the modified inexact Newton
method has faster convergence.

In Fig. 1, we present profiles for the history of absolute error for two algo-
rithms of Example 1 with the initial guess (−1,−1)T. We have seen from Fig.
1 that the absolute error using modified inexact Newton method becomes small
faster than that of inexact Newton method. It is observed that the proposed
method performs better than the inexact Newton method.
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Fig. 1. History of absolute error for two algorithms with the initial guess (−1,−1)T.

In Fig. 2, we present profiles for history of absolute error for two algorithms
of Example 1 with the initial guess (510, 1021)T. We have seen from Fig. 2 that
the modified inexact Newton method may perform several times faster than the
inexact Newton method.

Example 2. Consider the following nonlinear equations:

f1 = 4x1 − 4x2
2,

fi = −8xi−1xi + 8x3
i + 6xi − 4x2

i+1 − 2, i = 2, 3, . . . , 9,

f10 = −8x9x10 + 8x3
10 + 2x10 − 2.
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Fig. 2. History of absolute error for two algorithms with the initial guess
(510, 1021)T.

Take η = 10−4 given by Cai, Gropp, Keyes and Tidriri [9]. Using the modified
inexact Newton method, we can obtain the iterative solutions. Here, we use
‖F (xk)‖ ≤ 1.0e− 9 as the stopping rule for this example.

Table 3. Results for Example 2

Method No.Eq1 No.Eqk No.Fd1 No.Fdk No.it CPU-time Res

Presented method 10 20 1 2 109 0.7656 9.8920e-10
inexact Newton 10 10 1 1 322 0.7813 9.6020e-10

Results for Example 2 are listed in Table 3, where No.Eq1 denotes the number
of equation in the first step, No.Eqk represents the number of equation in the
k-th step (k > 1), No.Fd1 denotes the number of F ′ in the first step, No.Fdk
represents the number of F ′ in the k-th step, No.it denotes the number of iter-
ation and Res stands for the value of ‖F (xk)‖ when our stop rule is satisfied.
As shown in Table 3, the number of iteration by the modified inexact Newton
method is less than that of the classical inexact Newton method. Meanwhile, we
have seen from Table 3 that the number of F ′ by the modified inexact Newton
method in the k-th step is 2, but F ′(x̂k−1) has already known in the previous
iteration. Hence, the number of F ′ is indeed 1. Although the number of equation
of the modified inexact Newton method is nearly twice of that of the classical
one, the CPU-time of the former method is still less. All in all, our method
indeed saves on computation.

Example 3. Consider one-dimensional Burgers’ equation:














∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
, 0 < x < 1, 0 < t ≤ T,

u(x, 0) = sin(πx), 0 ≤ x ≤ 1,

u(0, t) = u(1, t) = 0, 0 < t ≤ T,

(4.1)
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where the positive number ν = 1
Re

is the coefficient of viscosity, and Re denotes
the Reynolds number. This equation has an exact solution in the form of the
infinite series

u(x, t) = 4πν

∑∞
j=1 jIj(

1
2πν ) sin(jπx) exp(−j2π2νt)

2
∑∞

j=1 Ij(
1

2πν ) cos(jπx) exp(−j2π2νt) + I0(
1

2πν )
, (4.2)

where Ij(x) is the first type of the j-th modified Bessel function. When j = 35,
it is used as an approximation to the infinite sum (4.2).

We solve (4.1) with finite difference method and the modified inexact Newton
method. First, we discretize in space with centered difference to obtain a system
of ordinary differential equations, which we write as

ut = P (u), u(0) = u0. (4.3)

Then the nonlinear equations that should be solved for the implicit Euler method
with a time step τ is

un+1 − un = τP (un+1). (4.4)

Moreover, one solves, at each time step, the nonlinear equations

F (U) = U − un − τP (U) = 0. (4.5)

Then, we use the modified inexact Newton method to solve nonlinear equations
(4.5).

Let h = 1/M be the mesh width in space and set xi = ih for i = 1, 2, . . . ,M−
1. Let τ = T/N be the mesh width in time and set tn = nτ for n = 1, 2, . . . , N .
u(xi, tn) is the approximate solution of u(x, t). Discretization is on a 100× 100
grid, so that N = 100 and M = 100. Hence, the spatial mesh width h = 0.01
and the time step τ = 0.01. Take ηmax = 0.9 used by Eisenstat and Walker in
[15]. Here, GMRES(m) algorithm is used for linear systems and m = 40.

Table 4. Comparison of the numerical solution with the exact solution at different
space points of Example 3 at T = 0.1 for ν = 0.1

x Numerical Solution Exact solution Absolute error
|uexact − unum|

0.1 0.22339 0.22345 6.00e-05
0.2 0.43601 0.43580 2.10e-04
0.3 0.62603 0.62512 9.10e-04
0.4 0.78001 0.77772 2.30e-03
0.5 0.87696 0.87728 3.20e-04
0.6 0.90918 0.90425 4.90e-03
0.7 0.83796 0.83692 1.00e-03
0.8 0.64950 0.65731 7.80e-03
0.9 0.36471 0.36575 1.00e-03

In Table 4, a comparison of the numerical solution with the exact solution at
different space points of (0, 1) for Example 3 at T = 0.1 and ν = 0.1 is shown. It
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is observed that the proposed method gives sharp results. In order to show the
physical behaviour of the given problem, we give surface plots of the computed
solutions for different values of the coefficient of viscosity, ν in Figs. 3 and 4.
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Fig. 3. Numerical solutions profiles of Example 3 for ν = 0.1, h = 0.01 and τ = 0.01.
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Fig. 4. Numerical solutions profiles of Example 3 for ν = 0.01, h = 0.01 and
τ = 0.01.

5. Concluding remarks

The modified inexact Newton method for nonlinear equations has been pre-
sented. It is shown that the method given performs several times faster than
the inexact Newton method. A semi-local convergence theorem for the modified
inexact Newton method is studied and an affine invariant version is also pre-
sented. We then give three numerical examples which show that the modified
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inexact Newton scheme is more efficient than traditional inexact Newton strat-
egy. Therefore, it is suggested to use the modified inexact Newton to get the
numerical solution of the nonlinear equations effectively.
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continuous derivatives, Taiwan. J. Math., 12 (2008), 1865-1882.

30. W.P. Shen and C. Li, Kantorovich-type convergence criterion for inexact Newton methods,
Appl. Numer. Math., 59 (2009), 1599-1611.

31. M.V. Solodov and B.F. Svaiter, A globally convergent inexact Newton method for systems
of monotone equations, Reformulation: Nonsmooth, Piecewise Smooth, Semismooth and
Smoothing Methods, Kluwer Academic Publishers, 1998.

32. M. Wu, A new semi-local convergence theorem for the inexact Newton methods, Appl.
Numer. Math., 200 (2008), 80-86.

33. T. Yamamoto, Historical developments in convergence analysis for Newton’s and Newton-
like method, J. Comput. Appl. Math., 124 (2000), 1-23.

34. T.J. Ypma, Local convergence of inexact Newton methods, SIAM J. Numer. Anal., 21

(1984), 583-590.
35. T.J. Ypma, Affine invariant convergence for Newton’s methods, BIT, 22 (1982), 108-118.
36. J.L. Zhou, S.Y. Zhang, G.P. Yang and J.R. Tan, A convergence theorem for the inexact
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