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TOTAL MEAN CORDIAL LABELING OF SOME CYCLE

RELATED GRAPHS

R. PONRAJ∗ AND S. SATHISH NARAYANAN

Abstract. A Total Mean Cordial labeling of a graph G = (V, E) is a

function f : V (G) → {0, 1, 2} such that f(xy) =
⌈

f(x)+f(y)
2

⌉

where

x, y ∈ V (G), xy ∈ E(G), and the total number of 0, 1 and 2 are balanced.
That is

∣

∣evf (i) − evf (j)
∣

∣ ≤ 1, i, j ∈ {0, 1, 2} where evf (x) denotes the total
number of vertices and edges labeled with x (x = 0, 1, 2). If there is a total
mean cordial labeling on a graph G, then we will call G is Total Mean

Cordial. Here, We investigate the Total Mean Cordial labeling behaviour
of prism, gear, helms.

AMS Mathematics Subject Classification : 05C78.
Key words and phrases : prism, gear, helms, join of graphs, product of
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1. Introduction

Terminology and notations in graph theory we refer Harary [2]. New terms
and notations shall, however, be specifically defined whenever necessary. By a
graph G = (V,E) we mean a finite, undirected graph with neither loops nor mul-
tiple edges. The product graph G1 ×G2 is defined as follows: Consider any two
points u = (u1, u2) and v = (v1, v2) in V = V1×V2. Then u and v are adjacent in
G1 × G2 whenever [u1 = v1 and u2 adj v2] or [u2 = v2 and u1 adj v1]. The
join of two graphs G1 and G2 is denoted by G1 + G2 and whose vertex set is
V (G1 +G2) = V (G1) ∪ V (G2) and edge set E (G1 +G2) = E (G1) ∪ E (G2) ∪
{uv : u ∈ V (G1) , v ∈ V (G2)}. The order and size of G are denoted by p and
q respectively. Ponraj, Ramasamy and Sathish Narayanan [3] introduced the
concept of Total Mean Cordial labeling of graphs and studied about their be-
havior on Path, Cycle, Wheel and some more standard graphs. In [4], Ponraj
and Sathish Narayanan proved that Kc

n + 2K2 is Total Mean Cordial if and
only if n = 1 or 2 or 4 or 6 or 8. Also in [5], Ponraj, Ramasamy and Sathish
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Narayanan studied about the Total Mean Cordiality of Lotus inside a circle,
bistar, flower graph, K2,n, Olive tree, P 2

n , S(Pn ⊙K1), S(K1,n). In this paper,
we investigate the Total Mean Cordiality of some cycle related graphs. Let x be
any real number. Then the symbol ⌈x⌉ stands for the smallest integer greater
than or equal to x.

2. Main results

Definition 2.1. A Total Mean Cordial labeling of a graph G = (V,E) is a

function f : V (G) → {0, 1, 2} such that f(xy) =
⌈

f(x)+f(y)
2

⌉

where x, y ∈

V (G), xy ∈ E(G), and the total number of 0, 1 and 2 are balanced. That is
|evf (i)− evf (j)| ≤ 1, i, j ∈ {0, 1, 2} where evf (x) denotes the total number of
vertices and edges labeled with x (x = 0, 1, 2). If there exists a total mean
cordial labeling on a graph G, we will call G is Total Mean Cordial.

Prisms are graphs of the form Cm × Pn. We now look into the graph prism
Cn × P2.

Theorem 2.2. Prisms are Total Mean Cordial.

Proof. It is clear that p + q = 5n. Let V (Cn × P2) = {ui, vi : 1 ≤ i ≤ n} and
E(Cn×P2) = {u1un, v1vn}∪{uivi : 1 ≤ i ≤ n}∪{uiui+1, vivi+1 : 1 ≤ i ≤ n−1}.
Case 1. n ≡ 0 (mod 6).
Let n = 6t and t > 0. Define a map f : V (Cn × P2) → {0, 1, 2} by

f(ui) = f(vi) = 0 1 ≤ i ≤ 2t
f(u2t+1+i) = f(v2t+1+i) = 2 1 ≤ i ≤ 2t− 1
f(u4t+i) = f(v4t+i) = 1 1 ≤ i ≤ 2t− 1

f(u2t+1) = 0, f(v2t+1) = f(v6t) = 2, f(u6t) = 1. In this case evf (0) = evf (1) =
evf (2) = 10t.
Case 2. n ≡ 1 (mod 6).
Let n = 6t+ 1 and t > 0. Define a map f : V (Cn × P2) → {0, 1, 2} by

f(ui) = 0 1 ≤ i ≤ 2t+ 2
f(u2t+2+i) = f(v2t+2+i) = 2 1 ≤ i ≤ 2t
f(u4t+2+i) = f(v4t+2+i) = 1 1 ≤ i ≤ 2t− 1
f(vi) = 0 1 ≤ i ≤ 2t

f(v2t+1) = f(v2t+2) = 1. Here evf (0) = evf (2) = 10t+ 2, evf (2) = 10t+ 1.
Case 3. n ≡ 2 (mod 6).
Let n = 6t+ 2 and t > 0. Define a map f : V (Cn × P2) → {0, 1, 2} by

f(ui) = f(vi) = 0 1 ≤ i ≤ 2t+ 1
f(u2t+1+i) = f(v2t+1+i) = 2 1 ≤ i ≤ 2t
f(u4t+1+i) = f(v4t+1+i) = 1 1 ≤ i ≤ 2t

f(u6t+2) = 1, f(v6t+2) = 2. In this case evf (0) = evf (2) = 10t + 3, evf (1) =
10t+ 4.
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Case 4. n ≡ 3 (mod 6).
Let n = 6t+ 3 and t ≥ 0. A Total Mean Cordial labeling of C3 × P2 is given in
figure 1.
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Figure 1.

Assume t > 0. Define a map f : V (Cn × P2) → {0, 1, 2} by

f(ui) = f(vi) = 0 1 ≤ i ≤ 2t+ 1
f(u2t+2+i) = f(v2t+2+i) = 2 1 ≤ i ≤ 2t
f(u4t+2+i) = f(v4t+2+i) = 1 1 ≤ i ≤ 2t

f(u2t+2) = 0, f(u6t+3) = 1, f(v2t+2) = f(v6t+3) = 2. In this case evf (0) =
evf (1) = evf (2) = 10t+ 5.
Case 5. n ≡ 4 (mod 6).
Let n = 6t+ 4 and t ≥ 0. A Total Mean Cordial labeling of C4 × P2 is given in
figure 2.
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Figure 2.

Assume t > 0. Define a map f : V (Cn × P2) → {0, 1, 2} by

f(ui) = f(vi) = 0 1 ≤ i ≤ 2t+ 1
f(u2t+3+i) = f(v2t+3+i) = 2 1 ≤ i ≤ 2t+ 1
f(u4t+4+i) = f(v4t+4+i) = 1 1 ≤ i ≤ 2t
f(u2t+2) = f(u2t+3) = 0
f(v2t+2) = f(v2t+3) = 1
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In this case evf (0) = evf (1) = 10t+ 7, evf (2) = 10t+ 6.
Case 6. n ≡ 5 (mod 6).
Let n = 6t− 1 and t > 0. Define a map f : V (Cn × P2) → {0, 1, 2} by

f(ui) = f(vi) = 0 1 ≤ i ≤ 2t
f(u2t+i) = f(v2t+i) = 2 1 ≤ i ≤ 2t− 1
f(u4t−1+i) = f(v4t−1+i) = 1 1 ≤ i ≤ 2t− 1

f(u6t−1) = 1, f(v6t−1) = 2. In this case evf (0) = evf (2) = 10t − 2, evf (1) =
10t− 1. �

The gear graph Gn is obtained from the wheel Wn = Cn +K1 where Cn is the
cycle u1u2 . . . unu1 and V (K1) = {u} by adding a vertex between every pair of
adjacent vertices of the cycle Cn.

Theorem 2.3. The gear graph Gn is Total Mean cordial.

Proof. Let V (Gn) = V (Wn) ∪ {vi : 1 ≤ i ≤ n} and E(Gn) = E(Wn) ∪
{uivi, vjuj+1 : 1 ≤ i ≤ n, 1 ≤ j ≤ n} − E(Cn). Clearly p+ q = 5n+ 1.
Case 1. n ≡ 0 (mod 12).
Let n = 12t and t > 0. Define a map f : V (Gn) → {0, 1, 2} by f(u) = 1,

f(ui) = f(vi) = 0 1 ≤ i ≤ 5t
f(u5t+1+i) = f(v5t+i) = 2 1 ≤ i ≤ 4t
f(u9t+1+i) = f(v9t+i) = 1 1 ≤ i ≤ 3t− 1

f(u5t+1) = 0, f(v12t) = 1.
Case 2. n ≡ 1 (mod 12).
Let n = 12t + 1 and t > 0. Assign the label to the vertices ui (1 ≤ i ≤ 12t),
vi (1 ≤ i ≤ 12t− 1) as in case 1. Then put the labels 0, 1, 2 to the vertices v12t,
u12t+1, v12t+1 respectively.
Case 3. n ≡ 2 (mod 12).
Let n = 12t+ 2 and t > 0. Define a map f : V (Gn) → {0, 1, 2} by f(u) = 1,

f(ui) = f(vi) = 0 1 ≤ i ≤ 5t+ 1
f(u5t+1+i) = f(v5t+1+i) = 2 1 ≤ i ≤ 4t
f(u9t+2+i) = f(v9t+1+i) = 1 1 ≤ i ≤ 3t− 1

f(u9t+2) = f(v12t+2) = 2, f(u12t+2) = 0, f(u12t+1) = 1.
Case 4. n ≡ 3 (mod 12).
Let n = 12t− 9 and t > 0. Define a map f : V (Gn) → {0, 1, 2} by f(u) = 1,

f(ui) = f(vi) = 0 1 ≤ i ≤ 5t− 4
f(u5t−3+i) = f(v5t−4+i) = 2 1 ≤ i ≤ 4t− 3
f(u9t−6+i) = f(v9t−7+i) = 1 1 ≤ i ≤ 3t− 3

f(u5t−3) = 0, f(v12t−9) = 1.
Case 5. n ≡ 4 (mod 12).
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Let n = 12t− 8 and t > 0. Define a map f : V (Gn) → {0, 1, 2} by f(u) = 1,

f(ui) = f(vi) = 0 1 ≤ i ≤ 5t− 3
f(u5t−3+i) = f(v5t−3+i) = 2 1 ≤ i ≤ 4t− 3
f(u9t−6+i) = f(v9t−6+i) = 1 1 ≤ i ≤ 3t− 3

f(u12t−8) = 1, f(v12t−8) = 2.
Case 6. n ≡ 5 (mod 12).
Let n = 12t− 7 and t > 0. Define a map f : V (Gn) → {0, 1, 2} by f(u) = 1,

f(ui) = f(vi) = 0 1 ≤ i ≤ 5t− 3
f(u5t−2+i) = f(v5t−2+i) = 2 1 ≤ i ≤ 4t− 3
f(u9t−4+i) = f(v9t−5+i) = 1 1 ≤ i ≤ 3t− 3

f(u5t−2) = 0, f(v5t−2) = 1, f(u9t−4) = 2, f(v12t−7) = 1.
Case 7. n ≡ 6 (mod 12).
Let n = 12t− 6 and t > 0. Define a map f : V (Gn) → {0, 1, 2} by f(u) = 1,

f(ui) = f(vi) = 0 1 ≤ i ≤ 5t− 2
f(u5t−2+i) = f(v5t−2+i) = 2 1 ≤ i ≤ 4t− 3
f(u9t−4+i) = f(v9t−5+i) = 1 1 ≤ i ≤ 3t− 2

f(u9t−4) = 2, f(v12t−6) = 2.
Case 8. n ≡ 7 (mod 12).
Let n = 12t− 5 and t > 0. Define a map f : V (Gn) → {0, 1, 2} by f(u) = 1,

f(ui) = f(vi) = 0 1 ≤ i ≤ 5t− 2
f(u5t−2+i) = f(v5t−2+i) = 2 1 ≤ i ≤ 4t− 2
f(u9t−4+i) = f(v9t−4+i) = 1 1 ≤ i ≤ 3t− 3

f(u12t−6) = f(u12t−5) = 1, f(v12t−6) = 0, f(v12t−5) = 2.
Case 9. n ≡ 8 (mod 12).
Let n = 12t− 4 and t > 0. Define a map f : V (Gn) → {0, 1, 2} by f(u) = 1,

f(ui) = f(vi) = 0 1 ≤ i ≤ 5t− 2
f(u5t−1+i) = f(v5t−1+i) = 2 1 ≤ i ≤ 4t− 2
f(u9t−2+i) = f(v9t−3+i) = 1 1 ≤ i ≤ 3t− 2

f(u5t−1) = 0, f(v5t−1) = f(v12t−4) = 1, f(u9t−2) = 2.
Case 10. n ≡ 9 (mod 12).
Let n = 12t− 3 and t > 0. Define a map f : V (Gn) → {0, 1, 2} by f(u) = 1,

f(ui) = f(vi) = 0 1 ≤ i ≤ 5t− 1
f(u5t−1+i) = f(v5t−1+i) = 2 1 ≤ i ≤ 4t− 2
f(u9t−2+i) = f(v9t−3+i) = 1 1 ≤ i ≤ 3t− 1

f(u9t−2) = 2, f(v12t−3) = 2.
Case 11. n ≡ 10 (mod 12).
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Let n = 12t− 2 and t > 0. Define a map f : V (Gn) → {0, 1, 2} by f(u) = 1,

f(ui) = f(vi) = 0 1 ≤ i ≤ 5t− 1
f(u5t+i) = f(v5t−1+i) = 2 1 ≤ i ≤ 4t− 1
f(u9t−1+i) = f(v9t−2+i) = 1 1 ≤ i ≤ 3t− 1

f(u5t) = 0, f(v12t−2) = 2.
Case 12. n ≡ 11 (mod 12).
Let n = 12t− 1 and t > 0. Define a map f : V (Gn) → {0, 1, 2} by f(u) = 1,

f(ui) = f(vi) = 0 1 ≤ i ≤ 5t
f(u5t+i) = f(v5t+i) = 2 1 ≤ i ≤ 4t− 1
f(u9t+i) = f(v9t−1+i) = 1 1 ≤ i ≤ 3t− 1

f(u9t) = 0, f(v12t−1) = 1.
The following table 1 shows that Gn is a Total Mean Cordial graph. �

Table 1.

Nature of n evf (0) evf (1) evf (2)
n ≡ 0 (mod 12) 20t+ 1 20t 20t
n ≡ 1 (mod 12) 20t+ 2 20t+ 2 20t+ 2
n ≡ 2 (mod 12) 20t+ 4 20t+ 3 20t+ 4
n ≡ 3 (mod 12) 20t− 15 20t− 14 20t− 15
n ≡ 4 (mod 12) 20t− 13 20t− 13 20t− 13
n ≡ 5 (mod 12) 20t− 11 20t− 12 20t− 11
n ≡ 6 (mod 12) 20t− 9 20t− 10 20t− 10
n ≡ 7 (mod 12) 20t− 8 20t− 8 20t− 8
n ≡ 8 (mod 12) 20t− 7 20t− 6 20t− 6
n ≡ 9 (mod 12) 20t− 5 20t− 4 20t− 5
n ≡ 10 (mod 12) 20t− 3 20t− 3 20t− 3
n ≡ 11 (mod 12) 20t− 1 20t− 1 20t− 2

The helm Hn is the graph obtained from a wheel by attaching a pendant edge
at each vertex of the n-cycle.

Theorem 2.4. Helms Hn are Total Mean Cordial.

Proof. Let V (Hn) = {u, ui, vi : 1 ≤ i ≤ n} and E(Hn) = {uiui+1 : 1 ≤ i ≤
n− 1} ∪ {unu1} ∪ {uui, uivi : 1 ≤ i ≤ n}. Clearly the order and size of Hn are
2n+ 1 and 3n respectively.
Case 1. n ≡ 0 (mod 12).
Let n = 12t and t > 0. Construct a vertex labeling f : V (Hn) → {0, 1, 2} by
f(u) = 1,

f(ui) = f(vi) = 0 1 ≤ i ≤ 5t
f(u5t+1+i) = f(v5t+1+i) = 2 1 ≤ i ≤ 4t
f(u9t+1+i) = f(v9t+1+i) = 1 1 ≤ i ≤ 3t− 1

and f(v5t+1) = 1.
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Case 2. n ≡ 1 (mod 12).
Let n = 12t+ 1 and t > 0. Define a map f : V (Hn) → {0, 1, 2} by f(u) = 1,

f(ui) = f(vi) = 0 1 ≤ i ≤ 5t
f(u5t+1+i) = f(v5t+1+i) = 2 1 ≤ i ≤ 4t
f(u9t+1+i) = f(v9t+1+i) = 1 1 ≤ i ≤ 3t− 2

f(u5t+1) = 0, f(v5t+1) = 1, f(u12t) = f(u12t+1) = 1, f(v12t) = 2 and f(v12t+1) =
0.
Case 3. n ≡ 2 (mod 12).
Let n = 12t+ 2 and t > 0. Define a map f : V (Hn) → {0, 1, 2} by f(u) = 1,

f(ui) = f(vi) = 0 1 ≤ i ≤ 5t+ 1
f(u5t+1+i) = f(v5t+1+i) = 2 1 ≤ i ≤ 4t
f(u9t+1+i) = f(v9t+1+i) = 1 1 ≤ i ≤ 3t− 1

f(u12t+1) = f(u12t+2) = 1 and f(v12t+1) = f(v12t+2) = 2.
Case 4. n ≡ 3 (mod 12).
The Total Mean Cordial labeling of H3 is given in figure 3.

b

b
b

b

b

b

b

0

0

1
2

2

2

0

Figure 3.

Let n = 12t+ 3 and t > 0. Define a map f : V (Hn) → {0, 1, 2} by f(u) = 1,

f(ui) = f(vi) = 0 1 ≤ i ≤ 5t+ 1
f(u5t+2+i) = f(v5t+2+i) = 2 1 ≤ i ≤ 4t+ 1
f(u9t+3+i) = f(v9t+3+i) = 1 1 ≤ i ≤ 3t

f(u5t+2) = 0, f(v5t+2) = 1.
Case 5. n ≡ 4 (mod 12).
Let n = 12t− 8 and t > 0. Define a map f : V (Hn) → {0, 1, 2} by f(u) = 1,

f(ui) = f(vi) = 0 1 ≤ i ≤ 5t− 3
f(u5t−3+i) = f(v5t−3+i) = 2 1 ≤ i ≤ 4t− 3
f(u9t−6+i) = f(v9t−6+i) = 1 1 ≤ i ≤ 3t− 3

f(u12t−8) = 1 and f(v12t−8) = 2.
Case 6. n ≡ 5 (mod 12).
The Total Mean Cordial labeling of H3 is given in figure 4.
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Figure 4.

Let n = 12t+5 and t > 0. Define a function f : V (Hn) → {0, 1, 2} by f(u) = 1,

f(ui) = f(vi) = 0 1 ≤ i ≤ 5t+ 2
f(u5t+3+i) = f(v5t+3+i) = 2 1 ≤ i ≤ 4t+ 1
f(u9t+4+i) = f(v9t+4+i) = 1 1 ≤ i ≤ 3t− 1

f(u5t+3) = 0, f(v5t+3) = 1, f(u12t+4) = f(u12t+5) = 1 and f(v12t+4) =
f(v12t+5) = 2.
Case 7. n ≡ 6 (mod 12).
Let n = 12t− 6 and t > 0. Define a function f : V (Hn) → {0, 1, 2} by f(u) = 1,

f(ui) = f(vi) = 0 1 ≤ i ≤ 5t− 2
f(u5t−2+i) = f(v5t−2+i) = 2 1 ≤ i ≤ 4t− 2
f(u9t−4+i) = f(v9t−4+i) = 1 1 ≤ i ≤ 3t− 2.

Case 8. n ≡ 7 (mod 12).
Let n = 12t− 5 and t > 0. Define a function f : V (Hn) → {0, 1, 2} by f(u) = 1,

f(ui) = f(vi) = 0 1 ≤ i ≤ 5t− 2
f(u5t−2+i) = f(v5t−2+i) = 2 1 ≤ i ≤ 4t− 2
f(u9t−4+i) = f(v9t−4+i) = 1 1 ≤ i ≤ 3t− 3

f(u12t−6) = f(u12t−5) = 1, f(v12t−6) = 2 and f(v12t−5) = 0.
Case 9. n ≡ 8 (mod 12).
Let n = 12t− 4 and t > 0. Construct a vertex labeling f : V (Hn) → {0, 1, 2} by
f(u) = 1,

f(ui) = f(vi) = 0 1 ≤ i ≤ 5t− 2
f(u5t−1+i) = f(v5t−1+i) = 2 1 ≤ i ≤ 4t− 2
f(u9t−3+i) = f(v9t−3+i) = 1 1 ≤ i ≤ 3t− 3

f(u5t−1) = 0, f(v5t−1) = 1, f(u12t−5) = f(u12t−4) = 1 and f(v12t−5) =
f(v12t−4) = 2.
Case 10. n ≡ 9 (mod 12).
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Let n = 12t− 3 and t > 0. Define f : V (Hn) → {0, 1, 2} by f(u) = 1,

f(ui) = f(vi) = 0 1 ≤ i ≤ 5t− 1
f(u5t−1+i) = f(v5t−1+i) = 2 1 ≤ i ≤ 4t− 1
f(u9t−2+i) = f(v9t−2+i) = 1 1 ≤ i ≤ 3t− 1

Case 11. n ≡ 10 (mod 12).
Let n = 12t− 2 and t > 0. Define a function f : V (Hn) → {0, 1, 2} by f(u) = 1,

f(ui) = f(vi) = 0 1 ≤ i ≤ 5t− 1
f(u5t+i) = f(v5t+i) = 2 1 ≤ i ≤ 4t− 1
f(u9t−1+i) = f(v9t−1+i) = 1 1 ≤ i ≤ 3t− 2

f(u5t) = 0, f(v5t) = 1, f(u12t−2) = 1 and f(v12t−2) = 2.
Case 12. n ≡ 11 (mod 12).
Let n = 12t− 1 and t > 0. Define a function f : V (Hn) → {0, 1, 2} by f(u) = 1,

f(ui) = f(vi) = 0 1 ≤ i ≤ 5t
f(u5t+i) = f(v5t+i) = 2 1 ≤ i ≤ 4t− 1
f(u9t−1+i) = f(v9t−1+i) = 1 1 ≤ i ≤ 3t− 2

f(u12t−2) = f(u12t−1) = 1 and f(v12t−2) = f(v12t−1) = 2.
The following table 2 shows that Hn is a Total Mean Cordial graph. �

Table 2.

Values of n evf (0) evf (1) evf (2)
n ≡ 0 (mod 12) 20t+ 1 20t 20t
n ≡ 1 (mod 12) 20t+ 2 20t+ 2 20t+ 2
n ≡ 2 (mod 12) 20t+ 3 20t+ 4 20t+ 4
n ≡ 3 (mod 12) 20t+ 5 20t+ 6 20t+ 5
n ≡ 4 (mod 12) 20t− 13 20t− 13 20t− 13
n ≡ 5 (mod 12) 20t+ 9 20t+ 8 20t+ 9
n ≡ 6 (mod 12) 20t− 9 20t− 10 20t− 10
n ≡ 7 (mod 12) 20t− 6 20t− 6 20t− 6
n ≡ 8 (mod 12) 20t− 7 20t− 6 20t− 6
n ≡ 9 (mod 12) 20t− 5 20t− 4 20t− 5
n ≡ 10 (mod 12) 20t− 3 20t− 3 20t− 3
n ≡ 11 (mod 12) 20t− 1 20t− 2 20t− 1
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