TOTAL MEAN CORDIAL LABELING OF SOME CYCLE RELATED GRAPHS

R. PONRAJ* AND S. SATHISH NARAYANAN

Abstract

A Total Mean Cordial labeling of a graph $G=(V, E)$ is a function $f: V(G) \rightarrow\{0,1,2\}$ such that $f(x y)=\left\lceil\frac{f(x)+f(y)}{2}\right\rceil$ where $x, y \in V(G), x y \in E(G)$, and the total number of 0,1 and 2 are balanced. That is $\left|e v_{f}(i)-e v_{f}(j)\right| \leq 1, i, j \in\{0,1,2\}$ where $e v_{f}(x)$ denotes the total number of vertices and edges labeled with $x(x=0,1,2)$. If there is a total mean cordial labeling on a graph G, then we will call G is Total Mean Cordial. Here, We investigate the Total Mean Cordial labeling behaviour of prism, gear, helms.

AMS Mathematics Subject Classification : 05C78.
Key words and phrases : prism, gear, helms, join of graphs, product of graphs.

1. Introduction

Terminology and notations in graph theory we refer Harary [2]. New terms and notations shall, however, be specifically defined whenever necessary. By a graph $G=(V, E)$ we mean a finite, undirected graph with neither loops nor multiple edges. The product graph $G_{1} \times G_{2}$ is defined as follows: Consider any two points $u=\left(u_{1}, u_{2}\right)$ and $v=\left(v_{1}, v_{2}\right)$ in $V=V_{1} \times V_{2}$. Then u and v are adjacent in $G_{1} \times G_{2}$ whenever [$u_{1}=v_{1}$ and u_{2} adj v_{2}] or $\left[u_{2}=v_{2}\right.$ and u_{1} adj v_{1}]. The join of two graphs G_{1} and G_{2} is denoted by $G_{1}+G_{2}$ and whose vertex set is $V\left(G_{1}+G_{2}\right)=V\left(G_{1}\right) \cup V\left(G_{2}\right)$ and edge set $E\left(G_{1}+G_{2}\right)=E\left(G_{1}\right) \cup E\left(G_{2}\right) \cup$ $\left\{u v: u \in V\left(G_{1}\right), v \in V\left(G_{2}\right)\right\}$. The order and size of G are denoted by p and q respectively. Ponraj, Ramasamy and Sathish Narayanan [3] introduced the concept of Total Mean Cordial labeling of graphs and studied about their behavior on Path, Cycle, Wheel and some more standard graphs. In [4], Ponraj and Sathish Narayanan proved that $K_{n}^{c}+2 K_{2}$ is Total Mean Cordial if and only if $n=1$ or 2 or 4 or 6 or 8 . Also in [5], Ponraj, Ramasamy and Sathish

[^0]Narayanan studied about the Total Mean Cordiality of Lotus inside a circle, bistar, flower graph, $K_{2, n}$, Olive tree, $P_{n}^{2}, S\left(P_{n} \odot K_{1}\right), S\left(K_{1, n}\right)$. In this paper, we investigate the Total Mean Cordiality of some cycle related graphs. Let x be any real number. Then the symbol $\lceil x\rceil$ stands for the smallest integer greater than or equal to x.

2. Main results

Definition 2.1. A Total Mean Cordial labeling of a graph $G=(V, E)$ is a function $f: V(G) \rightarrow\{0,1,2\}$ such that $f(x y)=\left\lceil\frac{f(x)+f(y)}{2}\right\rceil$ where $x, y \in$ $V(G), x y \in E(G)$, and the total number of 0,1 and 2 are balanced. That is $\left|e v_{f}(i)-e v_{f}(j)\right| \leq 1, i, j \in\{0,1,2\}$ where $e v_{f}(x)$ denotes the total number of vertices and edges labeled with $x(x=0,1,2)$. If there exists a total mean cordial labeling on a graph G, we will call G is Total Mean Cordial.

Prisms are graphs of the form $C_{m} \times P_{n}$. We now look into the graph prism $C_{n} \times P_{2}$.

Theorem 2.2. Prisms are Total Mean Cordial.
Proof. It is clear that $p+q=5 n$. Let $V\left(C_{n} \times P_{2}\right)=\left\{u_{i}, v_{i}: 1 \leq i \leq n\right\}$ and $E\left(C_{n} \times P_{2}\right)=\left\{u_{1} u_{n}, v_{1} v_{n}\right\} \cup\left\{u_{i} v_{i}: 1 \leq i \leq n\right\} \cup\left\{u_{i} u_{i+1}, v_{i} v_{i+1}: 1 \leq i \leq n-1\right\}$.
Case 1. $n \equiv 0(\bmod 6)$.
Let $n=6 t$ and $t>0$. Define a map $f: V\left(C_{n} \times P_{2}\right) \rightarrow\{0,1,2\}$ by

$$
\begin{array}{llll}
f\left(u_{i}\right) & =f\left(v_{i}\right) & =0 & 1 \leq i \leq 2 t \\
f\left(u_{2 t+1+i}\right) & =f\left(v_{2 t+1+i}\right) & =2 & 1 \leq i \leq 2 t-1 \\
f\left(u_{4 t+i}\right) & =f\left(v_{4 t+i}\right) & =1 & 1 \leq i \leq 2 t-1
\end{array}
$$

$f\left(u_{2 t+1}\right)=0, f\left(v_{2 t+1}\right)=f\left(v_{6 t}\right)=2, f\left(u_{6 t}\right)=1$. In this case $e v_{f}(0)=e v_{f}(1)=$ $e v_{f}(2)=10 t$.
Case 2. $n \equiv 1(\bmod 6)$.
Let $n=6 t+1$ and $t>0$. Define a map $f: V\left(C_{n} \times P_{2}\right) \rightarrow\{0,1,2\}$ by

$$
\begin{array}{lll}
f\left(u_{i}\right) & =0 & \\
f\left(u_{2 t+2+i}\right) & =f\left(v_{2 t+2+i}\right)=2 & 1 \leq i \leq 2 t+2 \\
f\left(u_{4 t+2+i}\right) & =f\left(v_{4 t+2+i}\right)=1 & 1 \leq i \leq 2 t-1 \\
f\left(v_{i}\right) & =0 & \\
1 \leq i \leq 2 t
\end{array}
$$

$f\left(v_{2 t+1}\right)=f\left(v_{2 t+2}\right)=1$. Here $e v_{f}(0)=e v_{f}(2)=10 t+2, e v_{f}(2)=10 t+1$.
Case 3. $n \equiv 2(\bmod 6)$.
Let $n=6 t+2$ and $t>0$. Define a map $f: V\left(C_{n} \times P_{2}\right) \rightarrow\{0,1,2\}$ by

$$
\begin{array}{llll}
f\left(u_{i}\right) & =f\left(v_{i}\right) & =0 & 1 \leq i \leq 2 t+1 \\
f\left(u_{2 t+1+i}\right) & =f\left(v_{2 t+1+i}\right) & =2 & 1 \leq i \leq 2 t \\
f\left(u_{4 t+1+i}\right) & =f\left(v_{4 t+1+i}\right) & =1 & 1 \leq i \leq 2 t
\end{array}
$$

$f\left(u_{6 t+2}\right)=1, f\left(v_{6 t+2}\right)=2$. In this case $e v_{f}(0)=e v_{f}(2)=10 t+3, e v_{f}(1)=$ $10 t+4$.

Case 4. $n \equiv 3(\bmod 6)$.
Let $n=6 t+3$ and $t \geq 0$. A Total Mean Cordial labeling of $C_{3} \times P_{2}$ is given in figure 1 .

Figure 1.
Assume $t>0$. Define a map $f: V\left(C_{n} \times P_{2}\right) \rightarrow\{0,1,2\}$ by

$$
\begin{array}{llll}
f\left(u_{i}\right) & =f\left(v_{i}\right) & =0 & 1 \leq i \leq 2 t+1 \\
f\left(u_{2 t+2+i}\right) & =f\left(v_{2 t+2+i}\right) & =2 & 1 \leq i \leq 2 t \\
f\left(u_{4 t+2+i}\right) & =f\left(v_{4 t+2+i}\right) & =1 & 1 \leq i \leq 2 t
\end{array}
$$

$f\left(u_{2 t+2}\right)=0, f\left(u_{6 t+3}\right)=1, f\left(v_{2 t+2}\right)=f\left(v_{6 t+3}\right)=2$. In this case $e v_{f}(0)=$ $e v_{f}(1)=e v_{f}(2)=10 t+5$.
Case 5. $n \equiv 4(\bmod 6)$.
Let $n=6 t+4$ and $t \geq 0$. A Total Mean Cordial labeling of $C_{4} \times P_{2}$ is given in figure 2.

Figure 2.
Assume $t>0$. Define a map $f: V\left(C_{n} \times P_{2}\right) \rightarrow\{0,1,2\}$ by

$$
\begin{array}{llll}
f\left(u_{i}\right) & =f\left(v_{i}\right) & =0 & 1 \leq i \leq 2 t+1 \\
f\left(u_{2 t+3+i}\right) & =f\left(v_{2 t+3+i}\right) & =2 & 1 \leq i \leq 2 t+1 \\
f\left(u_{4 t+4+i}\right) & =f\left(v_{4 t+4+i}\right) & =1 & 1 \leq i \leq 2 t \\
f\left(u_{2 t+2}\right) & =f\left(u_{2 t+3}\right) & =0 & \\
f\left(v_{2 t+2}\right) & =f\left(v_{2 t+3}\right) & =1 &
\end{array}
$$

In this case $e v_{f}(0)=e v_{f}(1)=10 t+7, e v_{f}(2)=10 t+6$.
Case 6. $n \equiv 5(\bmod 6)$.
Let $n=6 t-1$ and $t>0$. Define a map $f: V\left(C_{n} \times P_{2}\right) \rightarrow\{0,1,2\}$ by

$$
\begin{array}{llll}
f\left(u_{i}\right) & =f\left(v_{i}\right) & =0 & \\
f\left(u_{2 t+i}\right) & =f\left(v_{2 t+i}\right) & =2 & \\
& 1 \leq i \leq 2 t \\
f\left(u_{4 t-1+i}\right) & =f\left(v_{4 t-1+i}\right) & =1 & \\
1 \leq i \leq 2 t-1
\end{array}
$$

$f\left(u_{6 t-1}\right)=1, f\left(v_{6 t-1}\right)=2$. In this case $e v_{f}(0)=e v_{f}(2)=10 t-2, e v_{f}(1)=$ $10 t-1$.

The gear graph G_{n} is obtained from the wheel $W_{n}=C_{n}+K_{1}$ where C_{n} is the cycle $u_{1} u_{2} \ldots u_{n} u_{1}$ and $V\left(K_{1}\right)=\{u\}$ by adding a vertex between every pair of adjacent vertices of the cycle C_{n}.

Theorem 2.3. The gear graph G_{n} is Total Mean cordial.
Proof. Let $V\left(G_{n}\right)=V\left(W_{n}\right) \cup\left\{v_{i}: 1 \leq i \leq n\right\}$ and $E\left(G_{n}\right)=E\left(W_{n}\right) \cup$ $\left\{u_{i} v_{i}, v_{j} u_{j+1}: 1 \leq i \leq n, 1 \leq j \leq n\right\}-E\left(C_{n}\right)$. Clearly $p+q=5 n+1$.
Case 1. $n \equiv 0(\bmod 12)$.
Let $n=12 t$ and $t>0$. Define a map $f: V\left(G_{n}\right) \rightarrow\{0,1,2\}$ by $f(u)=1$,

$$
\begin{array}{lllll}
f\left(u_{i}\right) & =f\left(v_{i}\right) & =0 & 1 \leq i \leq 5 t \\
f\left(u_{5 t+1+i}\right) & =f\left(v_{5 t+i}\right) & =2 & & 1 \leq i \leq 4 t \\
f\left(u_{9 t+1+i}\right) & =f\left(v_{9 t+i}\right) & =1 & & 1 \leq i \leq 3 t-1
\end{array}
$$

$f\left(u_{5 t+1}\right)=0, f\left(v_{12 t}\right)=1$.
Case 2. $n \equiv 1(\bmod 12)$.
Let $n=12 t+1$ and $t>0$. Assign the label to the vertices $u_{i}(1 \leq i \leq 12 t)$, $v_{i}(1 \leq i \leq 12 t-1)$ as in case 1 . Then put the labels $0,1,2$ to the vertices $v_{12 t}$, $u_{12 t+1}, v_{12 t+1}$ respectively.
Case 3. $n \equiv 2(\bmod 12)$.
Let $n=12 t+2$ and $t>0$. Define a map $f: V\left(G_{n}\right) \rightarrow\{0,1,2\}$ by $f(u)=1$,

$$
\begin{array}{clll}
f\left(u_{i}\right) & =f\left(v_{i}\right) & =0 & 1 \leq i \leq 5 t+1 \\
f\left(u_{5 t+1+i}\right) & =f\left(v_{t+1+i}\right) & =2 & 1 \leq i \leq 4 t \\
f\left(u_{9 t+2+i}\right) & =f\left(v_{9 t+1+i}\right) & =1 & 1 \leq i \leq 3 t-1 \\
f\left(u_{9 t+2}\right)=f\left(v_{12 t+2}\right)=2, & f\left(u_{12 t+2}\right)=0, & f\left(u_{12 t+1}\right)=1 .
\end{array}
$$

Case 4. $n \equiv 3(\bmod 12)$.
Let $n=12 t-9$ and $t>0$. Define a map $f: V\left(G_{n}\right) \rightarrow\{0,1,2\}$ by $f(u)=1$,

$$
\begin{array}{llll}
f\left(u_{i}\right) & =f\left(v_{i}\right) & =0 & 1 \leq i \leq 5 t-4 \\
f\left(u_{5 t-3+i}\right) & =f\left(v_{5 t-4+i}\right) & =2 & \\
1 \leq i \leq 4 t-3 \\
f\left(u_{9 t-6+i}\right) & =f\left(v_{9 t-7+i}\right) & =1 & \\
1 \leq i \leq 3 t-3
\end{array}
$$

$f\left(u_{5 t-3}\right)=0, f\left(v_{12 t-9}\right)=1$.
Case 5. $n \equiv 4(\bmod 12)$.

Let $n=12 t-8$ and $t>0$. Define a map $f: V\left(G_{n}\right) \rightarrow\{0,1,2\}$ by $f(u)=1$,

$$
\begin{array}{llll}
f\left(u_{i}\right) & =f\left(v_{i}\right) & =0 & 1 \leq i \leq 5 t-3 \\
f\left(u_{5 t-3+i}\right) & =f\left(v_{5 t-3+i}\right) & =2 & 1 \leq i \leq 4 t-3 \\
f\left(u_{9 t-6+i}\right) & =f\left(v_{9 t-6+i}\right) & =1 & 1 \leq i \leq 3 t-3
\end{array}
$$

$f\left(u_{12 t-8}\right)=1, f\left(v_{12 t-8}\right)=2$.
Case 6. $n \equiv 5(\bmod 12)$.
Let $n=12 t-7$ and $t>0$. Define a map $f: V\left(G_{n}\right) \rightarrow\{0,1,2\}$ by $f(u)=1$,

$$
\begin{array}{llll}
f\left(u_{i}\right) & =f\left(v_{i}\right) & =0 & 1 \leq i \leq 5 t-3 \\
f\left(u_{5 t-2+i}\right) & =f\left(v_{5 t-2+i}\right) & =2 & 1 \leq i \leq 4 t-3 \\
f\left(u_{9 t-4+i}\right) & =f\left(v_{9 t-5+i}\right) & =1 & 1 \leq i \leq 3 t-3
\end{array}
$$

$f\left(u_{5 t-2}\right)=0, f\left(v_{5 t-2}\right)=1, f\left(u_{9 t-4}\right)=2, f\left(v_{12 t-7}\right)=1$.
Case 7. $n \equiv 6(\bmod 12)$.
Let $n=12 t-6$ and $t>0$. Define a map $f: V\left(G_{n}\right) \rightarrow\{0,1,2\}$ by $f(u)=1$,

$$
\begin{array}{llll}
f\left(u_{i}\right) & =f\left(v_{i}\right) & =0 & 1 \leq i \leq 5 t-2 \\
f\left(u_{5 t-2+i}\right) & =f\left(v_{5 t-2+i}\right) & =2 & 1 \leq i \leq 4 t-3 \\
f\left(u_{9 t-4+i}\right) & =f\left(v_{9 t-5+i}\right) & =1 & 1 \leq i \leq 3 t-2
\end{array}
$$

$f\left(u_{9 t-4}\right)=2, f\left(v_{12 t-6}\right)=2$.
Case 8. $n \equiv 7(\bmod 12)$.
Let $n=12 t-5$ and $t>0$. Define a map $f: V\left(G_{n}\right) \rightarrow\{0,1,2\}$ by $f(u)=1$,

$$
\begin{array}{llll}
f\left(u_{i}\right) & =f\left(v_{i}\right) & =0 & 1 \leq i \leq 5 t-2 \\
f\left(u_{5 t-2+i}\right) & =f\left(v_{5 t-2+i}\right) & =2 & 1 \leq i \leq 4 t-2 \\
f\left(u_{9 t-4+i}\right) & =f\left(v_{9 t-4+i}\right) & =1 & 1 \leq i \leq 3 t-3
\end{array}
$$

$f\left(u_{12 t-6}\right)=f\left(u_{12 t-5}\right)=1, f\left(v_{12 t-6}\right)=0, f\left(v_{12 t-5}\right)=2$.
Case 9. $n \equiv 8(\bmod 12)$.
Let $n=12 t-4$ and $t>0$. Define a map $f: V\left(G_{n}\right) \rightarrow\{0,1,2\}$ by $f(u)=1$,

$$
\begin{array}{llll}
f\left(u_{i}\right) & =f\left(v_{i}\right) & =0 & 1 \leq i \leq 5 t-2 \\
f\left(u_{5 t-1+i}\right) & =f\left(v_{5 t-1+i}\right) & =2 & 1 \leq i \leq 4 t-2 \\
f\left(u_{9 t-2+i}\right) & =f\left(v_{9 t-3+i}\right) & =1 & 1 \leq i \leq 3 t-2
\end{array}
$$

$f\left(u_{5 t-1}\right)=0, f\left(v_{5 t-1}\right)=f\left(v_{12 t-4}\right)=1, f\left(u_{9 t-2}\right)=2$.
Case 10. $n \equiv 9(\bmod 12)$.
Let $n=12 t-3$ and $t>0$. Define a map $f: V\left(G_{n}\right) \rightarrow\{0,1,2\}$ by $f(u)=1$,

$$
\begin{array}{llll}
f\left(u_{i}\right) & =f\left(v_{i}\right) & =0 & 1 \leq i \leq 5 t-1 \\
f\left(u_{5 t-1+i}\right) & =f\left(v_{5 t-1+i}\right) & =2 & 1 \leq i \leq 4 t-2 \\
f\left(u_{9 t-2+i}\right) & =f\left(v_{9 t-3+i}\right) & =1 & 1 \leq i \leq 3 t-1
\end{array}
$$

$f\left(u_{9 t-2}\right)=2, f\left(v_{12 t-3}\right)=2$.
Case 11. $n \equiv 10(\bmod 12)$.

Let $n=12 t-2$ and $t>0$. Define a map $f: V\left(G_{n}\right) \rightarrow\{0,1,2\}$ by $f(u)=1$,

$$
\begin{array}{llll}
f\left(u_{i}\right) & =f\left(v_{i}\right) & =0 & 1 \leq i \leq 5 t-1 \\
f\left(u_{5 t+i}\right) & =f\left(v_{5 t-1+i}\right) & =2 & 1 \leq i \leq 4 t-1 \\
f\left(u_{9 t-1+i}\right) & =f\left(v_{9 t-2+i}\right) & =1 & 1 \leq i \leq 3 t-1
\end{array}
$$

$f\left(u_{5 t}\right)=0, f\left(v_{12 t-2}\right)=2$.
Case 12. $n \equiv 11(\bmod 12)$.
Let $n=12 t-1$ and $t>0$. Define a map $f: V\left(G_{n}\right) \rightarrow\{0,1,2\}$ by $f(u)=1$,

$$
\begin{array}{llll}
f\left(u_{i}\right) & =f\left(v_{i}\right) & =0 & 1 \leq i \leq 5 t \\
f\left(u_{5 t+i}\right) & =f\left(v_{5 t+i}\right) & =2 & 1 \leq i \leq 4 t-1 \\
f\left(u_{9 t+i}\right) & =f\left(v_{9 t-1+i}\right) & =1 & 1 \leq i \leq 3 t-1
\end{array}
$$

$f\left(u_{9 t}\right)=0, f\left(v_{12 t-1}\right)=1$.
The following table 1 shows that G_{n} is a Total Mean Cordial graph.
Table 1.

Nature of n	$e v_{f}(0)$	$e v_{f}(1)$	$e v_{f}(2)$
$n \equiv 0(\bmod 12)$	$20 t+1$	$20 t$	$20 t$
$n \equiv 1(\bmod 12)$	$20 t+2$	$20 t+2$	$20 t+2$
$n \equiv 2(\bmod 12)$	$20 t+4$	$20 t+3$	$20 t+4$
$n \equiv 3(\bmod 12)$	$20 t-15$	$20 t-14$	$20 t-15$
$n \equiv 4(\bmod 12)$	$20 t-13$	$20 t-13$	$20 t-13$
$n \equiv 5(\bmod 12)$	$20 t-11$	$20 t-12$	$20 t-11$
$n \equiv 6(\bmod 12)$	$20 t-9$	$20 t-10$	$20 t-10$
$n \equiv 7(\bmod 12)$	$20 t-8$	$20 t-8$	$20 t-8$
$n \equiv 8(\bmod 12)$	$20 t-7$	$20 t-6$	$20 t-6$
$n \equiv 9(\bmod 12)$	$20 t-5$	$20 t-4$	$20 t-5$
$n \equiv 10(\bmod 12)$	$20 t-3$	$20 t-3$	$20 t-3$
$n \equiv 11(\bmod 12)$	$20 t-1$	$20 t-1$	$20 t-2$

The helm H_{n} is the graph obtained from a wheel by attaching a pendant edge at each vertex of the n-cycle.

Theorem 2.4. Helms H_{n} are Total Mean Cordial.
Proof. Let $V\left(H_{n}\right)=\left\{u, u_{i}, v_{i}: 1 \leq i \leq n\right\}$ and $E\left(H_{n}\right)=\left\{u_{i} u_{i+1}: 1 \leq i \leq\right.$ $n-1\} \cup\left\{u_{n} u_{1}\right\} \cup\left\{u u_{i}, u_{i} v_{i}: 1 \leq i \leq n\right\}$. Clearly the order and size of H_{n} are $2 n+1$ and $3 n$ respectively.
Case 1. $n \equiv 0(\bmod 12)$.
Let $n=12 t$ and $t>0$. Construct a vertex labeling $f: V\left(H_{n}\right) \rightarrow\{0,1,2\}$ by $f(u)=1$,

$$
\begin{array}{llll}
f\left(u_{i}\right) & =f\left(v_{i}\right) & =0 & 1 \leq i \leq 5 t \\
f\left(u_{5 t+1+i}\right) & =f\left(v_{5 t+1+i}\right) & =2 & 1 \leq i \leq 4 t \\
f\left(u_{9 t+1+i}\right) & =f\left(v_{9 t+1+i}\right) & =1 & 1 \leq i \leq 3 t-1
\end{array}
$$

and $f\left(v_{5 t+1}\right)=1$.

Case 2. $n \equiv 1(\bmod 12)$.
Let $n=12 t+1$ and $t>0$. Define a map $f: V\left(H_{n}\right) \rightarrow\{0,1,2\}$ by $f(u)=1$,

$$
\begin{array}{llll}
f\left(u_{i}\right) & =f\left(v_{i}\right) & =0 & 1 \leq i \leq 5 t \\
f\left(u_{5 t+1+i}\right) & =f\left(v_{5 t+1+i}\right) & =2 & 1 \leq i \leq 4 t \\
f\left(u_{9 t+1+i}\right) & =f\left(v_{9 t+1+i}\right) & =1 & 1 \leq i \leq 3 t-2
\end{array}
$$

$f\left(u_{5 t+1}\right)=0, f\left(v_{5 t+1}\right)=1, f\left(u_{12 t}\right)=f\left(u_{12 t+1}\right)=1, f\left(v_{12 t}\right)=2$ and $f\left(v_{12 t+1}\right)=$ 0 .
Case 3. $n \equiv 2(\bmod 12)$.
Let $n=12 t+2$ and $t>0$. Define a map $f: V\left(H_{n}\right) \rightarrow\{0,1,2\}$ by $f(u)=1$,

$$
\begin{array}{llll}
f\left(u_{i}\right) & =f\left(v_{i}\right) & =0 & 1 \leq i \leq 5 t+1 \\
f\left(u_{5 t+1+i}\right) & =f\left(v_{5 t+1+i}\right) & =2 & 1 \leq i \leq 4 t \\
f\left(u_{9 t+1+i}\right) & =f\left(v_{9 t+1+i}\right) & =1 & 1 \leq i \leq 3 t-1
\end{array}
$$

$f\left(u_{12 t+1}\right)=f\left(u_{12 t+2}\right)=1$ and $f\left(v_{12 t+1}\right)=f\left(v_{12 t+2}\right)=2$.
Case 4. $n \equiv 3(\bmod 12)$.
The Total Mean Cordial labeling of H_{3} is given in figure 3 .

Figure 3.

Let $n=12 t+3$ and $t>0$. Define a map $f: V\left(H_{n}\right) \rightarrow\{0,1,2\}$ by $f(u)=1$,

$$
\begin{array}{llll}
f\left(u_{i}\right) & =f\left(v_{i}\right) & =0 & 1 \leq i \leq 5 t+1 \\
f\left(u_{5 t+2+i}\right) & =f\left(v_{5 t+2+i}\right) & =2 & 1 \leq i \leq 4 t+1 \\
f\left(u_{9 t+3+i}\right) & =f\left(v_{9 t+3+i}\right) & =1 & 1 \leq i \leq 3 t
\end{array}
$$

$f\left(u_{5 t+2}\right)=0, f\left(v_{5 t+2}\right)=1$.
Case 5. $n \equiv 4(\bmod 12)$.
Let $n=12 t-8$ and $t>0$. Define a map $f: V\left(H_{n}\right) \rightarrow\{0,1,2\}$ by $f(u)=1$,

$$
\begin{array}{llll}
f\left(u_{i}\right) & =f\left(v_{i}\right) & =0 & 1 \leq i \leq 5 t-3 \\
f\left(u_{5 t-3+i}\right) & =f\left(v_{5 t-3+i}\right) & =2 & 1 \leq i \leq 4 t-3 \\
f\left(u_{9 t-6+i}\right) & =f\left(v_{9 t-6+i}\right) & =1 & 1 \leq i \leq 3 t-3
\end{array}
$$

$f\left(u_{12 t-8}\right)=1$ and $f\left(v_{12 t-8}\right)=2$.
Case 6. $n \equiv 5(\bmod 12)$.
The Total Mean Cordial labeling of H_{3} is given in figure 4.

Figure 4.

Let $n=12 t+5$ and $t>0$. Define a function $f: V\left(H_{n}\right) \rightarrow\{0,1,2\}$ by $f(u)=1$,

$$
\begin{array}{llll}
f\left(u_{i}\right) & =f\left(v_{i}\right) & =0 & 1 \leq i \leq 5 t+2 \\
f\left(u_{5 t+3+i}\right) & =f\left(v_{5 t+3+i}\right) & =2 & 1 \leq i \leq 4 t+1 \\
f\left(u_{9 t+4+i}\right) & =f\left(v_{9 t+4+i}\right) & =1 & 1 \leq i \leq 3 t-1
\end{array}
$$

$f\left(u_{5 t+3}\right)=0, f\left(v_{5 t+3}\right)=1, f\left(u_{12 t+4}\right)=f\left(u_{12 t+5}\right)=1$ and $f\left(v_{12 t+4}\right)=$ $f\left(v_{12 t+5}\right)=2$.
Case 7. $n \equiv 6(\bmod 12)$.
Let $n=12 t-6$ and $t>0$. Define a function $f: V\left(H_{n}\right) \rightarrow\{0,1,2\}$ by $f(u)=1$,

$$
\begin{array}{llll}
f\left(u_{i}\right) & =f\left(v_{i}\right) & =0 & 1 \leq i \leq 5 t-2 \\
f\left(u_{5 t-2+i}\right) & =f\left(v_{5 t-2+i}\right) & =2 & 1 \leq i \leq 4 t-2 \\
f\left(u_{9 t-4+i}\right) & =f\left(v_{9 t-4+i}\right) & =1 & 1 \leq i \leq 3 t-2
\end{array}
$$

Case 8. $n \equiv 7(\bmod 12)$.
Let $n=12 t-5$ and $t>0$. Define a function $f: V\left(H_{n}\right) \rightarrow\{0,1,2\}$ by $f(u)=1$,

$$
\begin{array}{llll}
f\left(u_{i}\right) & =f\left(v_{i}\right) & =0 & 1 \leq i \leq 5 t-2 \\
f\left(u_{5 t-2+i}\right) & =f\left(v_{5 t-2+i}\right) & =2 & 1 \leq i \leq 4 t-2 \\
f\left(u_{9 t-4+i}\right) & =f\left(v_{9 t-4+i}\right) & =1 & 1 \leq i \leq 3 t-3
\end{array}
$$

$f\left(u_{12 t-6}\right)=f\left(u_{12 t-5}\right)=1, f\left(v_{12 t-6}\right)=2$ and $f\left(v_{12 t-5}\right)=0$.
Case 9. $n \equiv 8(\bmod 12)$.
Let $n=12 t-4$ and $t>0$. Construct a vertex labeling $f: V\left(H_{n}\right) \rightarrow\{0,1,2\}$ by $f(u)=1$,

$$
\begin{array}{llll}
f\left(u_{i}\right) & =f\left(v_{i}\right) & =0 & 1 \leq i \leq 5 t-2 \\
f\left(u_{5 t-1+i}\right) & =f\left(v_{5 t-1+i}\right) & =2 & 1 \leq i \leq 4 t-2 \\
f\left(u_{9 t-3+i}\right) & =f\left(v_{9 t-3+i}\right) & =1 & 1 \leq i \leq 3 t-3
\end{array}
$$

$f\left(u_{5 t-1}\right)=0, f\left(v_{5 t-1}\right)=1, f\left(u_{12 t-5}\right)=f\left(u_{12 t-4}\right)=1$ and $f\left(v_{12 t-5}\right)=$ $f\left(v_{12 t-4}\right)=2$.
Case 10. $n \equiv 9(\bmod 12)$.

Let $n=12 t-3$ and $t>0$. Define $f: V\left(H_{n}\right) \rightarrow\{0,1,2\}$ by $f(u)=1$,

$$
\begin{array}{llll}
f\left(u_{i}\right) & =f\left(v_{i}\right) & =0 & 1 \leq i \leq 5 t-1 \\
f\left(u_{5 t-1+i}\right) & =f\left(v_{5 t-1+i}\right) & =2 & 1 \leq i \leq 4 t-1 \\
f\left(u_{9 t-2+i}\right) & =f\left(v_{9 t-2+i}\right) & =1 & 1 \leq i \leq 3 t-1
\end{array}
$$

Case 11. $n \equiv 10(\bmod 12)$.
Let $n=12 t-2$ and $t>0$. Define a function $f: V\left(H_{n}\right) \rightarrow\{0,1,2\}$ by $f(u)=1$,

$$
\begin{array}{llll}
f\left(u_{i}\right) & =f\left(v_{i}\right) & =0 & 1 \leq i \leq 5 t-1 \\
f\left(u_{5 t+i}\right) & =f\left(v_{5 t+i}\right) & =2 & 1 \leq i \leq 4 t-1 \\
f\left(u_{9 t-1+i}\right) & =f\left(v_{9 t-1+i}\right) & =1 & 1 \leq i \leq 3 t-2
\end{array}
$$

$f\left(u_{5 t}\right)=0, f\left(v_{5 t}\right)=1, f\left(u_{12 t-2}\right)=1$ and $f\left(v_{12 t-2}\right)=2$.
Case 12. $n \equiv 11(\bmod 12)$.
Let $n=12 t-1$ and $t>0$. Define a function $f: V\left(H_{n}\right) \rightarrow\{0,1,2\}$ by $f(u)=1$,

$$
\begin{array}{llll}
f\left(u_{i}\right) & =f\left(v_{i}\right) & =0 & 1 \leq i \leq 5 t \\
f\left(u_{5 t+i}\right) & =f\left(v_{5 t+i}\right) & =2 \quad 1 \leq i \leq 4 t-1 \\
f\left(u_{9 t-1+i}\right) & =f\left(v_{9 t-1+i}\right) & =1 \quad 1 \leq i \leq 3 t-2
\end{array}
$$

$f\left(u_{12 t-2}\right)=f\left(u_{12 t-1}\right)=1$ and $f\left(v_{12 t-2}\right)=f\left(v_{12 t-1}\right)=2$.
The following table 2 shows that H_{n} is a Total Mean Cordial graph.
Table 2.

Values of n	$e v_{f}(0)$	$e v_{f}(1)$	$e v_{f}(2)$
$n \equiv 0(\bmod 12)$	$20 t+1$	$20 t$	$20 t$
$n \equiv 1(\bmod 12)$	$20 t+2$	$20 t+2$	$20 t+2$
$n \equiv 2(\bmod 12)$	$20 t+3$	$20 t+4$	$20 t+4$
$n \equiv 3(\bmod 12)$	$20 t+5$	$20 t+6$	$20 t+5$
$n \equiv 4(\bmod 12)$	$20 t-13$	$20 t-13$	$20 t-13$
$n \equiv 5(\bmod 12)$	$20 t+9$	$20 t+8$	$20 t+9$
$n \equiv 6(\bmod 12)$	$20 t-9$	$20 t-10$	$20 t-10$
$n \equiv 7(\bmod 12)$	$20 t-6$	$20 t-6$	$20 t-6$
$n \equiv 8(\bmod 12)$	$20 t-7$	$20 t-6$	$20 t-6$
$n \equiv 9(\bmod 12)$	$20 t-5$	$20 t-4$	$20 t-5$
$n \equiv 10(\bmod 12)$	$20 t-3$	$20 t-3$	$20 t-3$
$n \equiv 11(\bmod 12)$	$20 t-1$	$20 t-2$	$20 t-1$

References

1. J.A. Gallian, A Dynamic survey of graph labeling, The Electronic Journal of Combinatorics, 16 (2013) \# Ds6.
2. F. Harary, Graph theory, Narosa Publishing house, New Delhi, 2001.
3. R. Ponraj, A.M.S. Ramasamy and S. Sathish Narayanan, Total Mean Cordial labeling of graphs (communicated).
4. R. Ponraj and S. Sathish Narayanan, Total Mean Cordiality of $K_{n}^{c}+2 K_{2}$ (communicated).
5. R. Ponraj, A.M.S. Ramasamy and S. Sathish Narayanan, Total Mean Cordial labeling of some graphs (communicated).

Dr. R. Ponraj received his Ph.D in Manonmaniam Sundaranar University, Tirunelveli. He is currently an Assistant Professor at Sri Paramakalyani College, Alwarkurichi, India. His Research interest is in Discrete Mathematics.

Department of Mathematics, Sri Paramakalyani College, Alwarkurichi, Tamil Nadu, India627412.
e-mail: ponrajmaths@gmail.com
Mr. S. Sathish Narayanan did his M.Phil in St. Johns College, Palayamkottai. He is persuing doctoral research work. His Research interest is in Graph labeling.

Department of Mathematics, Sri Paramakalyani College, Alwarkurichi, Tamil Nadu 627 412, India.
e-mail: sathishrvss@gmail.com

[^0]: Received July 17, 2014. Revised October 8, 2014. Accepted October 10, 2014. * Corresponding author.
 (C) 2015 Korean SIGCAM and KSCAM.

